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Biological processes are often dynamic. To capture the dynamics of these biological processes, we need to monitor different time
points during the processes. Time-series data is the data type which contains information of biological processes at different
time points. Based on these information, time-series data can be used to investigate the whole process in a biological activity,
to infer the rate of expression change, the order of changes and possible causal relationships. In this review, we will discuss
basic experimental background of time-series data. Besides, we will also discuss the general procedure of analyzing time-series
data in a computational way.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces—Evaluation/
methodology; H.1.2 [Models and Principles]: User/Machine Systems—Human Information Processing; 1.5.1 [Pattern
Recognition]: Models—Neural Nets

General Terms: Human Factors

1. INTRODUCTION

As the dynamic property of biological processes, time-series data are very important for us if we want
to understand and model complex biological processes. Although there are some types of genomic data
also including information over time, time-series gene expression data is the most abundant and avail-
able one compared with other data types. Time-series gene expression data can be used to gain a wide
range of insights. For example, it can be used to characterize the relationship between different genes,
their regulation and coordination and also pathogenesis of complex diseases. Consequently, time-series
gene expression data has been widely used and become an very important tool to investigate biological
processes such as responses to external stimuli, disease progression and cell cycle. Recently, the emer-
gence of methods for measuring gene expression such as high-throughput RNA sequencing (RNA-seq)
and the increased focus on clinical applications make time-series gene expression studies more power-
ful and feasible. Moreover, the amount of time-series expression data in public expression databases
has grown exponentially over the past few years [Barrett et al. 2013]. Besides, the increase in sequence
capacity, which has been used primarily to generate static datasets, makes time-series expression date
even more attractive as a powerful complementary for the understanding of dynamic systems.
However, although time-series data has many benefits, it also raises some experimental and compu-
tational challenges. In this review, we will go over these challenges and present the basic experimental
considerations and computational methods that have been developed for analyzing time-series gene
expression data. Of note, although this review is mainly focused on gene expression data derived from
microarrays, most of the points discussed here can be applied to sequence-based gene expression data.

2. EXPERIMENTAL DESIGN
2.1 Advantage of time-series experiment

Before designing a time-series experiment, the question we should ask is what is the advantage of time-
series experiment? Or to say, what are the benefits of multiple measurements rather than single and
static measurements? First, time-series gene expression experiments can capture information about
genes with transient expression changes. This can be applied for all types of biological processes. For
example, in perturbation-response experiments, different sets of genes respond with different kinetics.
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Consequently, the entire response can be captured only by monitoring the process at multiple time
points [Gasch et al. 2000]. Second, time-series experiments can provide a view of the sequence of
events that take place. This is important both in order to understand the type of processes that are
activated at each stage and also for inferring causality. Finally, time-series experiment allows the study
of the kinetics and the temporal pattern of a response. This is very important for understanding the
dynamics of biological processes.

2.2 Biological conditions suitable for time-series experiment

Most genomic methods are applied to populations of cells rather than single cells. Technological ad-
vances have already allowed the measurement of the transcriptome of single cells, however, sampling
a cell at multiple time points is still a problem. Consequently, time-series experiments are suitable to
cases in which cell populations are fairly uniform. The following processes produce such populations:
response to external signals [Gasch et al. 2000]; developmental processes with a clear starting point
[Gerstein et al. 2010]; and cyclic internal processes in which the entire cell population can be synchro-
nized [Spellman et al. 1998]. The next step is to determine the duration and sampling rates for the
processes being studies.

2.3 Sampling rates

Sampling rates are closely related to the goals of the experiment. For example, if the experiment is
about measuring a cyclic process, then the sampling should be uniform which means that the interval
between consecutive time points should be the same. Besides, sampling should also cover multiple cy-
cles in order to capture consistent changes. However, if the study is about development, then there is no
simple and ideal sampling rates to follow. Two approaches are commonly used for developmental stud-
ies. The first approach depends on morphological markers of the embryo as a substitution for stages of
transcriptional regulation [Gerstein et al. 2010]. The second approach is to change the sampling rate
during the life cycle based on the expected rates of changes in gene expression.

After solving the problem of choosing an appropriate sampling rates, another problem is choosing
the sampling density, which depends on the goal of the experiment. In general, under the constraint of
budget, an important question is whether to invest in more replicates for each time point, or in more
time points but fewer replicates for each time point. If the goal is to investigate the kinetic pattern of
a biological process, it would be better to invest more in time points rather than replicates. A denser
sampling can also help to control the noise in individual time points even without replicates. However,
if the goal is to find differentially expressed genes across different time points, then it would be better
to invest more in replicates.

In practice, choosing an appropriate sampling rate is difficult because of the limit of pre-knowledge
of the biological process. One useful solution is to monitor the expression of a few genes over a long
time period to try to find the pattern behind the biological process before choosing a sampling rate
[Amit et al. 2009].

2.4 Synchronization of time-series gene expression experiments

Microarray-based and high-throughput sequencing-based experiments currently require a population
of cells. Therefore, how to make sure that all the cells are in the same phase of the biological processes
throughout all time points in the experiment, which is called synchronization, is an important issue.
An example of within-series synchronization is studying the cell cycle [Spellman et al. 1998]. Cell
cycle study requires a synchronized population of cells at multiple time points during the cell cycle.
The most commonly used synchronization method in these experiments is arresting cells at a specific
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point in the cell cycle and then releasing them at the same time. This approach was initially used in
budding yeast [Spellman et al. 1998].

However, although these arresting methods are effective in lower organisms with slow cell cycles,
their application to mammalian cells, which usually have longer cell cycles, are ofter not effective
because the cells will lose synchronization quickly. Even for yeast cells, such arrest methods did not
lead to complete synchronization [Lu et al. 2004].

Various methods have been introduced for synchronizing cells in a cyclic experiment. Most of them
rely on matching the phases for the first and second cycle for each gene [Lu et al. 2004]. This works
well when at least the first cycle is fairly synchronized, however, they cannot be applied to mammalian
cell cycle or to other responses in which the activity is not cyclic.

An alternative set of approaches is to synchronize cells in silico. One of these approaches relies
on additional measurements to characterize the population of cells at each time point such as flow-
cytometry-based analysis of DNA quantity. Using these measurements, a model for the population of
cells at each time point is constructed and is then used to deconvolve the time-series expression data
[Bar-Joseph et al. 2008].

Another type of synchronization is used when combining or comparing time-series experiments from
multiple studies. In such cases, although each individual time-series dataset may be synchronized,
response rates may differ between these datasets. Therefore, it is difficult to compare results between
different time-series experiments. Several approaches have been developed to solve these problems.
Most of them rely on the alignment of expression profiles between the experiments using a time-
wrapping method [Kaminski and Bar-Joseph 2007] or use hidden Markov models for the alignment
process [Lin et al. 2008].

2.5 RNA-seq time-series gene expression data

Although most time-series gene expression data sets are based on microarrays and microarray analysis
methods are more mature, many time-series RNA-seq studies have been carried out over the past few
years [Pauli et al. 2012]. There are several advantages of RNA-seq time-series gene expression data.
First, some noise issues of microarrays such like background correction and cross-hybridization, are
solved by RNA sequencing. Second, RNA sequencing studies make it easier to determine the expression
of alternatively spliced genes, and provide opportunities for expression experiments of species that do
not have an assembled genome. Third, sequencing-based methods are more replicable and lead to
more accurate results compared with microarray-based methods [Marioni et al. 2008]. Although there
are still problems with RNA-seq data, it is expected that over the next few years, most time-series
expression data will be based on RNA-seq technology.

2.6 Clinical application

Time-series gene expression data are being increasingly used to monitor patient responses to injury
and disease [Calvano et al. 2005], as well as to treatments and preventive measures [Baranzini et al.
2004] in clinical studies. Patient heterogeneity can make the analysis of absolute expression levels
meaningless, and ethnicity can affect the responses to therapy. Therefore, time-series measurements
that provide information about expression changes are especially beneficial. However, there are some
unique challanges for such studies. For example, ethical considerations may preclude certain types of
samples that would be most relevant to the scientific hypotheses. Choosing the correct sampling rate
is also difficult as mentioned before. In many cases the transcriptional changes occur within days, but
it may take years to see whether a patient has responded successfully to treatment or not, indicating
that a longer duration of sampling would be more appropriate in such studies.
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Task Software Description Link
Identifying Linear Models for Microarray Data Uses linear models to analyse gene expression and is part of http:/fwww.bioconductor.org/p
differentially (LIMMA) the popular Bioconductor project ackages/
expressed release/bioc/html/limma html
genes
Significance Analysis of Microarrays Permutation-based analysis of gene expression http:/fwww-
(SAM) stat.stanford.edu/~tibs/SAM
Extraction of Differential Gene Expression | Statistical analysis that specifically leverages the time http://www.genomine.org/edg
(EDGE) structure in the expression data e
Bayesian Estimation of Temporal Bayesian technique that exploits time-dependent structure in http:/fwww.tm4.org/mev
Regulation (BETR) the expression data and is available with the MultiExperiment
Viewer (MeV) application and Bioconductor
Clustering Short Time-series Expression Miner Maps genes to representative expression profiles with an http://www.sb.cs.cmu.edu/ste
(STEM) emphasis on short time-series experiments; also implements m
k-means
Graphical Query Language (GQL) Hidden Markov model (HMM)-based clustering http://ghmm.org/gql
Cluster Analysis of Gene Expression Models gene expression using autoregressive equations http://dcommon.bu.edu/xmlui/
Dynamics (CAGED) handle/2144/1290
TimeClust Implements hierarchical clustering, self-organizing maps, and | http://aimed11.unipv.it/'TimeC
two novel time-series clustering algorithms lust
Dynamic modelling and clustering Simultaneously clusters genes and fits groups of similar genes | hitp://www.compbio.cs.huji.ac
(DynaMiteC) to impulse models Al
DynaMiteC/Site/DynaMiteC.h
tml
Platform for Processing Expression of Summarizes expression profiles with various features and can | http://www.mailman.columbia
Short Time Series (PESTS) also identify significant genes .edw/ academic-
departments/biostatistics/
research-service/software-
development
Classification GQL Extensions of GQL enable it to classify clinical responses on http://ghmm.org/gql
the basis of gene expression
Treatment-Response Alignment Models Discriminative HMM-based classification http://www.cs.cmu.edu/~thlin/
(TRAM) tram
MVQueries Uses HMMSs to model expression response as piecewise http://bicinformatics.rutgers.ed
constant functions 1w/ Software/MVQueries
Dynamic Inferelator Ordinary differential equations are used to model http://err.bio.nyu.edu/inferelat
regulatory transcriptional changes in terms of environmental and or
networks transcription factor influence
Network Component Analysis Decomposes a dynamic gene expression matrix to learn http://www.seas.ucla.edu/~liao
transcription factor activities over time j/ download.htm
Dynamic Regulatory Events Miner HMM-based algorithm for identifying transcription factors http://www.sb.cs.cmu.edu/dre
(DREM) that control divergence points in gene expression profiles m
Time-Series Network Identification Constructs a local regulatory network of genes that are http://dibernardo.tigem. it/wiki/
(TSNI) affected by an external perturbation index.php/Time_Series_Netwo
1k _Identification TSNI
Simulation GeneNetWeaver Generates realistic regulatory networks and dynamic gene http://gnw.sourceforge.net
expression data

Fig. 1. Software for the analysis of time-series gene expression data
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The primary goal of many clinical studies is using classification to predict patient outcome. For
example, in a study in which healthy volunteers were exposed to influenza, researchers used logistic
regression to identify genes that can discriminate between pairs of phenotypic classes [Huang et al.
2011]. One problem about clinical studies is poor reproducibility, which inhibits the applicability of
these studies to medical practice. Therefore, it is important to prevent overfitting the gene expression
data. The methods we can use to prevent overfitting are: concentrating on small subsets of relevant
genes based on prior knowledge [Baranzini et al. 2004]; using cross-validation strategies [Baranzini
et al. 2004]; or validating results using independent patients and/or experimental methods [Calvano
et al. 2005].

In the rest of this review, we will focus on computational methods that are designed for time-series
experiments analysis. Figure 1 lists several commonly used softwares for the analysis of time-series
gene expression data. The software are classified according to different purposes of the analysis.

3. COMPUTATIONAL ANALYSIS OF TIME-SERIES GENE EXPRESSION DATA
3.1 Normalization

Normalization methods for time-series gene expression data are usually the same with static gene ex-
pression data because normalization is mainly focused on normalizing data in individual microarrays.
However, there are some cases that normalization methods used for static expression data are not ef-
fective. One example is experiment aiming to measure RNA decay rates over time [Shalem et al. 2008].
Such experiments violate one primary assumption for most normalization methods: total quantity of
mRNA is the same at different time points [Bolstad et al. 2003]. One optimal normalization method
for such cases is to use spike controls. If spike controls are not available, some other normalization
methods such like dChip [Li and Wong 2001] can be used because it does not rely on total RNA quan-
tities. Methods like dChip rely on rank-invariant genes, which probably exist even after transcription
shutdown.

3.2 Differentially expressed genes

After normalization, the question we then ask is how to identify differentially expressed genes. A
heuristic solution that is commonly used is that a genes is differentially expressed if its expression
value is above a chosen fold change in at least two consecutive points. However, the cutoff of these
methods are arbitrarily chosen so that it may not be appropriate for all genes. To solve this problem,
numerous methods have been developed, or extended, to identify differentially expressed genes in
time-series data (Figure 1). Unlike the heuristic methods, these methods often rely on analyzing a
more continuous version of the experiments data for each gene. Therefore, more time points are used
to identify differentially expressed genes. The comparison between these methods and methods that
are used for the analysis of static gene expression data such as t-tests indicates that in at least some
cases, these methods can improve the identification of differentially expressed genes. Some of these
methods require replicates at each time point but some do not.

3.3 Clustering

Although clustering methods for static gene expression data analysis such like hierarchical clustering
and k-means clustering can be used to time-series gene expression data, there are some clustering
methods specifically developed for time-series data. These methods include methods that use regres-
sion analysis to group genes on the basis of their trajectories [Ramoni et al. 2002]; methods based on
graphical models like hidden Markov models (HMMs) to group genes on the basis of their transcrip-
tional trends, regardless of the specific values [Schliep et al. 2003]; and methods that assign genes to
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one of several previously defined temporal trajectories, therefore allowing users to determine signif-
icance levels for the different clusters [Ernst et al. 2005]. By including information at multiple time
points, these methods are often an improvement on the static-based methods.

3.4 Classification

In studies of diseases, it has been observed that the dynamics of gene expression profiles may provide
insights into the the serverity and the response of patients to treatments [Baranzini et al. 2004].
Many methods have been developed recently to analyze such data by classifying outcomes based on the
dynamics of expression changes. It is shown that in many cases, by including information at multiple
time points, these methods outperform methods that only using static data.

3.5 Causality

A key advantage of time-series data is that it can be used to infer causality without perturbing the sys-
tem. Based on the dynamic change of expression profile across different time points, researchers can
test several hypotheses regarding causal relationships between genes. Early work in this field used
an alignment approach to match similar or opposite subsections of expression patterns that were tem-
porally separated. These alignment methods were used to identify potential activators and repressors
[Qian et al. 2001]. Several other methods use various types of regression analysis which can also be
used to identify such causal relationships. In these methods, researchers try to model the expression
profile of a specific gene based on the expression of another gene which is expressed earlier. Methods
that use continuous representation are more appropriate for this type of analysis. Although most work
in this field is focused on modelling organisms, dynamic Bayesian networks, which rely on the expres-
sion of a regulator at one time point to explain the expression of a target at the next, were successfully
applied to identify causal candidates for the temporal changes in a human blood transcriptional net-
work [Zhu et al. 2010]. However, due to the high dimensionality of data, false positives remain a major
problem when carrying out such causality analysis. In addition, because many transcription factors are
only post-transcriptionally regulated, such an analysis may miss key regulators. Therefore, a better
approach is to integrate additional types of genomic data when carrying out such causal modelling.

4. CONCLUSIONS

Time-series gene expression data provides a wealth of information about the dynamics of gene expres-
sion, possible interactions between genes and the role that different genes play in a biological process.
By integrating other static omics data sets, researchers can investigate the dynamic networks that
are activated in cells from a global perspective. Given the importance of dynamic biological processes,
the insights that are derived from current high-throughput dynamic data and the increased ability to
study dynamic system, time-series data will play an even more important role in future studies.
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