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Outline	
  

•  Introduc-on	
  to	
  molecular	
  biology	
  
– DNA,	
  gene,	
  RNA,	
  protein,	
  central	
  dogma	
  

•  Typical	
  data	
  
– Gene	
  expression	
  
– RNA-­‐seq	
  
– Regulatory	
  sequences	
  
– ChIP-­‐chip/seq	
  

•  Why	
  is	
  sta-s-cs	
  important?	
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DNA	
  
•  DNA	
  (Deoxyribonucleic	
  acid)	
  is	
  

a	
  molecule	
  to	
  store	
  gene-c	
  
informa-on	
  of	
  a	
  living	
  
organism.	
  	
  

•  DNA	
  consists	
  of	
  two	
  polymers	
  
made	
  from	
  four	
  types	
  of	
  
nucleo-des:	
  adenine	
  (A),	
  
guanine	
  (G),	
  cytosine	
  (C)	
  and	
  
thymine	
  (T).	
  	
  

•  Purines:	
  A,	
  G;	
  Pyrimidines:	
  C,	
  T	
  	
  
•  Two	
  polymers	
  are	
  

complementary	
  to	
  each	
  other	
  
and	
  from	
  a	
  double-­‐helix	
  
structure	
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Chromosome	
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Chromosome	
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Gene	
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Central	
  
Dogma	
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Data	
  type	
  1:	
  Gene	
  expression	
  data	
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Principle	
  of	
  gene	
  expression	
  microarray	
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Source:	
  Affymetrix	
  Inc.	
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Source:	
  Affymetrix	
  Inc.	
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Gene	
  expression	
  data	
  matrix	
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RNA-­‐Seq	
  data	
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Wang,	
  Gerstein,	
  &	
  
Snyder	
  (2009)	
  Nature	
  
Reviews	
  Gene$cs	
  10,	
  
57-­‐63.	
  	
  



RNA-­‐Seq	
  data	
  
•  1)	
  Long	
  RNAs	
  are	
  first	
  converted	
  into	
  a	
  library	
  of	
  cDNA	
  
fragments	
  through	
  either	
  RNA	
  fragmenta-on	
  or	
  DNA	
  
fragmenta-on.	
  	
  

•  2)	
  Sequencing	
  adaptors	
  (blue)	
  are	
  subsequently	
  added	
  
to	
  each	
  cDNA	
  fragment	
  and	
  a	
  short	
  sequence	
  is	
  
obtained	
  from	
  each	
  cDNA	
  using	
  high-­‐throughput	
  
sequencing	
  technology.	
  	
  

•  3)	
  The	
  resul-ng	
  sequence	
  reads	
  are	
  aligned	
  with	
  the	
  
reference	
  genome	
  or	
  transcriptome,	
  and	
  classified	
  as	
  
three	
  types:	
  exonic	
  reads,	
  junc-on	
  reads	
  and	
  poly(A)	
  
end-­‐reads.	
  	
  

•  4)	
  These	
  three	
  types	
  are	
  used	
  to	
  generate	
  a	
  base-­‐
resolu-on	
  expression	
  profile	
  for	
  each	
  gene,	
  as	
  
illustrated	
  at	
  the	
  bocom;	
  a	
  yeast	
  ORF	
  with	
  one	
  intron	
  
is	
  shown.	
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Data	
  type	
  2:	
  Regulatory	
  sequences	
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Transcrip-on	
  factor	
  binding	
  sites	
  &	
  mo-fs	
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Mo-fs	
  are	
  regulatory	
  codes	
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Finding	
  mo-fs	
  from	
  co-­‐regulated	
  genes	
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Mo-f	
  discovery	
  is	
  difficult	
  in	
  mammalian	
  genomes	
  	
  

•  Advanced	
  methods	
  in	
  regulatory	
  sequence	
  analysis:	
  
–  1)	
  combinatorial	
  binding	
  pacern	
  
–  2)	
  mul-ple	
  species	
  conserva-on	
  
–  3)	
  heterogeneity	
  in	
  background	
  	
  
–  4)	
  predic-ve	
  modeling	
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Data	
  type	
  3:	
  ChIP-­‐chip	
  and	
  ChIP-­‐seq	
  	
  

•  ChIP:	
  Chroma-n	
  
ImmunoPrecipita-on	
  	
  

•  chip:	
  DNA	
  micorarray	
  
•  seq:	
  massive	
  
sequencing	
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Array	
  vs.	
  Sequencing	
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Gene	
  regulatory	
  network	
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when amateur astronomers explored public 

astronomical data from the Kepler tele-

scope ( 7). An exploratory analysis like this 

seeks to make discoveries, but can rarely 

confirm those discoveries. Follow-up stud-

ies and additional data were needed to con-

firm the existence of Tatooine ( 8).

An inferential data analysis quantifies 

whether an observed pattern will likely hold 

beyond the data set in hand. This is the most 

common statistical analysis in the formal 

scientific literature. An example is a study 

of whether air pollution correlates with life 

expectancy at the state level in the United 

States ( 9). In nonrandomized experiments, 

it is usually only possible to determine the 

existence of a relationship between two mea-

surements, but not the underlying mecha-

nism or the reason for it.

Going beyond an inferential data analysis, 

which quantifies the relationships at popu-

lation scale, a predictive data analysis uses 

a subset of measurements (the features) 

to predict another measurement (the out-

come) on a single person or unit. Web sites 

like FiveThirtyEight.com use polling data to 

predict how people will vote in an election. 

Predictive data analyses only show that you 

can predict one measurement from another; 

they do not necessarily explain why that 

choice of prediction works.

A causal data analysis seeks to find out 

what happens to one measurement on av-

erage if you make another measurement 

change. Such an analysis identifies both the 

magnitude and direction of relationships 

between variables on average. For example, 

decades of data show a clear causal rela-

tionship between smoking and cancer ( 10). 

If you smoke, it is certain that your risk of 

cancer will increase. The causal effect is real, 

but it affects your average risk.

Finally, a mechanistic data analysis seeks 

to show that changing one measurement 

always and exclusively leads to a specific, 

deterministic behavior in another. For ex-

ample, data analysis has shown how wing 

design changes air flow over a wing, leading 

to decreased drag. Outside of engineering, 

mechanistic data analysis is extremely chal-

lenging and rarely achievable.

Mistakes in the type of data analysis and 

therefore the conclusions that can be drawn 

from data are made regularly. In the last 6 

months, we have seen inferential analyses 

of the relationship between cellphones and 

brain cancer interpreted as causal ( 11) or the 

exploratory analysis of Google search terms 

related to flu outbreaks interpreted as a pre-

dictive analysis ( 12). The mistake is so com-

mon that it has been codified in standard 

phrases (see the table).

Determining which question is being 

asked can be even more complicated when 

multiple analyses are performed in the same 

study or on the same data set. A key danger 

is causal creep—for example, when a ran-

domized trial is used to infer causation for 

a primary analysis and data from secondary 

analyses are given the same weight. To ac-

curately represent a data analysis, each step 

in the analysis should be labeled according 

to its original intent.

Confusion between data analytic ques-

tion types is central to the ongoing repli-

cation crisis, misconstrued press releases 

describing scientific results, and the contro-

versial claim that most published research 

findings are false ( 13,  14). The solution is to 

ensure that data analytic education is a key 

component of research training. The most 

important step in that direction is to know 

the question.  ■ 
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REAL QUESTION TYPE PERCEIVED QUESTION TYPE PHRASE DESCRIBING ERROR
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when amateur astronomers explored public 

astronomical data from the Kepler tele-

scope ( 7). An exploratory analysis like this 

seeks to make discoveries, but can rarely 

confirm those discoveries. Follow-up stud-

ies and additional data were needed to con-

firm the existence of Tatooine ( 8).

An inferential data analysis quantifies 

whether an observed pattern will likely hold 

beyond the data set in hand. This is the most 

common statistical analysis in the formal 

scientific literature. An example is a study 

of whether air pollution correlates with life 

expectancy at the state level in the United 

States ( 9). In nonrandomized experiments, 

it is usually only possible to determine the 

existence of a relationship between two mea-

surements, but not the underlying mecha-

nism or the reason for it.

Going beyond an inferential data analysis, 

which quantifies the relationships at popu-

lation scale, a predictive data analysis uses 

a subset of measurements (the features) 

to predict another measurement (the out-

come) on a single person or unit. Web sites 

like FiveThirtyEight.com use polling data to 

predict how people will vote in an election. 

Predictive data analyses only show that you 

can predict one measurement from another; 

they do not necessarily explain why that 

choice of prediction works.

A causal data analysis seeks to find out 

what happens to one measurement on av-

erage if you make another measurement 

change. Such an analysis identifies both the 

magnitude and direction of relationships 

between variables on average. For example, 

decades of data show a clear causal rela-

tionship between smoking and cancer ( 10). 

If you smoke, it is certain that your risk of 

cancer will increase. The causal effect is real, 

but it affects your average risk.

Finally, a mechanistic data analysis seeks 

to show that changing one measurement 

always and exclusively leads to a specific, 

deterministic behavior in another. For ex-

ample, data analysis has shown how wing 

design changes air flow over a wing, leading 

to decreased drag. Outside of engineering, 

mechanistic data analysis is extremely chal-

lenging and rarely achievable.

Mistakes in the type of data analysis and 

therefore the conclusions that can be drawn 

from data are made regularly. In the last 6 

months, we have seen inferential analyses 

of the relationship between cellphones and 

brain cancer interpreted as causal ( 11) or the 

exploratory analysis of Google search terms 

related to flu outbreaks interpreted as a pre-

dictive analysis ( 12). The mistake is so com-

mon that it has been codified in standard 

phrases (see the table).

Determining which question is being 

asked can be even more complicated when 

multiple analyses are performed in the same 

study or on the same data set. A key danger 

is causal creep—for example, when a ran-

domized trial is used to infer causation for 

a primary analysis and data from secondary 

analyses are given the same weight. To ac-

curately represent a data analysis, each step 

in the analysis should be labeled according 

to its original intent.

Confusion between data analytic ques-

tion types is central to the ongoing repli-

cation crisis, misconstrued press releases 

describing scientific results, and the contro-

versial claim that most published research 

findings are false ( 13,  14). The solution is to 

ensure that data analytic education is a key 

component of research training. The most 

important step in that direction is to know 

the question.  ■ 
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