STATS M254 / BIOINFO M271 / BIOMATH M271 Statistical Methods in Computational Biology Spring 2015

Lecture 1 Introduction and Data

Instructor: Jingyi Jessica Li

Outline

- Introduction to molecular biology
 DNA, gene, RNA, protein, central dogma
- Typical data
 - Gene expression
 - RNA-seq
 - Regulatory sequences
 - ChIP-chip/seq
- Why is statistics important?

DNA

- DNA (Deoxyribonucleic acid) is a molecule to store genetic information of a living organism.
- DNA consists of two polymers made from four types of nucleotides: adenine (A), guanine (G), cytosine (C) and thymine (T).
- Purines: A, G; Pyrimidines: C, T
- Two polymers are complementary to each other and from a double-helix structure

5'-ACCGTTCGACGGTAA-3' |||||||||||| 3'-TGGCAAGCTGCCATT-5'

Chromosome

Chromosome

5

Gene

Central Dogma

7

Principle of gene expression microarray

Probe array

RNA fragments with fluorescent tags from sample to be tested

Wild Type Condition Mutant Replicate 3 2 3 2 1 Gene 1 132.724 112.445 128.478 154.888 122.215 138.303 Gene 2 161.825 163.304 210.121 159.003 172.366 163.199 • • • 1988.66 2063.48 1899.91 1997.77 2156.19 1977.75 Gene I 10.1.70.171

Gene expression data matrix

Wang, Gerstein, & Snyder (2009) *Nature Reviews Genetics* 10, 57-63.

RNA-Seq data

- 1) Long RNAs are first converted into a library of cDNA fragments through either RNA fragmentation or DNA fragmentation.
- 2) Sequencing adaptors (blue) are subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput sequencing technology.
- 3) The resulting sequence reads are aligned with the reference genome or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads.
- 4) These three types are used to generate a baseresolution expression profile for each gene, as illustrated at the bottom; a yeast ORF with one intron is shown.

Data type 2: Regulatory sequences

Transcription factor binding sites & motifs

AATTTCC CATTGCG ATTTGCG AATTGCA AATTTCT

motif 17

Motifs are regulatory codes

TCAGTTGGAGCTGCTCCCCCACGGCCTCTCCTCACATTCCACGTCCTGTAGCTCTATGACCTCCACCTTTGAGTCCCTCCTC TCACACCACCCATGTTTTGTTTATGAGGATCCTCAAATACCCCGTGATCAGTCTCAGGGTAGCTCTCATAGCCTGGACAGGG GGCTGGCAGTAGCTGGGCACAGAGCTGCCCATGGCGGTGGACGTTGGGTTCCGAGGGTTGTGAGAACGGGCCCCACGGGGCC CTGAGCGGTCCCTATTGCTAGGGCCCAGAATGCCCCTTCAGTAGAAATTTCAAAAGCGTCTCTGCGCGCGGTCTGTAGGGGGGGTGG CCGCAAGCCTTCTCTAGGGGGGATCCCTTCGTTGCTGCTGGCCTTGCCGTCCAGGGGACAAGGAGCCAGAGTCCAGGTGGGGC TGTTGCCGAGGGGTCAAGGGAGGCTGATGTCTGGAGTCCGGATGGACCACCTGCAGAGGAGAGACATAGGTCAACACAGGGA CTGCCTCAAAACTGCCAAGGCCTGGATAGCCAAGAGCCTGGGTGTCTTGGAAATATGCAACCATAAATAGTAGCTTTTAGAA GTATAAGGCTCCTGTTTCTGGGTCATATTAGTTTTGTTTTCACCTGTCCCCACCATAAGCCAGGTGTGGCCAGAAGCAAAT GTACTGTAAGAGCAGAGCAAAAACTTCCACACAGATAGTTCTGTTAGGCAATACATCTCTGCCTGACTATTAGGAATCTGGT TTCTGGGTCCTCTGTACAAAGCTCGGAGCAACACAGTGGCCACATCAAAAGGACCGTGACCAACTTCAAAGTCGGTGA TCTCCTTCAAGGAAGGCTGCTCTAGCCTGGGACTGGAATACACATTTCCTGTAAACATGGTGGGGGCCTCAGGCAAGCCAGA TCCACCCAACAAGACAGAAAAGGAATAAGCCACGAAGACAATAACGATTTTTGTATCAAGCGTCCTCTCCCATTTCAGCTTA CCTGACAATGAAATCAAATTCGGACCCTGCAAGCATCAGTACACCCAGCAGAGTGGACACAGCACCGTCCAGAACGGGAGCA AACATGTGCTCCAGAGCGAGCATAOCCCTGTGGTTCTTGTCCCCAATGGCTGTCAGAAAGGCCTGAACAAAGGAGAAAATTG ACACGGTCACATTCTGGGTGTGGTAAAGTGCTCAGCTGTGTCTATACTTGGGTTTTGTAT

Transcription Factor Binding Sites (TFBS)

Gene

Finding motifs from co-regulated genes

GTATGTACTTACTAAATTGCGAACAAATCTATGTATGAAG Gene1 CCATTTCCCTCGGTTCAGAGTCACAGAGCAGATAATCACC Gene2 TAACATGTGACTCCTATAACCTCTTAATTTCGCATGAAGT Gene3

GTATGTACTTACTA<u>AATTGCG</u>AACAAATCTATGTATGAAG C<u>CATTTCC</u>CTCGGTTCAGAGTCACAGAGCAGATAATCACC TAACATGTGACTCCTATAACCTCTT<u>AATTTCG</u>CATGAAGT

Motif discovery is difficult in mammalian genomes

- Advanced methods in regulatory sequence analysis:
 - 1) combinatorial binding pattern
 - 2) multiple species conservation
 - 3) heterogeneity in background
 - 4) predictive modeling

Data type 3: ChIP-chip and ChIP-seq

90000

- ChIP: Chromatin ImmunoPrecipitation
- chip: DNA micorarray
- seq: massive sequencing

Array vs. Sequencing

Gene regulatory network

Combine all types of data:

Gene expression, ChIP-chip/seq, regulatory sequences.

Acknowledgments

- For sharing slides on the internet:
 - Dr. Qing Zhou, UCLA
 - Dr. Hongkai Ji, Johns Hopkins University
 - Dr. Cheng Li, Peking University

Why is statistics important?

Data analysis flowchart

Why is statistics important?

Common mistakes

REAL QUESTION TYPE	PERCEIVED QUESTION TYPE	PHRASE DESCRIBING ERROR
Inferential	Causal	"Correlation does not imply causation"
Exploratory	Inferential	"Data dredging"
Exploratory	Predictive	"Overfitting"
Descriptive	Inferential	"n of 1 analysis"