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Outline	  

•  Introduc-on	  to	  molecular	  biology	  
– DNA,	  gene,	  RNA,	  protein,	  central	  dogma	  

•  Typical	  data	  
– Gene	  expression	  
– RNA-‐seq	  
– Regulatory	  sequences	  
– ChIP-‐chip/seq	  

•  Why	  is	  sta-s-cs	  important?	  
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DNA	  
•  DNA	  (Deoxyribonucleic	  acid)	  is	  

a	  molecule	  to	  store	  gene-c	  
informa-on	  of	  a	  living	  
organism.	  	  

•  DNA	  consists	  of	  two	  polymers	  
made	  from	  four	  types	  of	  
nucleo-des:	  adenine	  (A),	  
guanine	  (G),	  cytosine	  (C)	  and	  
thymine	  (T).	  	  

•  Purines:	  A,	  G;	  Pyrimidines:	  C,	  T	  	  
•  Two	  polymers	  are	  

complementary	  to	  each	  other	  
and	  from	  a	  double-‐helix	  
structure	  	  
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Chromosome	  
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Chromosome	  
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Gene	  
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Central	  
Dogma	  
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Data	  type	  1:	  Gene	  expression	  data	  
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Principle	  of	  gene	  expression	  microarray	  
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Source:	  Affymetrix	  Inc.	  
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Source:	  Affymetrix	  Inc.	  
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Gene	  expression	  data	  matrix	  

13	  



RNA-‐Seq	  data	  
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Wang,	  Gerstein,	  &	  
Snyder	  (2009)	  Nature	  
Reviews	  Gene$cs	  10,	  
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RNA-‐Seq	  data	  
•  1)	  Long	  RNAs	  are	  first	  converted	  into	  a	  library	  of	  cDNA	  
fragments	  through	  either	  RNA	  fragmenta-on	  or	  DNA	  
fragmenta-on.	  	  

•  2)	  Sequencing	  adaptors	  (blue)	  are	  subsequently	  added	  
to	  each	  cDNA	  fragment	  and	  a	  short	  sequence	  is	  
obtained	  from	  each	  cDNA	  using	  high-‐throughput	  
sequencing	  technology.	  	  

•  3)	  The	  resul-ng	  sequence	  reads	  are	  aligned	  with	  the	  
reference	  genome	  or	  transcriptome,	  and	  classified	  as	  
three	  types:	  exonic	  reads,	  junc-on	  reads	  and	  poly(A)	  
end-‐reads.	  	  

•  4)	  These	  three	  types	  are	  used	  to	  generate	  a	  base-‐
resolu-on	  expression	  profile	  for	  each	  gene,	  as	  
illustrated	  at	  the	  bocom;	  a	  yeast	  ORF	  with	  one	  intron	  
is	  shown.	  	  
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Data	  type	  2:	  Regulatory	  sequences	  
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Transcrip-on	  factor	  binding	  sites	  &	  mo-fs	  	  
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Mo-fs	  are	  regulatory	  codes	  	  
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Finding	  mo-fs	  from	  co-‐regulated	  genes	  	  
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Mo-f	  discovery	  is	  difficult	  in	  mammalian	  genomes	  	  

•  Advanced	  methods	  in	  regulatory	  sequence	  analysis:	  
–  1)	  combinatorial	  binding	  pacern	  
–  2)	  mul-ple	  species	  conserva-on	  
–  3)	  heterogeneity	  in	  background	  	  
–  4)	  predic-ve	  modeling	  	  
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Data	  type	  3:	  ChIP-‐chip	  and	  ChIP-‐seq	  	  

•  ChIP:	  Chroma-n	  
ImmunoPrecipita-on	  	  

•  chip:	  DNA	  micorarray	  
•  seq:	  massive	  
sequencing	  	  
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Array	  vs.	  Sequencing	  
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Gene	  regulatory	  network	  	  
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Why	  is	  sta-s-cs	  important?	  
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when amateur astronomers explored public 

astronomical data from the Kepler tele-

scope ( 7). An exploratory analysis like this 

seeks to make discoveries, but can rarely 

confirm those discoveries. Follow-up stud-

ies and additional data were needed to con-

firm the existence of Tatooine ( 8).

An inferential data analysis quantifies 

whether an observed pattern will likely hold 

beyond the data set in hand. This is the most 

common statistical analysis in the formal 

scientific literature. An example is a study 

of whether air pollution correlates with life 

expectancy at the state level in the United 

States ( 9). In nonrandomized experiments, 

it is usually only possible to determine the 

existence of a relationship between two mea-

surements, but not the underlying mecha-

nism or the reason for it.

Going beyond an inferential data analysis, 

which quantifies the relationships at popu-

lation scale, a predictive data analysis uses 

a subset of measurements (the features) 

to predict another measurement (the out-

come) on a single person or unit. Web sites 

like FiveThirtyEight.com use polling data to 

predict how people will vote in an election. 

Predictive data analyses only show that you 

can predict one measurement from another; 

they do not necessarily explain why that 

choice of prediction works.

A causal data analysis seeks to find out 

what happens to one measurement on av-

erage if you make another measurement 

change. Such an analysis identifies both the 

magnitude and direction of relationships 

between variables on average. For example, 

decades of data show a clear causal rela-

tionship between smoking and cancer ( 10). 

If you smoke, it is certain that your risk of 

cancer will increase. The causal effect is real, 

but it affects your average risk.

Finally, a mechanistic data analysis seeks 

to show that changing one measurement 

always and exclusively leads to a specific, 

deterministic behavior in another. For ex-

ample, data analysis has shown how wing 

design changes air flow over a wing, leading 

to decreased drag. Outside of engineering, 

mechanistic data analysis is extremely chal-

lenging and rarely achievable.

Mistakes in the type of data analysis and 

therefore the conclusions that can be drawn 

from data are made regularly. In the last 6 

months, we have seen inferential analyses 

of the relationship between cellphones and 

brain cancer interpreted as causal ( 11) or the 

exploratory analysis of Google search terms 

related to flu outbreaks interpreted as a pre-

dictive analysis ( 12). The mistake is so com-

mon that it has been codified in standard 

phrases (see the table).

Determining which question is being 

asked can be even more complicated when 

multiple analyses are performed in the same 

study or on the same data set. A key danger 

is causal creep—for example, when a ran-

domized trial is used to infer causation for 

a primary analysis and data from secondary 

analyses are given the same weight. To ac-

curately represent a data analysis, each step 

in the analysis should be labeled according 

to its original intent.

Confusion between data analytic ques-

tion types is central to the ongoing repli-

cation crisis, misconstrued press releases 

describing scientific results, and the contro-

versial claim that most published research 

findings are false ( 13,  14). The solution is to 

ensure that data analytic education is a key 

component of research training. The most 

important step in that direction is to know 

the question.  ■ 
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Common mistakes

REAL QUESTION TYPE PERCEIVED QUESTION TYPE PHRASE DESCRIBING ERROR

Inferential Causal “Correlation does not imply causation”

Exploratory Inferential “Data dredging”

Exploratory Predictive “Over�tting”

Descriptive Inferential “n of 1 analysis” Published online 26 February 2015; 
10.1126/science.aaa6146
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when amateur astronomers explored public 

astronomical data from the Kepler tele-

scope ( 7). An exploratory analysis like this 

seeks to make discoveries, but can rarely 

confirm those discoveries. Follow-up stud-

ies and additional data were needed to con-

firm the existence of Tatooine ( 8).

An inferential data analysis quantifies 

whether an observed pattern will likely hold 

beyond the data set in hand. This is the most 

common statistical analysis in the formal 

scientific literature. An example is a study 

of whether air pollution correlates with life 

expectancy at the state level in the United 

States ( 9). In nonrandomized experiments, 

it is usually only possible to determine the 

existence of a relationship between two mea-

surements, but not the underlying mecha-

nism or the reason for it.

Going beyond an inferential data analysis, 

which quantifies the relationships at popu-

lation scale, a predictive data analysis uses 

a subset of measurements (the features) 

to predict another measurement (the out-

come) on a single person or unit. Web sites 

like FiveThirtyEight.com use polling data to 

predict how people will vote in an election. 

Predictive data analyses only show that you 

can predict one measurement from another; 

they do not necessarily explain why that 

choice of prediction works.

A causal data analysis seeks to find out 

what happens to one measurement on av-

erage if you make another measurement 

change. Such an analysis identifies both the 

magnitude and direction of relationships 

between variables on average. For example, 

decades of data show a clear causal rela-

tionship between smoking and cancer ( 10). 

If you smoke, it is certain that your risk of 

cancer will increase. The causal effect is real, 

but it affects your average risk.

Finally, a mechanistic data analysis seeks 

to show that changing one measurement 

always and exclusively leads to a specific, 

deterministic behavior in another. For ex-

ample, data analysis has shown how wing 

design changes air flow over a wing, leading 

to decreased drag. Outside of engineering, 

mechanistic data analysis is extremely chal-

lenging and rarely achievable.

Mistakes in the type of data analysis and 

therefore the conclusions that can be drawn 

from data are made regularly. In the last 6 

months, we have seen inferential analyses 

of the relationship between cellphones and 

brain cancer interpreted as causal ( 11) or the 

exploratory analysis of Google search terms 

related to flu outbreaks interpreted as a pre-

dictive analysis ( 12). The mistake is so com-

mon that it has been codified in standard 

phrases (see the table).

Determining which question is being 

asked can be even more complicated when 

multiple analyses are performed in the same 

study or on the same data set. A key danger 

is causal creep—for example, when a ran-

domized trial is used to infer causation for 

a primary analysis and data from secondary 

analyses are given the same weight. To ac-

curately represent a data analysis, each step 

in the analysis should be labeled according 

to its original intent.

Confusion between data analytic ques-

tion types is central to the ongoing repli-

cation crisis, misconstrued press releases 

describing scientific results, and the contro-

versial claim that most published research 

findings are false ( 13,  14). The solution is to 

ensure that data analytic education is a key 

component of research training. The most 

important step in that direction is to know 

the question.  ■ 
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