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Review of Statistics and Statistical Inference

“Inference” here is a term of art indicating that we want to infer the value, or possible values,
of a particular model parameter. This includes both point estimates of parameters, as well as
uncertainty or confidence regarding such values. That is to say

Inference = Point Estimate + Uncertainty Estimate

There are two complementary approaches, the frequentist and the Bayesian approach, and we
will review both.

Example:

Let X1, . . . , Xn be i.i.d. (“independent identically distributed”: drawn from the same popula-
tion, and unordered/exchangeable) observations with Xi ∼ N(θ, σ2). How do we estimate the
(unknown) parameter θ?

By plugging the data X1, . . . , Xn into the joint density function we will be able to perform this
kind of inference. Each Xi follows

f(x; θ, σ) = (2π)−1/2 exp

{
− (x− θ)2

2σ2

}
Because the Xi are independent, the joint distribution will be the product of each density. That
is:

f(x1, . . . , xn; θ, σ) =

n∏
i=1

(2π)−1/2 exp

{
− (xi − θ)2

2σ2

}

= (2π)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2
}

This function f(x1, . . . , xn; θ, σ) is the joint density function of the data points. However, one
can also consider f(·) as a function of θ and σ, e.g. L(θ, σ;X1, . . . , Xn) = f(x1, . . . , xn; θ, σ).
This view of f (or L) is often termed the “likelihood” of the parameters. By maximizing L, i.e.
(letting σ = 1)
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θ̂ = argmax
θ

L(θ, 1;X1, . . . , Xn)

produces the maximum likelihood estimate (MLE) θ̂ of θ. This is the standard frequentist ap-
proach.

Homework: Show that the MLE of N(θ, 1) as above is X̄ = 1
n

∑n
i=1Xi.

Under the MLE framework, it can be shown that, if Xi ∼ N(θ, 1), then

X̄ ∼ N(θ,
1

n
)

This provides the ability to form a (95%) confidence interval about this mean:

CI = (X̄ − 1.96/
√
n, X̄ + 1.96/

√
n)

Note that the interpretation of this object is not :

(WRONG) θ has a 95% chance to fall within this CI

The problem with this reasoning is that, from the frequentist perspective, θ is fixed. θ itself has
no distribution, you don’t get to “pick theta” multiple times and find that 95% of the time it
was in the interval. In other words, this interpretation assigns randomness to the parameter as
opposed to the sample!

The correct interpretation is to interperet the data as random. This gives the following (correct)
interpretation (“principle of repeated sampling”): If we were to repeat this experiment 100 times,
and sample n data points from N(θ, 1), then out of these 100 experiments, we would expect 95
of the resulting confidence intervals to contain the true value of θ. That is, we would expect 95%
of our experiments to produce a CI which contains the true value of θ.

By contrast, the following is the Baysian approach. The Bayesian approach imagines the param-
eter θ to be random, and specifies the distribution of θ via a prior p(θ). Then the data density,
given a specific value of θ is written as f(x1, . . . , xn|θ).

However, we want the joint density f(x1, . . . , xn; θ). Using Bayes’ theorem:

f(x1, . . . , xn, θ) =
f(x1, . . . , xn|θ)p(θ)

p(x1, . . . , xn)
∝ f(x1, . . . , xn|θ)p(θ)

,

where p(x1, . . . , xn) is the marginal density of X1, . . . , Xn. It is also, in this case, a normalization
constant, just a think that ensures that the total probability is 1.

From the Bayesian approach, we want to understand the conditional distribution of θ given the
data: p(θ|X1, . . . , Xn). Bayes’ rule again provides the means to do this, writing:

p(θ|x1, . . . , xn) =
p(x1, . . . , xn; θ)

p(x1, . . . , xn)
∝ f(x1, . . . , xn|θ)p(θ) = likelihood× prior
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It is the frequentist approach to maximize the likelihood. The Bayesian approach maximizes the
posterior.

In this example, we have our X1, . . . , Xn i.i.d with Xi ∼ N(θ, 1). Let θ ∼ N(α, 1). For instance,
imagine θ were the mean expression for some gene of interest. If we know, that mean gene
expression across all genes is roughly α, we might use that as prior knowledge about θ. Plugging
into our equation above, and not worrying about the multiplicative constants:

posterior ∝ prior× likelihood ∝ exp

{
− (θ − α)2

2

}
· exp

{
−1

2

n∑
i=1

(Xi − θ)2
}

= exp

{
−

(n+ 1)θ2 − 2(α+
∑n
i=1Xi)θ + α2 +

∑n
i=1X

2
i

2

}

∝ exp

{
−n+ 1

2

(
θ −

α+
∑n
i=1Xi

n+ 1

)2
}

This means that the posterior distribution is normal, that is

θ|X1, . . . , Xn ∼ N
(
α+

∑
Xi

n+ 1
,

1

n+ 1

)
= N

(
1

n+ 1
α+

n

n+ 1
X̄,

1

n+ 1

)
This means that the prior information is weighted into the posterior information. It is, in this
case, exactly a weighted average between the prior mean α and the data mean X̄. Very clearly,
because the mean of this posterior distribution is 1

n+1α+ n
n+1X̄ it must be that

argmax
θ

posterior(θ) =
α+ nX̄

n+ 1

Why would one want to take the Bayesian approach?

i. Small sample size (say n = 3)

ii. Strong expectation about the parameter θ

iii. Whenever you would want to incorporate subjective opinion or prior knowledge

iv. Convenience (low sample size, or ease of computation due to a conjugate prior)

object Frequentist Bayesian
parameter (θ) fixed random

data (X) random random

Repeated Sampling

In the previous example, we had a clear model, the normal distribution. However, in most
cases we do not know the underlying distribution of the X, and the data may not “look” like
they follow any of the standard distributions. How do we perform statistical inference without
knowing the underlying data generating distribution?

There are many approaches, of which I will discuss two: jackknife and bootstrap.
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Jackknife (also known as Leave-One-Out or LOO):

Given the data points X1, . . . , Xn. Let Si = {X1, . . . , Xi−1, Xi+1, . . . , Xn} be the dataset with

the ith data point left out. Let θ̂i be the estimator generated from Si. There being n datasets,
there are therefore n estimates θ̂1, . . . , θ̂n, which can provide a measure of uncertainty about the
statistic θ̂.

Bootstrap:

Here, we regard X1, . . . , Xn as a population, and draw samples from it, with replacement. Let

Si = {X(i)
1 , . . . , X

(i)
n } be a sample of n data points draw, with replacement, from the original set

of data points, and the estimate θ̂i be the estimator generated from the sample Si. The bootstrap
sample S1, . . . , Sb produces b estimates θ̂1, . . . , θ̂b.

This collection of estimates can then be used to produce bootstrap estimates of θ and its uncer-
tainty. Specifically, the bootstrap estimate of θ is 〈θ〉b = 1

b

∑b
i=1 θ̂i. In addition, the bootstrap

estimate of the variance of θ̂ is given by

v̂ar(θ̂) =
1

b− 1

b∑
j=1

(
θ̂j − 〈θ〉b

)
The bootstrap here is an attempt to replicate the central limit theorem. The CLT states that,
under certain conditions about independence and existence of certain moments, any distribution
satisfying those conditions with mean µ follows:

√
n(X̄ − µ)→d N(0, 1)

With the boostrap, we have
√
n(〈θ〉b − θ̂) which mimics

√
n(θ̂ − θ). Note, especially, the depen-

dence on n on the bootstrap estimate, and not b!

In addition, the collection θ̂i, . . . , θ̂b can be used to provide nonparametric confidence intervals.
By sorting these from smallest to largest, the 95% confidence interval will correspond to the 2.5%
and 97.5% percentiles of this sorted set. See Freedman (1981) and Freedman & Bickel (1983) for
discussion about necessary conditions for the effectiveness of a bootstrap estimate.
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