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Preface

Dimensionality is an issue that can arise in every scientific field. Generally speaking, the
difficulty lies on how to visualize a high dimensional function or data set. This is an area
which has become increasingly more important due to the advent of computer and graphics
technology. People often ask : “How do they look?”, “What structures are there?”, “What
model should be used?” Aside from the differences that underly the various scientific con-
texts, such kind of questions do have a common root in Statistics. This should be the driving
force for the study of high dimensional data analysis.

Sliced inverse regression(SIR) and principal Hessian direction(PHD) are two basic di-
mension reduction methods. They are useful for the extraction of geometric information
underlying noisy data of several dimensions - a crucial step in empirical model building
which has been overlooked in the literature. In this Lecture Notes, I will review the theory
of SIR/PHD and describe some ongoing research in various application areas. There are two
parts. The first part is based on materials that have already appeared in the literature. The
second part is just a collection of some manuscripts which are not yet published. They are
included here for completeness.

Needless to say, there are many other high dimensional data analysis techniques (and we
may encounter some of them later on) that should deserve more detailed treatment. In this
complex field, it would not be wise to anticipate the existence of any single tool that can
outperform all others in every practical situation. Real world problems generally require a
number of passes to the same data. Different approaches often lead to different structural
findings at various stages. Serious readers should try out as many methods as possible on
their own.

I started writing a preliminary version of this Lecture Notes in 1991-1992 when I had
the chance to teach a seminar course at UCLA on High Dimensional Data Analysis. At that
time, SIR/PHD has just begun to appear in official journals. This makes the writing of a book
very difficult because most works are yet to be published. Even though such materials have
later been used in similar courses and workshops, I hardly have the mood to rewrite it. The
real opportunity finally came last year when the colleagues at Institute of Statistical Science,
Academia Sinica, initiated the idea of this Lecture Series. I figured that I would have more
to write now because there have many new exciting developments along the line. Most
noteworthy are the books of Cook(1998), and Cook and Weisberg (1994). I admire the way
they presented the ideas, which are not far from I really want to say. It is such a remarkable
achievement for them to find a lucid language in dealing with the difficult subject of how
to think of graphics in rigorous statistical terms. As expected, with the new language, they
have generated many new ideas and useful techniques that go beyond SIR/PHD.

For this book, I am still using the words as I originally thought about the subject of
dimension reduction. The basic material is narrowly focused on the development in which I
am directly involved. Thus there is no serious attempt to be comprehensive in surveying the
whole literature on SIR/PHD. For many researchers, SIR/PHD is still a novel technique and
new results are still waiting to be published.

I would like to thank a lot people who one way or the other have helped me in the
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development of SIR/PHD, including all my co-authors, colleagues, students, friends, and
many anonymous referees. I would also like to thank Dr. Chen-Hsing Chen who is in charge
of the Lecture Series. My writing of this Lecture Notes would have further been delayed
without the persistent request from him. I really appreciate his patience. Finally, many of
the computer and graphical outputs are put together by Dr. Chun-Houh Chen, who has been
working with me over years. Without his devotion to critical programming works and his
many good ideas in implementing SIR/PHD, the progress would be much slowed.

Acknowledgment: Over years, the research of Li has been supported in part by NSF
grants.
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Part I

SIR/PHD - THEORY AND PRACTICE





Chapter 1

A Model for Dimension Reduction in
Regression

Statistical data analysis is an extremely versatile area. Among the various aspects and activ-
ities involved, we shall begin with the discussion about the dual role of dimension reduction
and data visualization in this chapter. After a brief account on the graphical facilities that
modern computer is equipped with, the stage will be set up in the context of regression anal-
ysis. A new statistical model that helps define this dual role is introduced. Our model shall
serve as the foundation for theoretical exploration of many methods to be introduced in later
chapters, including Sliced Inverse Regression (SIR) and Principal Hessian Directions (PHD).

1.1 Static and dynamic graphics.

Today’s desktop/laptop computer has great graphical facility. It allows us not only to draw
high quality plots easily but also to interact with graphics. Our discussion on such animated
graphical features will be short. We assume that our readers already have some hands-on
experience with dynamic graphics.

1.1.1 Graphical tools.

A picture is worth of thousand words. As we all agree, graphics is a powerful way of sum-
marizing the data. Informally, graphical procedures exploit both our talent in recognizing
complex patterns and our creative imagination thus inspired (Huber 1987).

Traditional plots like histograms and scatterdiagrams have been routinely used in dis-
playing one or two variables. Normal probability plots and residual plots are popular for
model checking. Plots of time series can detect periodicity or other forms of trend.

In principle, any plot consists of just points on a two-dimensional plane. How to add a
third dimension to a plot is more challenging. For example, we can display two-D scatter-
plots for X vs. Y , Y vs. Z , or X vs. Z . But these plots only tell us about two-D marginal
distributions. To sense the geometric shape of a three-D structure, animation is effective and
one way to do so is to rotate the plot. This idea has been experimented in the pioneering
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work on PRIM-9 (Fisherkeller, Friedman, and Tukey 1974), and Huber’s versions for PRIM-
ETH and PRIM-H (Cleveland and McGill 1988). After many years of evolution and with
substantive efforts by many other developers, graphical environment has become amazingly
friendly. In XLISP.STAT(Tierney 1989) for example, we can issue a simple command like

"(spin-plot (list x y z))"

and a 3-D scatterplot of variables X, Y, Z will appear instantly on the computer screen, ready
for us to “rotate”. What we first see on the screen is a static two-D scatterplot of Y (in the
vertical axis) against X (in the horizontal axis). The third variable Z is temporarily out of
sight. We can imagine that it is kept in the axis perpendicular to the screen. Three buttons for
specifying the rotation along the x-axis, the y-axis, or the z-axis are given under the plot. We
can point to any button with the cursor and the computer will react instantly by displaying
a sequence of projections. This happens so smoothly that the user can feel like a real three
dimensional object is rotated. The speed of rotation can also be customized easily. Rotation
plot is included in most statistical packages.

Example 1.1

An exercise problem in Rice(1988, page 506) involves a data set whose structure is not easy
to reveal via conventional regression analysis. There are three variables in the data. The
response variable Y variable is the modules of natural rubber. The two regressors are the
amount of decomposed dicumyl peroxide (x1) , and the temperature (x2). We fit the data
with a multiple linear model first, but the result is not good. One suggestion is to incorporate
an interaction term into the model:

E(y|x) = c1x1x2 + c2x1 + c3x2 + c4

However, the residual plot, Figure 1.1(a), again shows that this model is still unsatisfactory.
In fact, the line patterns observed in this plot cannot be removed by incorporating higher
order polynomials or by other smoothing techniques. For example, Figure 1.1(b) shows the
residual pattern after fitting points in Fig 1.1(a) with a parabolic curve. The 3-D plot of Y
against x1 and x2, Figure 1.2(a)-(d), explains very well why the above model building process
is unsuccessful. The response surface shows a clear pattern consisting of straight lines with
different slopes and intercepts, each line being parallel to the x1 axis. This indicates that
the pattern of interaction between the two regressors is more complicated. A better model is
suggested in Li(1993):

E(Y |x) = g1(x1)x2 + g2(x1)

In this model, Y is linear in x2 , but with both the slope g1(x) and intercept g2(x1) depending
on x1. Dynamic graphical techniques can perform many tasks that cannot be done with
the conventional static graphics. Common dynamic features include highlighting, brushing,
linking, scrolling, case removing, rescaling and many more. An introduction to this area can
be found in books like Wegman and DePriest(1986), Cleveland and MacGill (1988)). In this
book, we shall use Xlisp-Stat as the primary graphical/computing environment.
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Figure 1.1: Plot of residuals for two models : (a) Linear; (b) Interaction.

1.1.2 Boston housing data.

Let’s use the Boston housing data, Harrison and Rubinfeld (1978), to illustrate a few key
ideas in the above discussion. This data set has 14 variables and 506 cases. Each case
represents a census tract in Boston Standard Metropolitan Statistical Areas. The variable of
primary interest is the logarithm of the median value of owner occupied homes. This and
other 13 variable names are given in Table 1.1. This data set has many interesting nonlinear
patterns.

Table 1.1: Variables for Boston Housing Data.

Y logarithm of the median value of owner-occupied home
x1 crime rate by town
x2 proportion of town’ residential land zoned for lots greater than 25,000 square feet
x3 proportion of nonretail business acres per town
x4 =1 if tract bounds Charles River, =0 otherwise
x5 nitrogen oxide concentration in pphm
x6 average number of rooms in owner units
x7 proportion of owner units built prior to 1940
x8 weighted distances to five employment centers in the Boston region
x9 index of accessibility to radial highways
x10 full property tax rate
x11 pupil-teacher ratio by town school district
x12 black proportion of the population
x13 proportion of population that is in the lower status

First consider the scatterplots between any two variables. There are in total
(14

2

) = 91
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Figure 1.2: 3–D plot of y against x1 (in x-axis) and x2(in z-axis).

such plots. Scatterplot matrix is a useful devise for organizing these plots. In Xlisp-Stat,
suppose we already have created four variables, Y, x1, x2, x3. Then if we issue a command

"(scatterplot-matrix (list Y x1 x2 x3))"

, we shall see a plot consisting of the scatterplots between any two variables, organized into a
matrix of 4× 4 = 16 smaller boxes. The boxes along the diagonal line give the labels of the
variables. For example, the top-leftmost box is the scatterplot of x4 (vertical axis) against Y
(horizontal axis).

For Boston Housing data, displaying a scatterplot matrix with more than 10 variables in
a limited space is not practical. It will require a higher resolution that exceeds the current
capacity of Xlisp.stat and other packages. Figures 1.3(a), (b) show two scatterplot matrices
for some variables selected from the 14 variables.

A quick glance over the two scatterplot matrices, the variable of CRIME RATE, coded as
“var 1” appears rather unusual. A group of cases stand out. They Form a vertical line in the
scatterplot against x2 and against x3. We can highlight this group and examine the scattering
patterns in each plot. When highlighted, all points in each box are darkened. We can also
remove this group of data and focus the study on all other points.

We may also want to examine 3-D rotation plots. But we will have
(14

3

) = 364 plots to
inspect now. Without further guidance on which ones to see first, this task has become really
burdensome.
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Figure 1.3: Two scatterplot matrices for Boston Housing Data. (a) var0=y, var1=x1, var2=x2,
var3=x3; (b) var0=y, var1=x1, var2=x5, var3=x6

1.2 A regression paradigm.

Regression analysis is one area where graphical techniques are indepensible. Figure 1.4 is
a paradigm which describes some most common steps in routine practice for small dimen-
sional problems.

Suppose a data set with Y as the response variable and x as a p dimensional input variable
is given. We begin with a preliminary study. Histograms, box plots, or normal probability
plots for each variable can be inspected. We then draw the 2-D scatterplot of Y against each
component of x, or even turn to the 3-D scatterplots if necessary, hoping to gain some ideas
about the regression function. When p is small, say 1, or 2, these plots would normally be
quite useful. After such exploration, we can move on and fit the data with a model. The
model may be derived from some available scientific theory or it may be taken from the
literature or earlier studies. But for the majority of cases, the appropriate models are yet to
be discovered. We have to turn to the empirical way of building the model, which begins
with a simple and plausible model as suggested by the plots we have examined. Statistical
parameter estimation with least squares or mle is conducted for fitting the data to the specified
model. After that, we can bring in various methods of residual diagnostics for incorporating
more subtle structures. We can detect outliers, find influential points and so on. We can also
verify the model assumptions. Here plotting is called for again. Normal probability plots
can be used to see if error distributions are standard or not. Residual plots of various kinds
can reveal lack-of-fit patterns. This leads to better suggestions on how to refine the existing
models or on what alternative models to use.

After the residual analysis, we can go through the same process again with the modified
model. It is hoped that after a few rounds of iterations, we may come up with a reasonable
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Figure 1.4: A Regression Diagram for Low Dimensional Problems.

analysis.
As we have seen, the role of graphics is quite critical in the routine practice of regression

analysis. But it only works when the number of regressors is small, say one, two, or three.
With two regressors, we can use 3-D techniques to display the data pattern between Y and
x. With three regressors, this is getting harder, although it still can be done with the help of
color as the fourth dimension for example. But what to do with three or more regressors?
We can certainly plot two of them again Y each time for example. But this task could
become extremely laborious. For p = 10, we already have 45 such combinations. It is not
clear how to effectively put together all information from different plots. Yet the coordinate
variables are not the only choices for inspecting relationship among variables. Sometimes
linear combinations can be more informative. But this only accelerates the overloading of
plot inspection. In summary, the effectiveness of such preliminary graphical inspection is
severely impaired as the dimension gets higher.

For larger dimensional problems, empirical model building often begins with multiple
linear regression (for continuous Y ). It is of course hard to believe that this overly-simplied
model can prevail under most situations. But there is no obvious better alternative. What we
can count on is no more than the rationale that any nonlinear function may be approximately
linear within a suitable domain. How true this assumption is depends on each application
and it is extremely hard to tell in advance; see Chapter 10 however.

It appears that in order to maintain the spirit underlying the regression paradigm as illus-
trated in Figure 1.4, we have to reduce the regressor dimensionality first.
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1.3 Principal component analysis.

Each time when the issue of dimension reduction is mentioned, one would normally associate
it with Principal component analysis (PCA). No doubt that PCA is perhaps the most popular
procedure of dimension reduction. But what does PCA do in regression? How helpful is it?
Before discussing such issues, let’s take a brief look at the procedure itself first.

PCA projects the high dimensional data to a lower dimensional space with the hope that
the essential structure in the original data can be kept as much as possible. The projected
space is chosen so that the points can spread out as much as possible.

Let x be the p-dimensional variable of interest. The first principal component is a linear
combination b′x of the coordinate variables of x that has the largest variance among all b
with unitary length:

max
||b||=1

b′�xb

Here �x denotes the covariance matrix of x.
After finding the first direction, say b1, we repeat the same procedure by restricting to

those “uncorrelated” directions b, namely those that yield projections uncorrelated with b′1x
: 0 = cov(b′x, b′1x) = b′�xb1. This gives the second principal direction b2. Continue this
procecess to get all other directions, b3, · · · , bp. Denote the the variance of b′i x by λi . It can
be shown that

�xbi = λi bi

Thus to find the principal directions we need only to conduct the eigenvalue decomposi-
tion on the covariance matrix of x. The sample version of PCA is carried out by replacing
�x with the sample covariance matrix �̂x.

Eigenvalues of PCA often decrease rapidly. When this happens, it shows that most of
the data spread out very well along the first few directions. Thus it seems hopeful that the
most interesting structure in the data may show up along these directions. But this is not a
guarantee. In spite of the richness in the literature of PCA, not much theoretical work has be
done regarding how successful PCA is in finding nonlinear structure. We shall come back to
this issue in Chapter 8 later.

In application, one often needs to rescale each coordinate variable appropriately before
applying PCA. One frequently-used rescaling factor is the standard deviation. This amounts
to use correlation matrix instead of the covarinace matrix for eigenvalue decomposition.

1.4 Effective dimension reduction in regression.

To reduce dimensionality in regression problems, one possibility is to apply PCA on x first,
keeping the first few principal components for modeling the relationship with Y . This is
called the principal component regression. The result is sometimes helpful, sometimes not.
One simple explanation is that this way of reducing the regressor dimensionality is totally
independent of the output variable Y . Thus any two different data sets would always reduce
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to the same linear combinations, as long as the input variables x have the same distributions.
This is so, even if the relationship between x and Y is not the same for the two data sets.

To address the dimension reduction issue in regression, one must not treat x separately
from Y . This is what we shall develop in this section. At the center of the scene will be the
notion of effective dimension reduction (e.d.r.). This notion conveys the desirable situation
in which one can reduce the dimension of x without losing any information which is essential
in predicting Y .

1.4.1 The model.

Li(1991) introduced the following model

Y = g(β ′1x, β ′2x, ..., β ′K x, ε). (1.1)

Here we consider Y as a univariate output variable. The case of multivariate output will
be treated in Chapter 17. The dimension of x is denoted by p. The random error ε is
independent of x, but its probability distribution is unknown. Our primary interest is on the
K p-dimensional vectors β1, · · · , βK .

It is easier to see how this model is related to dimension reduction by comparing Figure
1.5 to Figure 1.6. Figure 1.5 shows the most general situation in regressing Y on x :

Y = f (x1, · · · , xp, ε)

On the top of the chart, there are p input nodes together with a node for random error ε. The
unknown function f is represented by the black box in the middle, leading to the output node
Y at the bottom. Compared to this most general situation, Figure 1.6 adds an intermediate
layer of nodes. These intermediate nodes combine data from the input nodes linearly using
weights indicated along the line segments. From this chart, it is clear that the relationship
between x and Y is determined only through β ′1x, · · · , β ′K x; K = 2 is shown there. The
black box represents the unknown function g in (1.1).

• • •x1 x2 x3 xp

ε

y

f (x1, x2 ,L ,xp )

Figure 1.5: General Regression Model.
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• • •x1 x2 x3 xp

ε

y

• • •β1' x β2' x βk ' x

g(β1' x,β2' x,L , βk ' x)

Figure 1.6: Model 1.1.

If g is known, then (1.1) is not much different from a simple neural net model, or a
nonlinear regression model. But what makes (1.1) special is that g is unknown and can
be completely general. This leads immediately to the question of how to estimate the beta
vectors. As it turns out, there are several ways to proceed and this is what we shall study in
this book, starting from Chapter 2. For now, let’s first take a look at many commonly used
models in regression. They all belong to (1.1), each with a different specification about g.

1.4.2 Special cases.

1. Multiple Linear regression.
y = α + β ′x+ ε (1.2)

2. Box-Cox transformation..
h(y) = α + β ′x+ ε (1.3)

where h(y) is a power transformation :

h(y) = (yλ − 1)/λ

3. Transformation-inside.
y = g(β ′x)+ ε (1.4)

4. Transformation-both-sides
h(y) = g(β ′x)+ ε (1.5)

5. Heterosedasticity (Taguchi).

y = α + β ′1x+ εg(β ′2x) (1.6)

There are many more special cases of (1.1). Some of them will be encountered in later
chapters. We turn to the discussion on the β vectors.
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1.4.3 The e.d.r. directions.

The notion of e.d.r. direction plays a critical role in the methodological development of
SIR/PHD.

Definition 1.1 Under (1.1), the spaceB generated by β1, · · · , βK is called the e.d.r. space.
Any non-zero vector in the e.d.r. space is called an e.d.r. direction.

Observe that by changing g suitably, (1.1) can be reparametrized by any set of K linearly
independent e.d.r. directions. Thus it is the e.d.r. spaceB that can be identified; the individual
vectors β1, ..., βK themselves are not identifiable (unless further structural conditions on g
are imposed). Finding the e.d.r. space or a subspace of it will be our primary goal.

This problem is different from the estimation of regression coefficients. The difference
can be manifested by reconsidering the multiple linear Model under the following way of
reparametrization :

y = α + b(β̃ ′x)+ ε
where we restrict that β has the unit length and b is nonnegative.

Note that when b equals 0, β̃ is not well-defined. The roles of β̃ and b have been mixed
up in (1.2). The vector β̃ is used to identify the relative contribution or importance from
each factor. As we shall see later, the estimation of β̃ is less sensitive to the link violation.
Estimation of the e.d.r. space can be viewed as equivalent to the estimation of β̃ up to a
sign. From the visualization point of view, the sactterplot for y against β̃ is as informative
as that for y against β. Once we identify an e.d.r. direction, we can standardize it to have a
unit length. To further decide the sign, we can simple choose the one that yields a positive
correlation with Y . If we happen to choose the wrong one, we can usually find that out after
a glance at the scatterplot : the regression line is going down. The scalar factor b determines
the size of R-squared.

1.4.4 The rationale.

All models are imperfect in some sense. Like others, (1.1) should be interpreted as an ap-
proximation to reality. However, the fundamental difference between this and other statis-
tical models is that (1.1) takes the weakest form to reflect our hope that a low dimensional
projection of a high dimensional regressor variable contains most of the information that can
be gathered from a sample of a modest size. (1.1) does not impose any structures on how the
projected regressor variable effects the output variable. In addition, we may vary K to reflect
the degree of the anticipated dimension reduction. At K = p, (1.1) becomes a redundant as-
sumption. By comparison, most regression models assume K = 1 with additional structures
on g.
A philosophical point is to be emphasized here : the estimation of the projection directions
can be a more important statistical issue than the estimation of the structure of g itself. In
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fact, the structure of g is impossible to identify unless we have other scientific evidence be-
yond the data under study. One can obtain two different versions of g to represent the same
joint distribution of y and x. Thus what we can estimate at most are statistical quantities such
as the conditional mean or quantiles of Y given x. On the other hand, at the beginning stage
of data analysis when one does not have a fixed objective in mind, the need for estimating
such quantities is not as pressing as that for finding ways to simplify the data. Our formu-
lation of estimating the e.d.r. directions is one way to address such a need in data analysis.
After finding a good e.d.r. space, we can project data to this smaller space. Then we are in
a better position to identify what should be pursued further : model building, response sur-
face estimation, cluster analysis, heteroscedasticity analysis, variable selection, or inspecting
scatterplots (or spinning plots) for interesting features. After dimension reduction, if we want
to estimate the response surface for example, then we can apply nonparametric smoothing,
Box-Cox transformation, or other techniques. Needless to say, the door is open for further
serious work.

1.4.5 An equivalent version.

(1.1) is equivalent to :

the conditional distribution of y given x depends on x

only through the K dimensional variable (β ′1x, ..., β ′K x)

or, to put it slightly differently,

conditional on β ′1x, · · · , β ′kx, y and x are independent.

The reduced variable, (β1x, · · · , βK x), is as informative as the original x in predicting y.
Note that this version does not seperate the role of g from ε in (1.1). In fact, there are

more than one way to construct g and ε. For instance, if we denote the c.d.f. for the con-
ditional distribution of Y given β ′1x = θ1, β

′
K x = θK by Fθ1,···,θK , (·), then we can take

g(β ′1x, · · · , β ′K x, ε) to be F−1(β ′1x, · · · , β ′K x, ε) and assume that ε follows the uniform dis-
tribution on [0, 1]. For the special case 1 of section 1.4.2, the multiple linear model, this
leads to the following expression:

Y = �−1(a + β ′x+ ε∗)
where � is the c.d.f. of the original random variable ε. The distribution of ε∗ is uniform on
[0, 1].

Strictly speaking, for any given joint distribution of Y and x, our definition of the e.d.r.
space is not mathematically rigorous. This is because if (1.1) holds for a set of vectors
β1, · · · , βk , then we can always add another vector to enlarge the e.d.r. space without vi-
olation (1.1) or the equivalent form mentioned above. Of course, the key in the notion of
e.d.r. space is to find the one with the smallest dimension. Now a question arises : is this
space unique ? Cook(1994) studied this question and it lead to a refinement to the defintion
1.1. It turns out that under certain regularity conditions, the e.d.r. space with the smallest
dimension is unique. We shall assume this is the case from now on.
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1.4.6 Discrepancy measure.

We conclude this section by discussing the question of how to evaluate the effectiveness
of an estimated e.d.r. direction. An obvious criterion is to evaluate the squared Euclidean
distance between the estimated e.d.r. direction b (normalized to have the unitary length) and
the true e.d.r. space B. But the result will be sensitive to the scale change in x. To avoid this
problem, the following affine-invariant criterion will be considered:

R2(b) = max
β∈B

(b′�xβ)
2

b′�xb · β ′�xβ
(1.7)

, the squared multiple correlation coefficient between the projected variable b ′x and the
ideally-reduced variables β ′1x, · · · , β ′K x. For a collection of K estimated directions b1, · · · , bK

which generate a linear subspace B, we use the squared trace correlation, denoted by R2(B),
as our criterion; i.e., the average of the squared canonical correlation coefficients between
b′1x, · · · , b′K x and β ′1x, · · · , β ′K x (Hooper 1959). It is also reasonable to replace �x by the
sample covariance matrix in our definition of the criteria.



Chapter 2

Sliced Inverse Regression: Basics

In this chapter, a method for finding e.d.r. directions, sliced inverse regression (SIR), is
introduced. An algorithm for implementing SIR is described first. Then a theory for justify-
ing SIR is presented. As it will soon become clear, SIR is based on an unorthodox way of
thinking about regression data.

2.1 Forward and inverse regression.

As illustrated in Figure 1.5, the natural way to think about regression is a forward one, going
from x to Y . In general terms, forward regression decomposes the joint distribution of Y and
x into two parts: the marginal density k(x) of x and the conditional density h(y|x) of Y given
x. The primary interest is on h(y|x). Of special importance is the regression function (also
called the response surface) E(Y |x) or the second moment var(Y |x).

Unlike other functional-approximation and curve smoothing methods, SIR does not fol-
low the above one-way traffic of going from x to Y . Instead, SIR reverses the role of x and
Y . We treat Y as if it were the independent variable and treat x as if it were the dependent
variable. This fundamental difference can be amplified when one asks “given x = xo, what
value will Y take?” One straightforward conventional answer would be “examine the data
points close to xo and take their average Y values”. But the SIR methodology would respond
indirectly by phrasing the question first in a different way: ”given Y = y, what values will
x take ?” Instead of just smoothing local information, SIR intends to gain global insight on
how Y changes as x changes by studying the reserve - how the associated x region varies as
Y varies.

At first sight, this way of thinking may not appear natural at all. But at least, one ad-
vantage is immediate. In forward regression, the response surface E(Y |x) is p-dimensional,
which is very difficult to estimate directly. Most smoothing techniques perform poorly be-
cause of lack of sufficient data points in each relevant local region if p is large. Huber(1985)
gives a nice account on this and related aspects of “curse of dimensionality”. However, for
inverse regression, the conditional expectation E(x|Y ) can be taken one coordinate at a time
E(xi |Y ), for i = 1, · · · , p. The estimation of E(xi |Y ) should be easy to handle because this
is just a one-dimensional curve smoothing problem. This is the reason why we can side-step
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the curse of dimensionality problem. But of course, the most important question remaining
is how to relate inverse regression to forward regression. To fill up the gap, we shall derive
Theorem 2.1 in section 2.6, which is the foundation of the SIR theory.

Generally speaking, inverse regression factorizes the joint density of x and Y into the
condition density h(x|y) and the marginal density k(y). While only E(x|Y ) is considered in
this chapter, other quantities can be utilized as well. For example, in later chapters, we shall
also discuss how to use conditional covariance cov(x|Y = y) for extending the basic SIR
algorithm.

2.2 An algorithm of SIR.

Let (y1, x1), · · · , (yn, xn) be the original data set with (p+1) variables and n cases. Imagine
that they have been stored as illustrated in Table 2.1. The algorithm of SIR consists of the
following steps.

Table 2.1: ORIGINAL DATA SET

Y1 x1(= (x11, x12, · · · , x1p)
′)

Y2 x2(= (x21, x22, · · · , x2p)
′)

Y3 x3(= (x31, x32, · · · , x3p)
′)

Y4 x4(= (x41, x42, · · · , x4p)
′)

Y5 · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Yn xn(= (xn1, xn2, · · · , xnp)
′)

Table 2.2: SORTING by Y and SLICING.

Y(1) x(1)(= (x(1)1, x(1)2, · · · , x(1)p)′)
Y(2) x(2)(= (x(2)1, x(2)2, · · · , x()2p)

′)
Y(3) x(3)(= (x(3)1, x(3)2, · · · , x(3)p)′)
Y(4) x(4)(= (x(4)1, x(4)2, · · · , x(4)p)′)
Y(5) · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Y(n) x(n)(= (x(n)1, x(n)2, · · · , x(n)p)′)
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Step 1. Sort the data by Y . This is illustrated by Table 2.2.

Step 2. Divide the data set into H slices as equally as possible. Let nh be the number
of cases in slice h. In Table 2.2, slices are separated by bold lines. The number of slices H
is a user-specified parameter. For example, we find between 10 to 20 slices to be reasonable
for a sample of size n = 300. As to be discussed later, there are theoretical results indicating
that SIR outputs do not change much for a wide range of H .

Step 3. Within each slice, compute the sample mean of x, x̄h = n−1
h

∑
(i)∈slice h x(i).

Table 2.3 shows the slice means for both Y and x. Note that SIR uses Y values only to create
slices. Once slices are formed, they can be discarded. Thus although the slice means of Y
are shown in Table 2.3, they need not be computed.

Table 2.3: Slice means.

Ȳ1 x̄1(= (x̄11, x̄12, · · · , x̄1p)
′)

Ȳ2 x̄2(= (x̄21, x̄22, · · · , x̄2p)
′)

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

ȲH x̄H (= (x̄H 1, xH 2, · · · , xH p)
′)

Step 4. Compute the covariance matrix for the slice means of x, weighted by the
slice sizes:

�̂η = n−1
H∑

h=1

nh(x̄h − x̄)(x̄h − x̄)′

Here x̄ denotes sample mean of x̄ = n−1∑n
i=1 xi .

Step 5 . Compute the sample covariance for xi ’s, �̂x = n−1∑n
i=1(xi − x̄)(xi − x̄)′.

Step 6. Find the SIR directions by conducting the eigenvalue decomposition of �̂η
with respect to �̂x:

�̂ηβ̂i = λ̂i�̂xβ̂i (2.1)

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p

The i -th eigenvector β̂i is called the i -th SIR direction. The first few SIR directions can
be used for dimension reduction. They serve as the coefficients linking the input nodes to
the intermediate nodes in Figure 1.7. For further analysis, the following additional steps are
helpful.

Step 7. Project x along the SIR directions; that is, use each SIR direction to form a
linear combination of x. We shall call β̂ ′1x the first SIR variate, β̂ ′2x the second SIR variate,
and so on. Table 2.4 shows the reconstructed data after projection. Compared to Table 2.1,
this amounts to only a change in the coordinate system of the regressor.
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Table 2.4: Y and SIR variates

Y1 β̂ ′1x1, β̂
′
2x1, · · ·

Y2 β̂ ′1x2, β̂
′
2x2, · · ·

Y3 β̂ ′1x2, β̂
′
2x3, · · ·

Y4 β̂ ′1x4, β̂
′
2x4, · · ·

Y5 · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·

Yn β̂ ′1xn, β̂
′
2xn, · · ·

Step 8. Plot Y against the SIR variates. These 2-D or 3-D plots offer a graphical
summary useful for revealing the regression structure. We shall argue that under fairly gen-
eral conditions, these plots are more informative than other scatterplots of Y against any
projections of x.

2.3 SIR and principal component analysis.

It is easier to remember the eigenvalue decomposition step of SIR by standarizing x before
analysis. For now, suppose that the covariance of x = (x1, · · · , xp)

′ is an identity matrix
I . In other words, all regressor variables xi , i = 1, · · · , p have the same variance (=1) and
are uncorrelated with each other. Then on the rightside of the equality in (2.1), the matrix
�̂x can be removed. Thus Step 6 is merely the principal component analysis applied to the
slice means of x in Table 2.3. We can summarize SIR as follows: (1) partitioning the cases
into H groups according to the Y values; (2) finding the H slice means of x ; (3) applying a
principal component analysis on slice means of x.

It is important to remember that our use of principal component analysis differs from
the conventional way. We use Y to form slices while the conventional way did not use any
information from Y at all.

SIR is invariant under affine transformation of x. We can always find a new coordinate
to standardize x first. Suppose A is an invertible matrix so that

z = Ax, cov(z) = I

An example is to take A as �̂−1/2
x ; but there are better ones for saving time in computing. The

covariance matrix for the slice means of z is equal to A�̂ηA′. Let v̂i be the i -th eignevalue :

A�̂ηA′v̂i = λ̂i v̂i

Multiplying both sides by A−1 and using the relationship that A�̂x A′ = I , we can rewrite
the above equation as �̂η(A′v̂i) = λ̂i�̂x(A′v̂i). Now comparing with (2.1), we see that
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β̂i = A′v̂i . Therefore the SIR variates v̂′i z obtained from the standardarized regressor z are
the same as the SIR variates obtained from the original regressors, v̂′iz = v̂′i Axβ̂ ′i x.

2.4 Some simulation examples.

In each of the following examples, each regressor variable, x1, · · · , xp, and the error term ε

are generated independently from the normal distribution with mean 0 and variance 1. The
sample size n is 100 and the regressor dimension p is 5. The simulation is carried out in
Xlisp-stat. A program for implementing the SIR algorithm can be obtained by
http://www.stat.ucla.edu/ kcli. We take H = 10 slices in each example. A computer output
is given below.

; loading "sir-model.lsp"
; finished loading "sir-model.lsp"
> ; loading "sir-program.lsp"
; finished loading "sir-program.lsp"
> (def x(g-normal-rand 5 100))
X
> (def err(normal-rand 100))
ERR
> (def y (+ 5 (nth 0 x) (nth 1 x) (nth 2 x) err ))
y
> (def out-linear (sir-model x y))
==================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.55552 -0.518951 -0.523881 0.0125557 0.00506731
the second direction found by SIR:
(0.163475 -0.393415 0.141448 -0.879026 -0.213294
the third direction found by SIR:
(0.689774 -0.205839 -0.676929 0.191294 -0.278481
the companion output eigenvalues of SIR:
(0.788627 0.126048 0.0821447 0.0683831 0.0160881
the sum of all eigenvalues:
1.08129
================================================
OUT-LINEAR
> def y-trans (** y 2))
Y-TRANS
> (sir-mode x y-trans)
================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.55552 -0.518951 -0.523881 0.0125557 0.00506731
the second direction found by SIR:
(0.163475 -0.393415 0.141448 -0.879026 -0.213294
the third direction found by SIR:
(0.689774 -0.205839 -0.676929 0.191294 -0.278481
the companion output eigenvalues of SIR:
(0.788627 0.126048 0.0821447 0.0683831 0.0160881
================================================
#<Object: 5037498, prototype = SIR-MODEL-PROTO>
> (def y (/ (nth 0 x) (+ .5 (** (+ (nth 1 x) 1.5) 2))))
Y
> (sir-model x y)
================================================

*** Sliced Inverse Regression Model ***
Number of slices: 10
the first direction found by SIR:
(-0.916301 0.126228 -0.0229527 0.0548278 -0.0519934
the second direction found by SIR:
(0.0451041 0.875115 0.250871 -0.0710619 0.00957446
the third direction found by SIR:
(-0.0178142 0.0438353 -0.0142057 0.637159 0.790221
the companion output eigenvalues of SIR:
(0.779919 0.642207 0.126759 0.0883023 0.0101885
the sum of all eigenvalues:
1.64738
================================================
#<Object: 5314930, prototype = SIR-MODEL-PROTO>
> (spin-plot (list (nth 0 x) y (nth 1 x))))
#<Object: 5297810, prototype = SPIN-PROTO>
>

Figure 2.0: A computer output
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Example 1. Linear model.

Y = 5+ x1 + x2 + x3 + 0x4 + 0x5 + ε
From the computer output, we see that the first eigenvalue (=.788) is quite large and the
first SIR direction (=(−.555,−.518,−.523, .012, .005)) is nearly proportional to the e.d.r.
direction (1, 1, 1, 0, 0). The scatterplot of Y against the first variate shows the linearity
relationship very well.

sirI-1

y

Figure 2.1: SIR View for Example 1. Linear Model.

Example 2. Transformation-outside model.

Y = (5+ x1 + x2 + x3 + ε)2

The data are taken from the first example with Y being changed by the square transforma-
tion. The output of SIR remains the same as before. This is to be expected because the
transformation is monotone (all Y values from Example 1 are positive) and only the ordering
of Y is used in SIR. SIR estimates the e.d.r. direction quite well. The plot of Y on the first
SIR variate reveals a hetroscedastic pattern - the variance of Y increases along the x-axis
direction.

Example 3. Transformation-inside model.

Y = (5+ x1 + x2 + x3)
2 + ε

In this example, Y is constructed with the x values and ε borrowed from Example 1. The
output of SIR shows that the e.d.r. direction is estimated well by the first SIR direction. The
SIR plot, Figure 2.3, reveals a pattern rather different from Figure 2.2.
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sirI-1

y

Figure 2.2: SIR View for Example 2. Transformation-Outside Model.

sirI-1

y

Figure 2.3: SIR view for Example 2. Transformation-Inside Model.

Example 4. Rational function.

y = x1

0.5+ (x2 + 1.5)2
+ σε

For now, we only consider the noise-free case σ = 0. The dimension K of the e.d.r.
space is two. We still take H = 10. The output of SIR shows that there are two large
eigenvalues. The corresponding eigenvectors, (−.916, .126,−.022, .055,−.051) and
(.045, .875, .251,−.07, .009) match e.d.r. directions (1, 0, 0, · · ·) and (0, 1, 0, · · ·) closely.
The 3-D plot of Y against the first two SIR variates is shown in Figure 2.4(a)-(d) from a few
angles. This is nearly the same as the one given by plotting Y against the true e.d.r. variates,
x1 and x2, Figure 2.5(a)-(d). Fig 2.5(e) is the true response surface.
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sirI-2

(a)

(b)

(c)

(d)

Figure 2.4: SIR View for Example 4. Rational Function.

2.5 Contour plotting and SIR.

Before presenting the theory of SIR in the next section, we can use contour plots to illustrate
why SIR works well in finding e.d.r. directions. We begin by assuming p = 2, K = 1, and
there is no error term in (1.1). Thus the model can be expressed as

Y = g(b1x1 + b2x2)

The e.d.r. direction is β = (b1, b2)
′.

Contour plotting is a popular way of representing a real-valued function with two argu-
ments. In our daily life, we have encountered many contour plots such as weather maps for
temperature, atmosphere pressure, and so on. A contour of g consists of points (x1, x2) with
the same Y value. In our case, contours are straight lines perpendicular to the e.d.r. direction
β = (b1, b2)

′. Note that this property has nothing to do with the functional form of the uni-
variate function g. As it becomes clear soon, this is an important reason why SIR can find
e.d.r. directions without knowing the functional form of g. Figure 2.6(a) illustrates a contour
plot for β = (1, 1)′.

Now if x has a spherical distribution, normal with identity covariance for example, then it
is easy to find that data points for x would be symmetrically scattered between contour lines,
as shown in Figure 2.6(b). If we apply the SIR algorithm to data generated from this model,
then the slicing step will create parallel slots like those in Figure 2.6(a), and the averaging
step would give slice means which should fall near the line along the e.d.r. direction, as
marked by stars in Figure 2.6 ( c ). Now to find this line, we can apply PCA. This is what is
done at the eigenvalue decomposition step.

The story is slightly different for the case that the covariance matrix of x is not an identity.
In general, the shape of the x data points should look more like an ellipsoid. Thus points on
the opposite side of the e.d.r. direction within each slot is not symmetric. The slice means
will not fall on the 45o line. But we can show that they will fall along another line. Thus a
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Figure 2.5: Best View for Example 4. Rational Function.

Figure 2.5(e): Response surface of Example 4, Rational function.

straightforward PCA will find the wrong direction. This is why we need the term �̂x on the
right-side of (2.1) to make an appropriate adjustment.

2.6 Fisher consistency for SIR.

In this section, we shall establish the Fisher consistency property of SIR for finding e.d.r.
directions. Imagine either that our sample consists of the entire population or that the sample
size is infinitely large. Fisher consistency for a statistical estimation procedure describes the
desirable situation that the estimate produced must coincide with what we want to estimate.
Fisher consistency is just one way of saying that the procedure has no estimation bias (in
theory).

Now consider the trajectory of the inverse regression E(x|Y = y) as y varies. In general,
this draws a curve in R p. The center of this curve is located at E(E(x|Y )) = Ex. However,
the following theorem shows that under suitable conditions, this curve indeed lies on a K -
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X1
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β = (1,  1)'
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Figure 2.6: Contour Plot of y = g(β ′x) and SIR.

dimensional affine subspace which can be related to the e.d.r. space.

Theorem 2.1. Under Condition (1.1) of Chapter 1 and the Linear design Condition (2.2) to
be given next, the centered inverse regression curve E(x|y)− Ex is contained in the linear
subspace spanned by �xβk, k = 1, ..., K , where �x denotes the covariance matrix of x.

(L.D.C.) Linear Design Condition.

For any b in R p, the condi tional expectation E(b′x|β ′1x, ..., β ′K x)

i s linear in β1x, · · · , β ′K x ; that is, f or some constants co, c1, ..., cK ,

E(b′x|β ′1x, ..., β ′K x) = co + c1β
′
1x+ ...+ cKβ

′
K x . (2.2)

(L.D.C.) is satisfied when the distribution of x is elliptically symmetric; for example,
the normal distribution. But elliptic symmetry is NOT is necessary condition for (L.D.C)
to hold. As to be discussed in a later chapter, this condition is not as restrictive as it may
appear. We shall argue that the violation of this condition is often mild and the bias of SIR
is not large.

A proof of Theorem 2.1 will be given in Section 2.7.
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It is easier to remember Theorem 2.1 for the special case that x has been standardized to
z = Ax by some invertible matrix A so that Ez = 0, cov(z) = I . We can rewrite (1.1) of
chapter 1 as

Y = g(θ ′1z, · · · , θ ′K z, ε) (2.3)

where θ ′i = β ′i A−1.

Corollary 2.1. Assume that (L.D.C.) holds. Then for model (2.3), the standardized inverse
regression curve E(z|Y = y) is contained in the space spanned by the standarized e.d.r.
directions θi , i = 1, · · · , K .

As a random vector, E(z|Y ) has a covariance matrix cov(E(z|Y )). By Corrollary 2.1,
this matrix is seen to be degenerate in any direction orthogonal to the θk’s. Therefore, the
eigenvalue decomposition

cov(E(z|Y ))vi = λivi , i = 1, · · · , p (2.4)

λ1 ≥ · · · ,≥ λp

must give no more than K nonzero eignevalues. All eigenvectors vi with nonzero eigenvalues
must fall into the standardized e.d.r. space.

Denote the random vector E(x|Y ) by η and the covariance matrix of η by �η;

�η = Cov(E(x|Y ))

Since Cov(E(z|Y )) = Cov(E(Ax|Y )) = A Cov(E(x|Y ))A′ = A�ηA′, (2.4) can be written
as

A�η A′vi = λivi

Multiplying both sides by A−1, this gives

�η(A
′vi) = λi A−1vi = λi(A

−1(A′)−1)(A′vi)

Denote A′vi by bi . We have derived the following eigenvalue decomposition :

�ηbi = λi�xbi (2.5)

λ1 ≥ · · · ≥ λp

We shall refer to the eigenvalue decomposition (2.5) as the population version of SIR. There
are no more than K non-zero eigenvalues. We shall call eigenvector bi the population version
of a SIR direction (for λi �= 0only). Since vi falls into the standardized e.d.r. space, it is
a linear combination of θk = A−1βk, k = 1, · · · , K . Therefore, bi can be written as linear
combination of βk, k = 1, · · · , K . The following corollary is a summary of this conclusion.
It establishes the Fisher consistency for the population version of SIR.

Corollary 2.2. Assume that (L.D.C) holds. Then for model (1.1) of Chapter 1, the
population version of the SIR direction bi falls into the e.d.r. space.

It is easy to compare the population version of SIR (2.5) with the sample version (2.1 ).
We can interpret the slice mean xh obtained at Step 2 of the SIR algorithm in Section 2.1
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as an estimate of E(x|Y = y) for y falling within the interval associated with slice h. The
matrix �̂η given in Step 3 is a natural estimate for the covariance matrix �η.

Remark. We estimate E(x|Y ) by a step function consisting of xh, h = 1, · · · , H . It is
feasible to use more sophisticated nonparametric regression methods such as kernel, nearest
neighbor, or smoothing splines to yield a better estimate of the inverse regression curve. This
is especially attractive for relatively small samples. However, intuitively speaking, since we
only need the main orientation ( but not any other detailed aspects ) of the estimated curve,
possible gains due to smoothing are not likely to be substantial for large samples.

2.7 Proof of Theorem 2.1

We shall give the proof for the case the K = 1 first. Assume that Ex = 0 without loss of
generality. We want to show that the vector E(x|y) is proportional to�xβ. The key argument
is by conditioning :

E(x|y) = E(E(x|β ′x, ε)|y) = E(E(x|β ′x)|y) (2.6)

Now the (L.D.C) together with the assumption Ex = 0, implies that

E(x|β ′x) = [(var(β ′x))−1cov(x, β ′x)]β ′x (2.7)

= [(var(β ′x))−1�xβ]β ′x

Here the term inside the brackets following the first equality is a simple application of the
formula for the slope of the simple linear regression of each component of x against the
variable β ′x. Let k(y) = (var(β ′x))−1 E(β ′x|y). It follows that

E(x|y) = k(β ′)|y)�xβ

which is proportional to �xβ as desired.
For the case that K is larger than 1, a formula for E(x|β ′1x, · · · , β ′K x) is also not hard to

find. First let B = (β1, · · · , βK ), which is a p by K matrix.

E(x|β ′1x, · · · , β ′K x) = E(x|B ′x)
= [cov(B ′x)−1cov(B ′x, x)]′B ′x
= [(B ′�x B)−1 B ′�x]′B ′x (2.8)

Here the first bracket term is due to the multiple linear regression of each component of x
separately against the K-dimensional variable B ′x. Let k(y) = (B ′�x B)−1 E(B ′x|y), a K
dimensional vector for each fixed y. Then from (2.6) we see that

E(x|y) = (�x B)k(y)

which shows that E(x|y) falls into the linear space generated by �xβk’s, as desired.



Chapter 3

Sampling Properties of SIR

In this chapter, we discuss the sampling behavior of SIR. First we establish the root-n consis-
tency in Section 3.1. An asymptotic formula which describes how close the SIR directions
are to the e.d.r. space is given. Then we derive a chi-square test for determining the number
of significant nonzero eigenvalues. This provides an estimate of the reduced dimension K
in the dimension reduction model (1.1) of chapter 1. In Section 3.3, we discuss the issue of
how many slices should be used. Other sampling aspects of SIR are given in Section 3.4.

3.1 Consistency of SIR.

We shall assume that H is fixed, and the range of Y is partitioned into H intervals, Ih, h =
1, · · ·. Slice h consists of cases with xi ∈ Ih .

3.1.1 The root n rate.

Let ph = P{y ∈ Ih}, mh = E(x|y ∈ Ih). Elementary probability theory shows that x̄h

converges to mh at rate n−1/2. Let V be the matrix �H
h=1 ph(mh − Ex)(m− Ex)′. It is clear

that the �̂η converges to V at the root n rate. Let b j be the jth eigenvector for the eigenvalue
decomposition:

V b j = λ j�xb j

The SIR direction β̂ j , is seen to converge to the corresponding eigenvector b j at the root n
rate. Now we use Theorem 2.1 and the simple identity mh = E(E(x|y)|y ∈ Ih) to see that
b j will fall in the e.d.r. space.

The case that the range of each slice varies in order to ensure an even distribution of
observations is related to the following choice of intervals:

Ih = (F−1
y ((h − 1)/H ), F−1

y (h/H )),

where Fy(·) is the c.d.f. of y. The root n consistency result still holds.



26 Sampling Properties of SIR

3.1.2 The descripency measure.

We can approximate the expectation of R2(B̂), the squared trace correlation between βkx’s
and β̂kx’s (see the last section in Chapter 1). For the normal x, we have the following simple
approximation :

E R2(B̂) = 1− p − K

n
(−1+ 1

K

K∑
k=1

1

λk
)+ o(

1

n
)

where λk is the kth eigenvalue of V . A crude estimate of this quantity is given by substituting
λk with the kth largest eigenvalue of V̂ . An intuitive interpretation of this result is that the
curvature of the inverse regression plays an important role in the effectiveness of using SIR
to find the e.d.r. directions. If the curve is too straight, then we might not be able to find
more than one directions.

3.1.3 Simulation.

First we use the linear model

y = x1 + x2 + x3 + x4 + 0x5 + ε (3.1)

to generate n = 100 data points. The dimension p equals 5 and each component in x =
(x1, · · · , x5)

′ and ε are independent and follow the standard normal distribution. There is
only one component in this model, K = 1, and any vector proportional to β = (1, 1, 1, 1, 0)
is an e.d.r. direction. Three different estimates are reported here; all of them are based on
the first component, β̂1, of SIR but with the number of slices H = 5, 10, 20 respectively. A
summary of the results after 100 replicates is given in Table 3.1. This table provides the mean
and the standard deviation (in parentheses) of β̂1 after some length and sign adjustments to
ensure that each β̂ has the unitary length and its inner product with (1, 1, 1, 1, 0) is positive.
The need for the adjustments is because we are interested in estimating the direction of β
only (for now). We may change the sign and the length of β̂1 and still get the same direction
estimate. Before the adjustment, the mean of our output β̂1 is nearly 0 because the output
vector of step III in the SIR algorithm determines its sign at random( at step (iii) of the
SIR, either η̂1 and −η̂1 can be the output maximum eigenvector ). Thus our adjustment
regularizes the output estimate for each of the 100 replicates so that the final average and
the standard deviation reported here can meaningfully indicate the performance of β̂1 as a
direction estimator.

As we see from this table, all estimates are very good. The means are all quite close to
the normalized target (.5, .5, .5, .5, 0). How about the standard deviations ? For comparison,
observe that the least squares estimate for each coordinate of β, based on the correct linear
model, has the standard deviation 1√

n
= .1. Since the target vector is a half of β, the least

squares estimate of the target has the standard deviation .05. So in this case, SIR is doing
almost as well as if we do know the true model. On the other hand, it is also evident from the
table that the sensitivity of the performance of the estimate to the number of slices is rather
low.
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Table 1. Mean and Standard Deviation∗ of β̂1 = (β̂11, . . . , β̂15) for
the linear model (6.1), n = 100; the Target is (.5, .5, .5, .5, 0)

H β̂11 β̂12 β̂13 β̂14 β̂15
5 .505 .498 .494 .488 .002

(.052) (.049) (.056) (.056) (.066)
10 .502 .500 .492 .491 .001

(.046) (.045) (.055) (.049) (.060)
20 .500 .502 .497 .487 -.003

(.048) (.046) (.053) (.054) (.060)
∗Numbers in parentheses represent standard deviations.

Table 2. Mean and Standard Deviation of R2(β̂1) and R2(β̂2)

for the Quadratic Model (6.2), p = 10, n = 400

σ = 0.5 σ = 1

H R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

5 .91 .75 .88 .52
(.05) (.15) (.07) (.21)

10 .92 .80 .89 .55
(.04) (.13) (.08) (.24)

20 .93 .77 .88 .49
(.04) (.15) (.08) (.26)

See Table 1 note.

Table 3. Mean and Standard Deviation of R2(β̂1) and R2(β̂2)

for the Rational Function Model (6.3), p = 10, n = 400

σ = 0.5 σ = 1

H R2(β̂1) R2(β̂2) R2(β̂1) R2(β̂2)

5 .96 .83 .89 .51
(.02) (.08) (.06) (.23)

10 .96 .88 .90 .56
(.02) (.06) (.06) (.23)

20 .96 .89 .90 .53
(.02) (.06) (.06) (.24)

See Table 1 note.

Table 4. Sample Quantiles and Means of λ̄(8), λ̄(9) and λ̄(10) for the 100 Replicates Used in Obtaining the Columns
of H = 10 in Tables 2 and 3

Model 1% 5% 10% 25% 50% 75% 90% 95% 99% Mean

10λ̄(8) quadratic σ = 1 .10 .12 .13 .14 .16 .18 .20 .20 .24 .16
quadratic σ = .5 .09 .12 .13 .15 .16 .18 .20 .22 .27 .17
rational function σ = 1 .09 .11 .13 .14 .16 .19 .20 .21 .27 .16
rational function σ = .5 .13 .13 .14 .16 .18 .20 .23 .24 .27 .18

1
320χ

2
56 .11 .12 .13 .15 .17 .20 .22 .23 .26 .175

10λ̄(9) quadratic σ = 1 .17 .18 .19 .22 .24 .27 .29 .32 .33 .24
quadratic σ = .5 .19 .22 .24 .27 .30 .33 .35 .37 .43 .30
rational function σ = 1 .16 .18 .20 .22 .24 .27 .30 .32 .35 .25
rational function σ = .5 .28 .29 .30 .34 .36 .40 .43 .46 .53 .37

1
360χ

2
72 .13 .15 .16 .18 .20 .22 .24 .26 .29 .20

10λ̄(10) quadratic σ = 1 .28 .33 .34 .38 .42 .47 .53 .55 .58 .43
quadratic σ = .5 .39 .43 .45 .49 .53 .57 .64 .66 .70 .54
rational function σ = 1 .34 .36 .38 .40 .43 .49 .51 .55 .61 .44
rational function σ = .5 .58 .63 .65 .69 .74 .79 .82 .85 .90 .74

1
400χ

2
90 .15 .17 .18 .20 .22 .25 .27 .28 .31 .225

Figure 3.1: which has Table 3.1–3.4
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Turning to the multicomponent case, we shall concentrate on the case K = 2. Two
models will be studied :

y = x1(x1 + x2 + 1)+ σ · ε (3.2)

y = x1

0.5 + (x2 + 1.5)2
+ σ · ε . (3.3)

In addition to ε, x1, x2, we also generate x3, ..., xp, all variables being independent and fol-
lowing the standard normal distribution. We take p = 10 together with σ = .5 and σ = 1.
The sample size is set at n = 400, which is small relative to the dimension p = 10. The
true e.d.r. directions are the vectors in the plane generated by (1, 0, .., 0) and (0, 1, 0, ..., 0).
The first two components of SIR will be used as estimates of e.d.r. directions. Recall the
performance measure R2(·) from section 3.1.2. Since �xx = I , R2(β̂1) is simply the square
of the cosine of the angle between β̂1 and the space generated by the first two coordinates.
Writing β̂1 as (β̂11, β̂12, · · · , β̂1p), we see that R2(β̂1) = (β̂2

11 + β̂2
12)/‖β̂1‖2. The formula

for R2(β̂2) can be given in a similar way. With the number of slices H set at 5,10, and 20
respectively, in Tables 3.2 and 3.3, we report the mean and the standard deviation of R2(β̂1)

and R2(β̂2) after 100 replicates.
For both models, despite the change in the noise level, the first component is very close to

the e.d.r.space as the R2 values hover in the neighborhood of 90%. The second component
is more sensitive to the noise level. But even for the high noise level case, the sample
correlation between the projected one dimensional variable β̂2x and the perfectly-reduced
data, the squared root of R2, is still strong (above .7) on the average. Again, the number of
slices has only minor effects on the results. It is interesting to observe that the SIR is doing
better for the rational function model (3.3) than the quadratic model (3.2), despite the fact
that the strength of the signal as measured by the standard deviation of E(y|x) is weaker for
the rational function model (about .8 for (3.3) v.s. about 2.0 for (3.2)). The key to the success
of SIR hinges not on the signal-to-noise ratio, but on the eigenvalues of cov(z|y).

We do not report the average for R2(B̂), because it is very close to the average of
1
2(R

2(β̂1)+ R2(β̂2)).
We conclude this subsection by observing that in our models (3.2) and (3.3) , because of

the affine invariance, we may change x1, x2 to β1x,β2x, where the β’s are any two orthonor-
mal vectors, and still obtain the same results as those reported in our tables.

3.2 Eigenvalues.

How many components are there in the data ? Perhaps this question is too ambitious to
ask. But the companion SIR eigenvalues do provide us with valuable information for a more
practical question:

I s an estimated component real or spurious?

Table 3.4 gives the empirical quantiles and the mean of λ̄(8) , λ̄(9), and λ̄(10), the averages
of the smallest 8 , 9, and 10 eigenvalues, for the same 100 replicates used in obtaining the
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columns of H = 10, in Tables 3.2 and 3.3. ( the conclusions are similar for other H ’s). For
λ̄(8), the numbers are close to the rescaled χ 2 values. Thus guided by the χ2, not very often
we will falsely conclude that the third component is real (or mistakenly claim that there are
at least 3 components in the data).

Turning to λ̄(9), we expect the numbers to be larger than what are given by using the
rescaled χ 2 that falsely assumes only one component in the model. For the rational function
model with σ = .5, this is clearly so, as we see that the 1% quantile of λ̄(9) is close to the
99% quantile of the rescaled χ 2. Thus in this case, we correctly infer that there are at least 2
components in the model in each of the 100 replicates. As confirmed by the corresponding
R2(β̂2) reported in Table 3.3, high value of λ̄(9) leads to good performance of β̂2 as an e.d.r.
direction. On the other hand, the distribution of λ̄(9) for the quadratic model with σ = 1
shows a substantial overlap with the rescaled χ 2. This is reflected in the relatively lower
average and higher standard deviation of R2(β̂2) in Table 3.2. But a positive point is that
by comparing λ̄(9) with the rescaled χ 2, we realize that our data do not strongly support the
claim that the second component is real.

Finally, λ̄(10) is well above the associated χ 2, assuring the high average and the low
standard deviation of R2(β̂1) in all cases.

3.2.1 Chi-squared test.

As argued before, in order to be really successful in picking up all K dimensions for re-
duction, the inverse regression curve can not be too straight. In other words the first K
eigenvalues for V must be significantly different from zero compared to the sampling error.
This can be checked by the companion output eigenvalues.

The asymptotic distribution of the average of the smallest p − K eigenvalues, denoted
by λ̄(p−K ), for V̂ can be derived, based on perturbation theory for finite dimensional spaces
(Kato 1976, chapter 2). For normal x, we have the following result.

Theorem 3.1. If x is normally distributed, then n(p − K )λ̄(p−K ) follows a χ2 distribution
with (p − K )(H − K − 1) degrees of freedom asymptotically.

3.2.2 Eigenvalues and the assessment of K .

An outstanding dilemma facing all data-analysts is that the more you screen, the more you
may find. Good or bad ? While it is desirable to discover as many patterns as possible so one
can have a better chance to develop a new theory, this also increases the chance of a false
alarm. It is helpful to know whether an observed pattern is spurious or not. Yet this is by no
means an easy task, and there is not much discussion on this issue in the literature. For our
problem, how many components SIR finds are really there ? The output eigenvalues in the
eigenvalue decomposition step of SIR are helpful in answering this question.

First observe that following from Theorem 3.1, we see that theoretically the smallest
p − K eigenvalues have to be 0. But in order to be really successful in picking up all K
dimensions for reduction, the inverse regression curve can not be either degenerated or close
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to being degenerated. In other words the first K eigenvalues for the covariance matrix must
be significantly different from zero compared to the sampling error. This can be checked
by using the companion output eigenvalues of SIR. In the last section, we have derived the
asymptotic distribution of the total of the smallest p−K eigenvalues. We may use that result
to give a conservative assessment of the number of components in the model.

For j = 0, 1, 2, ..., we define

P-value j = P{χ 2
(p− j )(H− j−1) ≥ n(n − p)λ̄(p− j )}

This sequence of P-values can be used to indicate how many components are found by SIR.
A simple forward selection procedure is to start with j = 0. If P-value j is less than say
.05, then we may claim that there are at least j + 1 components. Go to the next j till we
fail to make the claim. Of course, we may have many other selection procedures to use.
Mallows(1973, Technometrics) pointed out the merit of inspecting the plot of the whole
sequence of the Cp measures. His point applies to our case too. Thus a sudden jump from a
small P-value to a large P-value serves as a better indication of where to stop. We also found
the sequence of eigenvalues themselves are often good indicators of how many components
found by SIR are worth of close inspection. Typically a value more than .25 is noteworthy.
Later on, we shall interprete eigenvalues as R-squared values for multiple linear regression
of some suitable transformations of y against x.



Chapter 4

Applying Sliced Inverse Regression

In this chapter, we illustrate how the methodology of sliced inverse regression can provide
some crucial visual foresights needed in constructing forward regression models. In appli-
cation, SIR can be used in concert with other regression methods at various stages of data
analysis.

We begin with a small data set in Section 4.1. SIR reveals that a power transformation
on the response variable should be helpful.

The next example to be studied is the Boston Housing data as described in Chapter 1.
We already know that this data set has many predictors. An immediate question is how to
interpret so many coefficients in the SIR directions. This general issue is discussed in Section
4.2. We recommend a way of selecting important regressor variables to relief this burden.

In Section 4.3, we apply our recommendation to the Boston Housing data. After several
passes through the data, we reach a very simple conclusion involving only three regressor
variables - the crime rate(x1), the number of rooms(x6), and the proportion of poor (x13).

In Section 4.4, we show that SIR can be applied in residual analysis. In our example,
the main structure found by SIR is a parabolic trend. After removing the trend, the standard
residual plot is inspected, which shows no evidence of lack-of-fit. We then apply SIR again
to the residuals and find a heteroscedastic pattern.

In addition to analyzing empirically collected data, SIR can be used to visualize the
shape of a deterministic function with several arguments. This is illusted by a push-pull
circuit example in Section 4.5.

We conclude this chapter with a paradigm of regression analysis, showing where SIR
can be applied.

4.1 Worsted yarn.

This is the Example J from Cox and Snell(1981, page 98-102). The data were collected from
a 33 complete factorial design. This data set was originally analyzed by Box and Cox, using
the power transformation model; see also Section 4.2.of Chapter 1. We simply apply SIR
for y against x = (x1, x2, x3)

′. One component is found in SIR-I. The plot of y against the
first SIR projection shows an exponential curve. After taking the log transformation on y,



32 Applying Sliced Inverse Regression

sirI-1

y

Figure 4.1: SIR view for Worsted yarn Data

the pattern is linear. Note that SIR is invariant under monotone transformation of y. We will
come back to the transformation aspect of SIR later on.

4.2 Variable selection.

Boston Housing data has thirteen regressors. This means that each SIR direction would have
13 coefficients. An immediate concern how to interpret so many coefficients properly ? This
general issue is discussed in this section.

First of all, Each variable has its own unit so a small coefficient does not mean that
the corresponding variable should be ignored. A quick remedy is to report the result after
standardizing each variable to have the same variance(=1). But this may not be enough.

In order to obtain a parsimonious description for the estimated e.d.r. space, it is appropri-
ate to select a small subset of regressors for conducting SIR. Just like the variable selection
in multiple linear regression, there are several ways of doing it. The following is one simple
recommendation.

(1). Conduct SIR with all regressor variables included. Let b̂1, .., b̂k be the estimated
e.d.r. directions.

(2). Then find a projection from a small subset S1 of regressors, denoted by b̂′s1x, which is
still reasonably close to the first projection b̂′1x with ,say, an R-square value of 90% (which
amounts to about 18.5o difference between the two projection angles) or better. This can
be done by either forward or backward selection procedure in multiple linear regression by
treating b̂′1x as y.

(3). After S1 is selected, we then check if using variables from S1 is good enough to
approximate the second projection b̂′2x or not. If not, we should enlarge it and continue to
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the next projection. Let S be the final set of variables selected.

(4). Apply SIR again, this time using only the variables in S.

(5). If necessary, go through the variable selection procedure (2)-(4) again.

Note it is a good practice to compare the plot found from the reduced variables with the
original one. If substantial difference is found, then some caution should be taken.

4.3 Boston housing data.

We first apply SIR to the Boston Housing Data ( described in Chapter 1). with H , the
number of slices, ranging from 10 to 30. The result, based on H = 15, is reported in
Figures 4.2(a)-(d). As we rotate the cloud along the y-axis, it looks like a helix or slide. A
further inspection of the eigenvalues , .82, .48, .20, .08, .05, · · ·, reveals that there are three
significant components. Figure(4.3) provides the scatter-plot matrix for y and these three
projection variables.

(a)

(c)

(b)

(d)

Y

SIR1 SIR2

Y

SIR1SIR2

Y

SIR2SIR1

SIR1

Y

SIR2

Figure 4.2: SIR view for Worsted yarn Data
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4.3.1 Crime rate.

When we carry out the variable selection procedure as described above ( forward variable
selection is used), the result is not illuminating. For the first projection, we can identify
the main contributor to be x13, proportion of poor, with x6, average number of rooms in
houses, as a close runner-up. Primary contributors of the second projection variable are
harder to identify. The top candidate x1, crime rate, leads seven other competing variables
only marginally.

We take a closer look at the relationship of crime rate with other variables by inspecting
scatterplots. As observed in Chapter 1, a special group of cases with high crime rate stand
out from the others. All cases in this group share the same value in each of the following 5
variables : x2, x3, x9, x10, x11.

4.3.2 The low crime rate group.

Excluding this high crime rate group, there are 374 cases remaining. We run SIR on these
and now there are only two components significant. The pictures are similar to but sharper
than the ones obtained from the whole sample. We are able to identify x6 as the primary
contributor of the first component. For the second component, x1 and x13 are the top candi-
dates. We then run SIR again, with x1, x6, x13 as the regressor variables this time ( Figures
(4.3(a)-(d)). The first component b̂′1x is clearly due to x6, which has a correlation higher than
.99 with b̂′1x. The second component, can be described roughly as x1 + 30x13 adjusted by
the first component for orthogonalization. These two SIR variates are nonlinearly correlated;
see Figure 4.4.

Other values of H , ranging from 10 to 30, have provided essentially the same view.
The logarithm transformation used to obtain Y is borrowed from Harrison and Rubinfeld
(1978). This is not necessary because SIR is invariant under the monotone transformation of
Y . SIR would still find the same projections if the original scale were used. In Figure 4.5 the
original scale of house price is used. This can be compared with Figures 4.3. It appears that
the logarithm transformation is unnecessary.

4.3.3 Intrepretation.

In this study, SIR identifies two key factors of different nature and provides a graphical sum-
mary. The variable x6, average number of rooms, is a physical factor, which may reflect the
construction cost and the practical utility of a house to some degree. It affects the physi-
cal condition of a house. The other variable x1 + 30x13, the crime rate and percentage of
the poor, is a socio-economic factor. It reflects the desirability of the house’s neighborhood
which in turn affects the area’s land value. SIR reveals the nonlinear association between
these two factors. The importance of the physical factor is also confirmed by other meth-
ods; for example, the straightforward linear regression, the more complicated model fitting of
Harrison and Rubinfeld, and ACE of Breiman and Friedman. In fact, in each of these studies,
the physical variable is always the leading factor which accounts for the highest percentage
of variation in the prediction equation. Because of this consistency from different studies,
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(a)

(c)

(b)

(d)

Y

SIR1 SIR2

Y

SIR1SIR2

Y

SIR2SIR1

SIR1

Y

SIR2

Figure 4.3: SIR’s view on the subsample that excludes a high crime rate group with only x1,
x6, x13 as the regressor variables. Y is the logrithm of the median value of owner-occupied
house.

one might naively be forced to conclude that x6 is the dominant factor. To challenge this
simple-minded statement, we should resort to the helix type of nonlinear confounding pat-
tern exhibited by the three-dimensional SIR plot. The second factor which appears equally
important from the SIR plots, cannot be found from the other studies because their models
have precluded structure like the one we found here a priori.

It is usually hard to draw any decisive conclusion from a single study. If the same helix
shape of distribution also exists in data from other cities, for example, then the finding would
be much more noteworthy. The graphics found here, however, is not available from linear
regression or other methods. The exposure of the helix type data cloud offers an alarming di-
agnosis for methods aiming at the approximation the regression surface, which are sensitive
to nonlinear confounding. We shall turn to this point again in Chapter 10.

Finally, we have run SIR with x1, x6, x13 and x5 as the regressors. It turns out that the
two components found are essentially the same as those without x5, and that the correlation
coefficient for the corresponding components is higher than .99 for each of the two directions
found by SIR. This suggests that x5, nitrogen oxide concentration, does not show a significant
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SIR1

SIR2

Y

Figure 4.4: The scatterplot of the first two components in Figures 4.3 (a)-(d)

(a) (b)

Y

SIR2SIR1

Y

SIR1SIR2

Figure 4.5: SIR’s view on the subsample that excludes a high crime rate group with only x1,
x6, x13 as the regressor variables. Y is the original scale median value of owner-occupied
house.

role in affecting the relative housing prices in the low crime rate areas.

4.4 Structure removal.

Quite often, finer structure in the data can only be detected after the main structure is re-
moved.

Example 4.4.1 Ozone data. We take a data set from Breiman and Friedman (1985), the
data for studying the atmospheric ozone concentration in the Los Angeles basin. We use the
daily measurement of ozone concentration in Upland as the output variable y and want to
find its relationship with eight meteorological variables (see Table 8.4). There are n = 330
observations in the study. First, we apply SIR to the data and find one significant component.
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This component is almost identical to the b̂′ls x, the component found by the linear least
squares fitting. For certain slice sizes, we can find a marginally significant second component
as well, but we decide to ignore that. We then use a forward selection method to find out
the important variables contributing to the first component. Three variables x1, x2, x6 are
found that explain more than 99% of the total variation of the first component. We run SIR
again using only x1, x2, x6 as the input variables. The scatterplot of y against b̂′sx, the first
component found. We use 30 slices here for SIR, but other choices yield almost identical
scenes. The correlation between b̂′ls x and b̂′sx is above .99 as well.

A quadratic trend is visible from the SIR plot. After fitting a quadratic polynomial :

y = c0 + c1u1 + c2u2
1 + ε,

where u1 denotes the variable b̂′sx.
We finally apply SIR again to the residual and found one significant component, which

gives the view Figure 4.6. An interesting triangle pattern of heterogeneity is seen.

Figure 4.6: Ozone data. Residuals against the direction found by SIR

4.5 OTL push-pull circuit.

Most regression analysis techniques deal with data which are empirically collected. But
there are many other cases in which the relationship between the input and output variables
can be derived from physical/mathematical laws. The response is deterministic and is indeed
already given. There are no data to analyze.

Figure 4.* depicts an OTL push-pull circuit used by a TV manufacturing company in
Hanzou City of China( Chen et. al. 1985).
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It is desired to have the voltage, V , as close to the nominal value, 6.0volts, as pos-
sible. The following Formula gives the relationship between V and six input variables,
x = (Rb1, Rb2, R f , Rc1, Rc2, log m2)

t :

V = (Vb1 + .65)
m2 R0

m2 R0 + R f
+ (Ec − .65)

R f

m2 R0 + R f
+ .74R f m2 R0

(m2 R0 + R f )Rc1
(4.1)

where
Vb1 = Ec Rb2/(Rb1 + Rb2), R0 = Rc2 + 9, Ec = 12.

The first 5 input variables are resistances in kilo-ohms and the last one is an amplification
factor. Due to diversity in quality for the components assembled, as well as the temperature
changes or other environmental uncertainty, the actual values for these variables often deviate
from their nominal values, causing the fluctuation in the actual output V . Attempts have
been made by Chen et. al. to increase the output stability. They found appropriate quality
levels for the components and the optimal nominal values for these variables by modifying
Taguchi’s method for parameter design and tolerance design.

We would like to “see” the shape of this function in a region of interest. To do this,
we need to find directions that change the output variable the most. We shall use SIR to
help find such directions. The data can be simulated by specifying a distribution for the
input variables and apply the equation (4.1) to obtain the output values. For illustration, we
specify the means and standard deviations for the input variables as :

mean of x = (100, 60, 1.0, 1.2, 1.0, 3.9)

standard deviation of x = (1.0, 1.0, 0.10, 0.12, 0.10, 1.1)

We simulate 1000 independent observations from a normal distribution. We apply SIR
with H = 15. A few angles for the rotation plot of y against û1 = b̂1x and û2 = b̂2x is given
by Figure 4.7. As we rotate the plot, a surface that approximates well the data points can be
clearly seen.

The main shape of the function does vary as the domain of input changes. For another
input specification, a linear surface is found.

In general, visualization help decide whether a linear approximation based on Taylor’s
expansion is adequate or not.
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Figure 4.7: SIR’s view for OTL. x and z are the first two directions of SIR.
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Chapter 5

Generalization of SIR : Second Moment
Based Methods

The basic principle in sliced inverse regression is to reverse the role of Y and x. After
partitioning the sample into several slices according to the Y values, summary statistics from
each slice can be studied. The sliced inverse regression algorithm discussed earlier combines
information from slice means. The larger eigenvectors of SIR are the directions for which
the slice means spread out more than other directions, relative to the spread of the original x
along the same directions. We have shown how these eigenvectors can be used to estimate
e.d.r. directions.

The covariance matrix is perhaps the next simplest statistic from each slice that deserves
our attention. Similar to the first moment method (called SIR-I hereafter), we shall be inter-
ested in those directions where the slice covariances vary the most. However unlike SIR-I,
there are more than one ways to implement this idea; for example, SAVE ( Cook and Weis-
burg 1991) and SIR-II (Li 1991). Another method, principal Hessian direction (pHd), to be
discussed much later, is also closely related.

5.1 A simple symmetric response curve.

Consider the contour plot, Figure 2.6(a)-(c), of Y = g(x1+x2) again. We have argued before
that the slice means must fall along the e.d.r. direction because points within each slot are
symmetrically distributed above and the below the 45o line. However, suppose g(t) = t2.
Then each contour consists of a pair of lines, x1+ x2 = c and x1+ x2 = −c. Thus each slice
must have two slots , one on each side of the origin. This additional symmetry forces the
average of x to cancel out eventually within each slice. Thus the slice means are expected to
be crowded near the origin and it would be difficult to use principal component analysis to
find the right e.d.r. direction.

This argument holds for any symmetric g function. The inverse regression curve is de-
generated to a point. This explains why SIR fails to find the e.d.r. direction β = (1, 1).

Now let’s look at the conditional variance. Along the direction (1,−1) (which is per-
pendicular to the e.d.r. direction), the variance is the same for each slice. This is easy to see



42 Generalization of SIR : Second Moment Based Methods

because (x1− x2) is independent of (x1+ x2) , implying var(x1− x2|y) = var(x1− x2) = 2.
But along the e.d.r. direction, the conditional variance can vary from slice to slice. For ex-
ample, suppose g(t) = t2, ”conditional on Y = y” implies x1 + x2 = √

y and −√y with
probability .5 each. Thus var(x1 + x2|Y = y) = y, which is see to vary as y changes.

5.2 Slice covariances.

It is helpful to begin with some more examples.

Example 5.2.1. Consider the function Y = x2
1+x2

2 , whose contours form concentric ellipses
about the origin. Suppose the regressor has a spherical distribution. Due to symmetry, it is
easy to see that the mean for the regressor between any two contours is always equal to zero.
This is another case where the first moment based SIR fails to estimate the e.d.r. space.
Strictly speaking, the key theorem for SIR ,Theorem 2.1 in chapter 2, is still true. But by a
more careful reading on the statement, one should find that the theorem does not rule out the
case that the inverse regression curve may be degenerated. Thus it may happen that the first
moment based SIR can only recover a subspace of e.d.r. space.

In this example, the slice covariance matrix is proportional to the identity matrix, I2. But
the proportionality constant varies from slice to slice.

Now suppose we are given one more regressor x3 which is independent of x1, x2. Then
since x3 has nothing to do with Y , the 3-D contours {(x1, x2, x3)|Y = c}, c > 0, are concen-
tric cylinders with a common axis. Again, the slice means of slice remain at the origin. But
the slice covariance will take the block form of(

ch I2 0
0 d

)
The constant ch depends on h but d = varx2 remains the same. This indicates that the
directions where the slice covariance changes the most (in this case the first two coordinates)
can be good candidates for e.d.r. directions.

Quite often we need both the slice means and slice covariances. This is illustrated in the
following example.

Example 5.2.2 Consider y = x2
1 + x2 + 0x3. The contours forms parallell parabolic curves

on the x1, x2 plane. The slice means spread out along the x2 axis. Thus only the direction
(0, 1, 0)′ can be found by SIR-I. But the slice covariances take the form ch 0 0

0 dh 0
0 0 d


The direction (1, 0, 0)′ can be recovered from the slice covariances.
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5.3 Basic properties of slice covariances.

As done before, we shall use capital letter of Y to differentiate from a value y that it may
take. For the slice Ih , the covariance of x will be denoted by cov(x|Y ∈ Ih). Note that

cov(x|Y ∈ Ih) = E(cov(x|Y )|Y ∈ Ih)+ Cov(E(x|Y )|Y ∈ Ih)

We shall discuss some properties of cov(x|Y = y) first. Depending on various con-
straints on the distribution of x, we have various claims about the relationship between
cov(x|y) and the e.d.r. space. To simplify the discussion, we shall assume that

Ex = 0, cov(x) = I (5.1)

As was done before, we can always apply an affine transformation to x to obtain the
standardized version. The interpretation and the application of the results obtained here will
be discussed later.

First we assume the (L.D.C).

Theorem 5.1. Assume that the dimension reduction model (1.1) of chapter 1 holds. Under
(5.1) and (L.D.C.), for any b in the e.d.r. space and any v in the orthogonal complement of
the e.d.r. sapce (that is b′v = 0, we have

b′cov(x|y)v = 0 (5.2)

The proof of this theorem is almost trivial. Recall the definition of B = (β1, · · · , βK )

from chapter 3. The left side term is equal to

cov(b′x, v′x|y) = E(b′xv′x|y)− E(b′x|y)E(v′x|y)
= E(b′xv′x|y)
= E(E(b′xv′x|B ′x, ε)|y) (5.3)

= E(b′xE(v′x|B ′x)|y)
= 0

Here the second equality is due to the fact that E(v ′x|y) = v′E(x|y) = 0, an application of
Corollary 2.1 in Chapter 2. The last equality is due to the fact that E(v ′x|B ′x) = 0, which is
in turn implied by (L.D.C) and (5.1).

Next, we assume that
x is elliptically symmetric (5.4)

Theorem 5.2. Assume that (5.4) holds. Then under the same setting as in Theorem 5.1, for
any v in the orthogonal complement of the e.d.r. space, we have

b′cov(x|y)v = 0, for any b orthogonal to v (5.5)
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To prove this theorem, we need only to consider those b which is in the orthogonal
complement of the e.d.r. space and is orthogonal to v. We still have (5.3). To finish the
proof, we observe that

E(b′xv′x|B ′x, ε) = E(b′xv′x|B ′x) = 0

where the last equality is a simple fact of spherical symmetry of x (due to (5.1) and (5.4)).

The result of Theorem 5.2. implies that any v in the orthogonal complement of the e.d.r.
space must be an eigenvector of cov(x|y). Consequently, the eigenvalue has to be the same
for all v orthognal to The e.d.r. space :

cov(x|y)v = λ(y)v
where λ(y) denotes the common eigenvalue.

Remark 5.1. With b being set to v in (5.3) and the length of v being set to 1, we obtain

λ(y) = v′cov(x|y)v = E(E((v′x)2|B ′x)|y)
Due to the spherical symmetry, the term E((v ′x)2|B ′x) depends only on the length of B ′x
and the density of x.

Finally, assume that
x is normal. (5.6)

Theorem 5.3. Assume (5.6) holds. Then under the same setting as in Theorem 5.1, for any
v in the orthogonal complement of the e.d.r. space, we have

cov(x|y)v = v. (5.7)

When x is normal, v′x will be independent of B ′x. Therefore E((v′x)2|B ′x) is equal to
E(v′x)2 = 1. The result of Theorem 5.3 follows from the discussion of Remark 5.1.

5.4 An iterative procedure.

.
From the examples in 5.2, we see that one way to find more e.d.r. directions is to look

for directions b where the conditional variance of b′x given Y varies as much as possible.
We can translate this into an optimization procedure :

max
b

var(var(b′x|Y ))
var(b′x))

This can be carried out iteratively. SAVE as well as the following procedure discussed in
the next section can be regarded as some non-iterative variants of this optimization problem.
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5.5 SIR II algorithm.

This aims at comparing the slice covriance with the mean slice covariance. Suppose that we
have an i.i.d. sample, (yi , xi), i = 1, · · · , n.

(0). Standardize the data as in SIR. That is, standardize x by an affine transformation to
get x̃i = �̂

−1/2
x (xi − x̄), i = 1, ..., n, where �̂x and x̄ are the sample variance-covariance

matrix and sample mean of x respectively.
(I) Slice the data in the same way as Step (I) of SIR :
Divide the the range of y into H slices, I1, · · · , IH ; let the proportion of yi that falls in

slice h be p̂h ; that is p̂h = 1
n

∑n
i=1 δh(yi), where δh(yi) takes the values 0 or 1 depending on

whether yi falls into the hth slice Ih or not.
(II) For each slice, compute the sample covariance of x :

�̂h = 1

n p̂h

∑
i∈Ih

(x̃i − m̂h)(x̃i − m̂h)
′, h = 1, · · · , H

where m̂h is the sample mean of x̃ for slice h.
(III) Find the matrix �̂I I defined by

�̂I I =
H∑

h=1

p̂h(�̂h − �̄·)2

where �̄· =
∑H

h=1 p̂h�̂h . Then conduct an eigenvalue decomposition of �̂I I .
(IV). Let the K largest eigenvectors be η̂k, k = 1, · · · , K . Output β̂k = �̂

−1/2
x η̂k, k =

1, ..., K .

Examples.

Successful simulation studies have been conducted for several models; for example, y =
sign(ε)(log(|β1x|) − .75) with 300 cases and p = 10 (Figures 5.1 and 5.2). For a more
complicated model, y = sign(β2x)(�(|β1x|) − .5), where � is normal c.d.f., our second
moment based method can only recover the direction of β1. The second direction, however,
is recovered well by further applying the double slicing method to be discussed later.
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Figure 5.1: Best View for Example 5.1
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Figure 5.2: SIRII’s View for Example 5.1



Chapter 6

Transformation and SIR

In this chapter, we shall draw connections between SIR and multiple linear regression. This
is based on Chen and Li(1998).

6.1 Dependent variable transformation.

In this section, we shall derive SIR from the viewpoint of tranformation on the dependent
variable Y . This derivation is descriptive in nature.

Transformation has become one of the routine steps in regression analysis. For experi-
enced data analysts, an inspection on the scatterdiagrams, or on plots of the residuals may
often lead to some suitable transformations. For high dimensional data, however, we have
many scatterdiagrams to inspect. Moreover, in many cases, a common transformation for
simplifying the analysis may not be possible. A transformation suitable for one plot may not
be good for another.

Contrary to these subjective eyeballs-based transformation methods, Box and Cox(1964)
formulated the problem rigorously as the estimation of the power parameter λ in the power
transformation family:

T (Y, λ) = α + β ′x+ ε
T (Y, λ) = (Y λ − 1)/λ, 0 ≤ λ ≤ ∞. (1.1)

One hope is that this family may be flexible enough to incorporate many reasonable trans-
formations suggested by human eyes and to achieve the multiple purpose of linearizing the
regression , stabilizing the variance, and achieving the normality.

While the Box-Cox transformation model is a good approximation of many data sets, it is
clearly deficient for the application of 3-D graphing. Indeed, if the Box-Cox transformation
model is correct, then there is no pressing need to project x on more than one directions.
Finding a good estimate of β and project x on the estimated β direction seems informative
enough.

In this chapter, transformation will be used in a way different from its traditional role of
being a mechanism for improving the goodness of model fitting. It will serve as an interme-
diate tool for finding interesting projections of x. We shall consider a direction b interesting
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for viewing if the resulting scatterplot of Y against the projected variable b′x, may suggest a
transformation on Y to obtain a good linear fit. A commonly used measure of goodness of
fit, the R-squared, is adopted here. For any direction b, let the associated ”optimal” transfor-
mation be Tb(Y ), i.e, Tb(Y ) achieves

R2
b = max corr (T (Y ), b′x)2 (1.2)

where the maximum is taken over all transformations h, and corr stands for the correlation
coefficient.

Now we propose R2
b as the index in searching for the optimal projections. This index

reasonably reflects the degree of interestingness hidden in the scatterdiagram. Of course,
this does not mean that one has to find the optimal transformation by inspecting the scatter-
diagram with eyes. Neither did we claim that all interesting aspects about the scatterdiagram
can be fully captured by this single index; otherwise we may need only the index but not the
graph. Yet it is believable that a high value of the maximum R-squared may allow a lot of
interesting features to occur, including blurring curves, heteroscedasticity, and clusters.

x

y

x

y

x

y

x

y

(a) (b)

(c) (d)

Figure 6.1: Transformation Helps Linearize the Regression for (a), (b), (c), but not (d)

Figures 6.1(a)-(d) show some typical situations. Transformation on Y can help increase
the R-squared value substantially in Figure 6.1(a)-(c) ( in (b) and (c), take the absolute value,
for example). It does not help in Figure 6.1(d), however.

What transformation will optimize the R-squared value ? The answer is
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Tb(y) = E(b′x|Y = y). To see this, first assume that Ex = 0 for simplicity. Then

corr(T (Y ), b′x)2 = [ET (Y )b′x]2

varT (Y )var(b′x)

= (ET (Y )Tb(Y ))2

varT (Y )var(b′x)

= corr(T (Y ), Tb(Y ))
2 varTb(Y )

var(b′x)
It is now clear that the maximum is achieved when the correlation coeficient in the last

expression is eqal to 1 or -1, showing that our answer is correct.
With our index, the first projection is a direction b1 that maximizes R2

b over all vectors
b. After finding b1, we then look to those directions uncorrelated to b1 for the the second
maximization direction. Then we can plot Y against b′1x and b′2x by, say, the 3-D rotating
plot for visualization.

We may continue the above maximization process to obtain a set of vectors, b1, ..., bp ,
satisfying the conditions

cov(b′i x, b′j x) = 0, f or i �= j

R2
bi
= max

b
R2

b, (1.3)

where the maximum is taken over all vectors b satisfying cov(b′x, b′j x) = 0, for j =
1, ..., (i − 1).

Theorem 1.1 below characterizes the b′i s and establishes the connection with sliced in-
verse regression. Recall the definition of inverse regression curve

η(y) = E(x|Y = y).

and its covariance �η = cov [η(Y )]

Theorem 6.1. The vectors constructed from the maximization problem (1.3), bi , i = 1, .., p,
are the same as the eigenvectors for the eigenvalue decomposition of the covariance matrix
�η with respect to �x; i.e.,

�ηbi = λi�xbi , i = 1, ..., p,

λ1 ≥ λ2 ≥ ... ≥ λp

Proof. Without loss of generality, we assume that Ex=0. First, it can be verified that for any
direction b, the “optimal” transformation is Tb(y) = E(b′x|Y = y) = b′η(y). Then a simple
conditional expectation argument leads to

cov(Tb(Y ), b′x) = E[Tb(Y )(b
′x)]

= E[Tb(Y )E(b
′x|Y )]

= b′E(η(Y )η(Y )′)b
= b′�ηb. (1.4)



50 Transformation and SIR

It follows that

R2
b =

b′�ηb
b′�xb

(1.5)

Therefore the eigenvalue decomposition of �η with respect to �x solves the maximization
problem (1.3), completing the proof. �

The spectrum decomposition problem stated in this theorem is exactly the same as the
one proposed in sliced inverse regression.

An equivalent way of defining interesting directions for projections can be phrased in the
following. For a transformation T (Y ) of the dependent variable Y , consider the linear least
squares fit by x; namely,

min
a∈R,b∈R p

E(T (Y )− a − b′x)2 (1.6)

Denote the minimizer by a(T ), b(T ). Consider again the R-squared:

V ar (a(T )− b(T )′x)
V ar T (Y )

= [corr(T (Y ), b(T )′x)]2 (1.7)

Let T1 be any “optimal” transformation that maximizes (1.7). Subject to being orthogonal to
T1 in the sense that cov(T (Y ), T1(Y )) = 0, we again maximize (1.7) to find T2(Y ). Continue
in the similar fashion until we find p optimal orthogonal transformations T1, ...., Tp . The
following theorem shows that the regression slope vectors, b(Ti), i = 1, · · · , p, are the
solutions, bi , i = 1, ..., p, for the maximization problem (1.3).

Theorem 6.2. The regression slope vectors , b(Ti), i = 1, ..., p, for the optimal transfor-
mations Ti , i = 1, ..., p are the solutions bi , i = 1, ..., p for (1.3). On the other hand,
Ti(y) = E(b′i x|Y = y), i = 1, ..., p, maximize (1.7).

Proof. Our strategy is to show that the two maximization problems, (1.3) and the maximiza-
tion of (1.7), can be translated into a common double maximization problem of the form
(1.9) below.

First observe that the least squares solution to (1.3) is also a solution to the maximization
problem:

max
b

corr(T (Y ), b′x)2 (1.8)

Thus T1(·) solves
max
T (·)

max
b

corr(T (Y ), b′x)2 (1.9)

Reversing the ordering of the two “max”, this is the same problem that b1 solves. It fol-
lows that bT1 is proportional to b1 and E(b′1x|Y ) = b′1η(Y ) can be taken as the optimal
transformation T1(Y ).

Next, for any direction b uncorrelated to b1, i.e, 0 = cov(b′x, b′1x), we also have

(cov(Tb(Y ), T1(Y )) = cov(E(b′x|Y ), E(b′1x|Y )) = b′cov(η(Y ))b1 = λ1b′�xb1 = 0,

where the next to the last identity is due to the definition of eigenvector. This implies that
to find b2 , the double maximization problem (1.9) can be restricted to those b that are
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uncorrelated with b1 as well as to those T (·) that are orthogonal to T1(·) . On the other
hand, we shall show that the same restriction applies when finding T2(·). To do this, it is
enough to check that for any T (y) that is orthogonal to T1(y) , we have b′1�xxbh = 0.
Since the regression coefficient bh is equal to �−1

x cov(T (Y ), x), it suffices to verify that
cov(T (Y ), b′1x) = 0. But by the same conditional expectation argument used in (1.4), we
see that cov(T (Y ), b′1x) = cov(T (Y ), E(b′1x|y)) = cov(T (Y ), h1(Y )) = 0, proving the
claim.

It follows that b(T2) is proportional to b2, and that E(b2x|Y ) can be taken as T2(Y ). For
p larger than 2, We can repeat the same argument to complete the proof.

These theorems offer an interpretation for the eigenvalues in the output of SIR:
the i th eigenvalue of SIR is equal to the R-squared value of the linear regression when Y

is transformed to Ti(Y ).

6.2 Some Remarks.

Remark 2.1. As mentioned before, in the search of an “optimal” transformation we do not
restrict to the monotone ones. Monotone transformations are reasonable only if we believe
in the adequacy of transformation models. While there may be many good reasons to require
monotonicity for the first transformation (see Ramsay 1988), they are less compelling for
the second transformation. Indeed, Theorem 1.2 implies that the second one can not be
monotone if the first one is so.
Remark 2.2. No single index can reflect all interesting aspects in a scatterdiagram; otherwise
we may need only the index, not graphics. Our transformation-based index R2(b) is no
exception. It performs poorly when the scatterdiagram of Y against b′x contains a pattern
of symmetry about some vertical line. The correlation coefficient is zero and we cannot
increase it by transforming Y . Thus R2(b) is always zero no matter how interesting the
pattern of symmetry is. This offers an explanation for why SIR cannot recover the e.d.r.
direction in a simple quadratic function Y = (β ′x)2; see Cook and Weisberg (1991) and the
Rejoinder of Li(1992) for more discussion. One remedy is to consider double transformation
(Carroll and Ruper 1988); namely to allow the transformation on b′x as well. We may use
the maximum correlation between y and b′x to quantify interestingness in the scatterplot :

max
T,g

ρ(T (y), g(b′x))

where T, g are any square integrable functions. How to maximize this index over all possible
directions efficiently is still to be explored.

Nonlinear multivariate analysis techniques such as correspondence analysis, optimal
scaling, and others ( Gifi1991), and ACE (Breiman and Friedman 1985, Koyak 1987) use
maximum correlation in statistics in a rather different manner. For example, ACE proposes
the model

T (Y ) =
p∑

i=1

gi(xi)+ ε
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where x = (x1, · · · , xp)
′, and gi ’s. Only one transformation on Y is allowed for the purpose

of rescaling. Each regressor is allowed to make transformation, a feature that SIR does not
have. However, the additivity assumption can be too strong; a remedy to this is given by
MARS (Freedman 1991), but without allowing the transformation on Y . These tools aim at
finding a good approximation of the regression function E(Y |x) without graphical guidance.

Remark 2.3. Although transformation has been used frequently in Statistics, there is one
major difference between ours and others. We use transformations of y to suggest interesting
patterns in the data only; while others use transformations for functional approximation.
Consequently, our transformations are disposable. After finding the directions, we are no
longer obligated to these transformations for modeling. The subsequent analysis should be
based on what is seen.

Remark 2.4. The duality relationship displayed in Theorem 1.2 can be put into a more gen-
eral context in terms of Hilbert spaces. To simplify the notations, assume that Ex is 0. Con-
sider an infinite dimensional Hilbert space, H1, consisted of all squared integrable random
variables T (Y ) that are transformed from Y and have mean 0. LetH2 be the p−dimensional
Hilbert space, consisted of the linear combinations of x, b′x. These two Hilbert spaces gen-
erate a larger Hilbert space, denoted by H . Measure the distance between two elements,
v1, v2, in H , by the standard deviation of v1 − v2. Then for any projected variable b′x,
the closest element in H1 is E(b′x|Y ) − EY , which is a version of Tb(y). Likewise, for
any transformation T (Y ) the closest element in H2 is the best linear fit, b(T )′x. Consider
the p dimensional Hilbert subspace, H3, of H1, generated by Tb(Y ), b ∈ R p. The dual-
ity relationship in Theorem 2.2 simply says that one can find orthogonal basis vectors, say
ei , i = 1, ..., p, in H2 and orthogonal basis vectors, say, vi , i = 1, ..., p, in H3 such that
the closest element in H1 to ei is a multiple of vi , and conversely the closest element in
H2 to vi is a multiple of ei . This is the canonical analysis between H1 and H2, a special
form of singular value decomposition problems prevalent in nonlinear multivariate analysis.
In principal, it is possible to enlarge H2 by including a few second order terms (or B-spline
terms ) of x.

6.3 Examples.

In this section, we shall explain why SIR works in a variety of situations from the transfor-
mation based viewpoint.

6.3.1 Curves and clusters.

Consider the model

Y = sign(β ′1x+ σ1ε1)log(|β ′2x+ α + σ2ε2|), (3.1)

where the function sign(·) takes value 1 or -1 depending on the sign of the argument. All
coordinates of x and ε1, ε2 are independent standard normal random variables. For a clear
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illustration, we first study the noise-free case, σ1 = σ2 = 0. Take the dimension of x to be
p = 15 and generate n = 300 cases with

β ′1 = (1 1 1 1 1 1 1 1 1 0 0 0 0 0 0), β′2 = (0 0 0 0 0 0 0 0 0 1 1 1 1 1 1), α = 5.

We run SIR with the number of slices equal to 20. Other numbers, 10 and 30, also show
similar results. A rotation plot for Y against the first two projections is shown in Figures
6.2(a)-(d). The first eigenvector (Fig. 6.2(a)) finds two curves spreading out symmetrically
about the horizontal axis and the second one (Figure 6.2(c)) shows a pattern of two clusters.
Table 6.1 gives the first two output eigenvectors and eigenvalues. They are approximately
proportional to β2 and β1 as desired.

Table 6.1: The first two eigenvectors(with standard deviations and ratios and eigenvalues of
SIR for (3.1) without error terms.

first vector (-.05, -.03, -.01, -.03, -.01, -.03, .01, -.03, -.01, .39, .41, .44, .45, .42, .43)
S.D. (.02, .02, .02, .02, .02, .02, .02, .03, .02, .02, .02, .02, .03, .02, .02)
ratio (-2.1, -1.5, -0.5, -1.4, -0.3, -1.6, 0.3, -1.4, -0.3, 18, 18, 19, 18, 20, 18)

second vector (.35, .39, .35, .24, .28, .30, .32, .27, .33, -.00, -.01, .03, -.02, .04, .11)
S.D. (.05, .05, .04, .05, .05, .05, .05, .05, .05, .05, .04, .05, .05, .05, .05)
ratio (7.2, 7.7, 8.0, 4.8, 5.7, 6.5, 6.7, 5.1, 6.6, -0.0, -0.3, 0.6, -0.3, 0.8, 2.2)

eigenvalues (0.88, .61, .16, .13, .12, .08, .07, .05, .04, .02, .02, .01, .01, .00, .00)

Figure 6.2(a) shows approximately the scatterplot of Y against β ′2x. The symmetry about
the horizontal axis is due to the sign function which acts on β ′1x behind the screen. This
symmetry yields a zero correlation coefficient between Y and β ′2x. But it can be increased
greatly by folding the picture over along the x−axis, which amounts to taking the absolute
value transformation |Y |. This explains why SIR is capable of finding this direction. Accord-
ing to Theorem 6.2, the optimal transformation is T1(Y ) = E(β ′2x|Y ), which should give an
even higher correlation coefficient, about√.84 ≈ .92 as estimated by the squared root of the
first eigenvalue of SIR, than the absolute value transformation.

Figure 6.2(c) shows approximately the scatterplot of Y against β ′1x. This is the direction
to be found by a linear least squares of Y against x, because Y is uncorrelated with any
directions orthogonal to β ′1x.

Figures 6.2(b) and 6.2(d) show two views of the rotation plot found by SIR. These static
views themselves do not offer much additional information. But when we rotate the plot
around the vertical axis on the screen, the two curves in 6.2(a) are then turned into two thin
plates, floating in and out.

We also repeat the simulation with the noise level set at σ1 = σ2 = 1. The output of
SIR is also quite close to the directions of β2, β1; see Table 6.2 and Figures 6.3(a)-(b). The
curves are now blurred.
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Figure 6.2: SIR’s view of Data Generated From (3.1).

Remark 3.1. We also simulated the case with α = 0. SIR fails in this case because of the
symmetry on the β2 direction. Second-moment based methods (Cook and Weisberg 1991,
the Rejoinder of Li 1991) and variants of principal Hessian direction (Li 1992b) are capable
of finding the β2 direction.

6.3.2 Heteroscedasticity.

A popular model for studying heteroscedasticity is

y = β ′1x+ εg(α + β ′2x), (3.2)

where g is often conveniently taken to be a power transformation function (c.f. (2.1)); see,
e.g., Carroll, Wu, and Ruppert (1988).

To see how SIR helps the residual analysis, we take g(x) = .2x and generate 100 cases
for p = 6 with

β ′1 = (1, 1, 1, 1, 0, 0), β ′2 = (0, 0, 0, 0, 1, 1), α = 3, ε ∼ N(0, 1)
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Table 6.2: The first two eigenvectors(with standard deviations and ratios) and eigenvalues of
SIR for (3.1) with error terms.

first vector (-.01, .06, .01, -.01, .02, .01, -.01, -.05, -.01, -.46, -.46, -.44, -.43, -.39, -.38)
S.D. (.03, .03, .03, .03, .03, .03, .03, .04, .03, .03, .03, .03, .04, .03, .03)
ratio (-0.4, 1.9, 0.4, -0.4, 0.5, 0.4, -0.4, -1.5, -0.3, -14, -14, -13, -12, -13, -11)

second vector (.33, .31, .34, .27, .33, .32, .39, .22, .34, -.02, -.17, .09, .06, -.05, .14)
S.D. (.05, .06, .05, .06, .05, .05, .05, .06, .06, .05, .05, .06, .06, .05, .06)
ratio (6.1, 5.5, 7.0, 4.7, 6.0, 6.1, 7.2, 3.7, 6.1 -0.3, -3.1, 1.5, 1.0, -0.9, 2.5)

eigenvalues (.78, .55, .17, .12, .11, .10, .07, .05, .04, .03, .02, .01, .01, .01, .00)

Y

SIR1 SIR2

(a) (b)

Y

SIR2SIR1

Figure 6.3: SIR’s view of Data Generated From (3.1) with σ1 = σ2 = 1, p = 15

Fit the data by the usual linear least squares and find the residual r . Since β ′1x is uncor-
related with β ′2x, the heteroscedasticity occurs along a direction orthogonal to the direction
of the best linear fit. Thus we do not anticipate to find any pattern by examining the usual
residual plot, the plot of Y against predicted values (see Figure 6.4 (a) ).

Now we run SIR on r ; see Table 6.3. Figure 6.4(b) gives the plot of r against the first
direction found by SIR. It does reveal the heteroscedasticity pattern well.

The reason why SIR can help in residual analysis is easy to understand. Although r is,
by definition, uncorrelated with x, we can apply transformation on r to increase the corre-
lation and SIR does that in an “optimal” way. There is no need to take the absolute value
transformation on r before applying SIR. The flexibility in allowing for non-monotone trans-
formation is the key to the success.



56 Transformation and SIR

-6 4-4 -2 0 2
FITTED 

-4 4-2 0 2
SIR

(a) (b)

2

-2

0

1

-1

2

-2

0

1

-1

rr

Figure 6.4: Residuals against Linear Squares Fit(a) and Direction(b) of Model(3.2).

Table 6.3: The first eigenvector(with standard deviations and ratios) and eigenvalues of SIR
for residuals of (3.2).

first eigenvector (-.05, -.04, .18, .06, -.71, -.79)
S.D. (.13, .17, .13, .14, .13, .14)
ratio (-0.4, -0.2, 1.4, 0.5, -5.4, -5.5)

eigenvalues (.37, .23, .13, .07, .03, .01)

6.3.3 Horseshoe and helix.

A five-dimensional input variable x = (x1, ..., x5)
′ is obtained by first generating 1000 cases

for x from the standard normal distribution and then retaining only those cases that satisfy
the constraint :

x2
1 − 0.5 < x2 < x2

1 + 0.5 (3.3)

This reduces the sample size to 296. Now a linear model is used to generate Y

Y = x1 + 0.5ε, ε ∼ N(0, 1) (3.4)

The output of SIR shows two large eigenvalues; see Table 6.4. Figures 6.5(a)-(d) are some
static pictures of the rotational plot found by SIR. By rotating the plot about the vertical axis,
we find data points spinning like a helix or a slide.

The first direction shows a linear pattern (Figure 6.5(a)) and the second direction finds a
curve (Figure 6.5(c)). They correspond to x1 and x2 approximately. The scatterdiagram of
these two SIR directions, Figure 6.5 (d), shows a horseshoe pattern, exhibiting the quadratic
constraint (3.3). In this example, x2 is nonlinearly correlated with x1, a situation where
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Figure 6.5: SIR’s View of Data Generated From (3.3)-(3.4).

Condition (1.3) is severely violated. SIR picks up this additional direction because Y can be
transformed to retain a significant correlation with x2.

A data set with a pattern like the one just observed here creates some difficulties in
modeling which have not received proper attention in the literature. First of all, we may not
be able to tell if the number of the components is one or two. For example, a data generated
by a two-components model of the form

Y = sign(x1)
√
|x2| + .5ε

presents little visual difference from the one we just find. In addition, even if a one-component
model is assumed, we may not have much information to estimate the correct direction well
without knowing the correct functional form.

Perhaps exhibiting this low dimensional nonlinear confounding patterns is scientifically
more important than attempting to resolving this issue statistically. Graphics gives scientists
something to focus on. It helps stimulate relevant knowledge.
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Table 6.4: The first two eigenvectors(with standard deviations and ratios) and eigenvalues of
SIR for (3.3), (3.4).

first eigenvector (-1.64, .10, .02, -.03, .01)
S.D. (.07, .09, 0.04, 0.04, .04)
ratio (-23, 1.1, 0.5, -0.6, 0.3)

second eigenvector (.16, 2.1, .06, -.01, -.02)
S.D. (.15, .19, .09, 0.09, 0.09)
ratio (1.0 11 0.6 -0.1 -0.2)

eigenvalues (.66, .30, .056, .023, .01)

6.4 Simple estimates for the standard deviations of the SIR
directions.

Outputs from multiple linear regression(MLR) software often attach an estimated standard
deviation (i.e. standard error) to each regression coefficient. With that, users can easily form
the t-ratio (= the ratio of the coefficient estimate to the standard error) for a quick assessment
on the (statistical) significance of each regressor variable. It would be desirable if SIR outputs
can provide similar information. But the asymptotics for SIR is more difficult than MLR. The
formulae for the covariance matrix of each eigenvector v̂i can be derived by combining some
perturbation results for eigenvalue decomposition with large sample probabilistic argument.
For general cases, they appear complex and hard to interpret. However, the transformation
theory in Section 1 offers a clue for simplification in practical use.

As it turns out, our formula is similar to the familiar one in MLR. For the i th SIR direc-
tion v̂i , we may attach it with the vector of the squared root of the diagonal elements from
the matrix

(1− λ̂i)

λ̂i

· n−1�−1
x

as the estimated standard deviations. This formula brings out three messages useful to bear
in mind:

(m.1) The standard errors of a SIR direction are proportional to those for the standard
MLR of Y on x.

(m.2) The inaccuracy of a SIR direction gets greater when the corresponding eigenvalue
gets smaller.

(m.3) The ratio (1−λ̂i )

λ̂i
plays the role of the average of squared residuals in MLR.

To see how the transformation theory is used for suggesting our formula, first recall from
the familiar least squares theory:

cov(β̂ls) = σ 2 · n−1�−1
x , (4.1)

This formula remains popular for practical use even if MLR is conducted after a transfor-
mation of Y , albeit the controversy regarding whether the effect of transformation can be
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ignored or not; Bickel and Doksum(1981), Box and Cox(1964), Hinkley and Runger (1984).
Since we can interpret the SIR directions as being proportional to the MLR slope estimate
after optimal transformation (Theorem 3.2), (m.1) is well-anticipated. It remains to explain
(m.3). Suppose the optimal transformation Ti(Y ) were given and we conduct the standard
MLR for the transformed Y values. Let b̃(Ti) be the estimate of the slope vector b(Ti).
Recall (3.6) : SIR eigenvector vi can be obtained from b(Ti) after dividing by the constant
λi . This suggests that the covariance matrix of the SIR estimate v̂i should be equal to the
covariance matrix of b̃(Ti) divided by λ2

i . Now apply (4.1) to find out cov(b̃(Ti)). Since the
R-squared value of the regression is λi as stated in Theorem 3.2, the residual variance σ 2 in
(4.1) must be equal to (1 − λi)var(Ti(y)) = (1 − λi)λi . Finally dividing σ 2 by λ2

i , we are

led to the ratio (1−λ̂i )

λ̂i
given in (m.3).

Like the t-ratios in MLR, the ratios of the SIR estimates over the respective standard
errors provide a convenient way to tell if the corresponding coefficients are statistically sig-
nificant or not. In Appendix B, rigorous asymptotics will be developed for justifying such
applications. More specifically, for the l−th regressor variable, we may test the null hypoth-
esis Ho :

Ho : e′lβi = 0, i = 1, · · · , k (4.2)

where el = (0, · · · , 0, 1, · · · , 0)′ denotes the lth basis vector. The standard error we obtained
is asymptotically valid under the null hypothesis (4.2).

As a cautionary note, our formula are not valid for constructing confidence intervals. In
general, the standard deviations of SIR estimates depend on the true parameters in a rather
complex manner. This complexity is largely due to the additional uncertainty caused by
approximating the vi with v̂i in estimating the transformation Ti(Y ); a phenomenon similar
to the problem of Bickel and Doksum(1981). Thus it remains unclear how close to the correct
ones our simplified standard deviations are.

In deriving the asymptotic distribution, we have also asssumed that the number of slices
used in constructing SIR estimate is fixed Although in theory we can use as many as H =
n/2 slices (Hsing and Carroll 1992), practically we find no obvious advantage in using large
H .
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Chapter 7

Principal Hessian Directions

The dimension reduction and visualization techniques introduced so far are based on the
inverse regression point of view. The roles of Y and x are interchanged. In this chapter, a
forward method, principal Hessian Direction( pHd ) (Li 1992, JASA) will be introduced. Let
f (x) be the regression function E(Y |x), which is a p dimensional function. Consider the
Hessian matrix H (x) of f (x),

H (x) = the p by p matrix with the i j th entry equal to
∂2

∂xi∂x j
f (x)

Hessian matrices are important in studying multivariate nonlinear functions. The methodol-
ogy of pHd focuses on the ultilization of the properties of Hessian matrices for dimension
reduction and visualization. Similar to SIR, there are a few variants in the approach of pHd.
For more recent development on PHD, see Cook(1998).

7.1 Principal Hessian directions.

The Hessian matrix typically varies as x changes unless the surface is quadratic. Difficulties
associated with the curse of dimensionality arise quickly if we were to estimate it for each
location. Instead, we turn to the average Hessian,

H̄ = E H (x)

We define the principal Hessian directions to be the eigenvectors b1, · · · , bp of the matrix
H̄�x, where �x denotes the covariance matrix of x :

H̄�xb j = λ j b j , j = 1, · · · , p (1.1)

|λ1| ≥ · · · ≥ |λp|
Why not defining the principal Hessian directions by the eigenvalue decomposition of

the average Hessian H̄ ? One reason is that with right-multiplication of �x, the procedure
becomes invariant under affine transformation of x. This is an important property to have for
our purpose of visualization and dimension reduction.

Because of the affine invariance, we may assume that the covariance matrix of x is I .
This often simplifies the discussion.
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7.2 Dimension reduction.

Recall the dimension reduction model (1.1) of chapter 1. The regression function takes the
form

E(Y |x) = f (x) = h(β ′1x, · · · , β ′K x), (2.1)

for some function h. Assume that h is twice differentiable.

Lemma 7.3.1 Under (2.1), the rank of the average Hessian matrix, H̄ , is at most K . More-
over, the p.h.d.’s with nonzero eigenvalues are in the e.d.r. space B(namely, the space
spanned by the β vectors.)

Proof. Let B = (β1, · · · , βK ) and t = (β ′1x, · · · , β ′K x)′ = B′x. Then f (x) = h(B′x). To
differentiate the Hessian matrix for the function h from that for f , we use the subscripts
conveniently. Thus by the chain rule, H f (x) = BHh(t)B′. Now it is clear that for any
direction, v, in the orthogonal complement of B, we have Hx(x)v = 0. Hence the rank of H̄
is at most K . In addition, for any p.h.d. bj with λ j �= 0, we have 0 = (v′ H̄)�xb j = v′λ j b j ,
implying that b j is orthogonal to v. Therefore b j falls into the e.d.r. space B. The proof is
complete. �

This lemma indicates that if we can estimate the average Hessian matrix well, then the
associated p.h.d.’s with significant nonzero eigenvalues can be used to find e.d.r. directions.
We shall use Stein’s lemma to suggest an estimate of the average Hessian matrix in section
7.3.

7.3 Stein’s lemma and estimates of the PHD’s.

We shall show how to use Stein’s lemma to estimate the PHD’s when the distribution of x is
normal.

7.3.1 Stein’s lemma.

Recall Stein’s lemma from Stein (1981).

Lemma 7.3.1.(Stein 1981, Lemma 4) If the random variable z is normal, with mean ξ and
variance 1, then

E(z − ξ)l(z) = El̇(z)

E(z − ξ)2l(Z) = El(z)+ El̈(z)

where, in each case, all derivatives involved are assumed to exist in the sense that an indefi-
nite integral of each is the next preceding one, and to have finite expectations.
Proof. The first result is from integration by part. The second ressult follows from the first
result. QED. �

Using Stein’s lemma, it is easy to derive the following corollary.
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Corollary 7. 3.1. Suppose x is normal with mean µx and the covariance �x. Let µy be the
mean of Y . Then the average Hessian matrix H̄x is related to the weighted covariance

�yxx = E(Y − µy)(x− µx)(x− µx)
′

through the identity
H̄x = �−1

x �yxx�
−1
x .

Proof. After standardizing x to have mean 0 and the identity covariance by an affine trans-
formation like z = �

−1/2
x (x − µ), we proceed as if x is standard normal. Now applying

Stein’s lemma, we see that
H̄ = E(Y − µy)xx′.

The proof is complete. �

From this corollary, we can find p.h.d.’s based on the weighted covariance matrix �yxx

as the following theorem suggests.

Theorem 7.3.1. When x is normal, the p.h.d.’s, b j , j = 1, · · · , p, can be obtained by the
eigenvectors for the eigenvalue decomposition of �yxx with respect to �x :

�yxxb j = λ j�xb j , f or j = 1, . . . , p.

Observe that adding or subtracting a linear function of x from y does not change the
Hessian matrix. Hence instead of using y in Theorem 7.3.1, we may replace it by the residual
after the linear least squares fit.

Theorem 7.3.2. Suppose x is normal. Let r = y − a − b′lsx be the residual for the lin-
ear regression of y on x, where a, bls are the least squares estimates so that Er = 0, and
cov(r, x) = 0. Then we have

H̄x = �−1
x �rxx�

−1
x ,

where
�rxx = Er(x− µx)(x− µx)

′

Moreover, the p.h.d.’s, bj , j = 1, · · · , p, can be obtained by the eigenvalue decomposition
of �rxx with respect to �x :

�rxxb j = λ j�xb j , for j = 1, . . . , p.

Corollary 7.3.1 can also be applied to show that polynomial regression can be used to
estimate p.h.d.’s, as the following corollary suggests.
Corollary 7.3.2. Suppose x is normal and consider a polynomial fitting :

min
Q(x)

E(y − Q(x))2
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where Q(x) is any polynomial function of x with degrees no greater than q. Then the average
Hessian matrix for the fitted polynomial, is the same as the average Hessian matrix for y, if
q is larger than 1.

Proof. Let r̃ be the residual, y − Q̃(x), where Q̃(x) is the fitted polynomial. Then r̃ is
uncorrelated with any polynomial of x with degree q or less. In particular, it is uncorrelated
with any element in the random matrix (x− µx)(x− µx)

′. Now we see that

E(y − µy)(x− µx)(x− µx)
′ = E(y − r̃ − µy)(x− µx)(x− µx)

′

= E(Q̃(x)− E Q̃(x))(x− µx)(x− µx)
′

Corollary 3.1 implies that the average Hessian matrices for y and Q̃(x) are the same, com-
pleting the proof. �

7.3.2 Estimates for principal Hessian directions.

Theorem 7.3.1 can be used to suggest estimates for p.h.d.’s from an i.i.d. sample, (y1, x1),
· · ·, (yn, xn). Let x̄ and �̂x be the sample mean and the sample covariance of x. Then

(1). Form the matrix �̂yxx = 1/n
∑n

i=1(yi − ȳ)(xi − x̄)(xi − x̄)′.
(2). Conduct an eigenvalue decomposition of �̂yxx with respect to �̂x :

�̂yxxb̂y j = λ̂y j �̂xb̂y j , j = 1, · · · , p

|λ̂y1| ≥ · · · ≥ |λ̂yp|.

Instead of the above y− based method, we may use Theorem 3.2. and suggest the same
procedure but with yi − ȳ being replaced by the residual r̂i = yi − â − b̂′ls xi , where â, b̂ls

are the least squares estimates for the linear regression of y against x :
(0). Find the residuals r̂i , i = 1, · · · , n.
(1). Form the matrix �̂rxx = 1/n

∑n
i=1 r̂i (xi − x̄)(xi − x̄)′.

(2). Conduct the eigenvalue decomposition of �̂rxx with respect to �̂x :

�̂rxxb̂r j = λ̂r j �̂xb̂r j , j = 1, · · · , p

|λ̂r1| ≥ · · · ≥ |λ̂rp|.

Corollary 7.3.2 suggests yet another way of finding the e.d.r. directions. First fit y by a
quadratic polynomial of x. The Hessian Matrix for the fitted quadratic function, say B̂, can
be easily formed from the estimated quadratic and cross product terms. Then we take the
eigenvalue decomposition of the matrix B̂�̂x to get the p.h.d.’s. This method ( the q−based
p.h.d., hereafter) is related with the canonical analysis for exploring and exploiting quadratic
response surfaces where the eigenvalue decomposition is taken for the Hessian matrix of the
fitted quadratic surface with respect to the identity matrix. Box (1954), and Box and Draper
(1987), for example, have illustrated well how their techniques have been successfully used
to locate stationary points and to obtain a parsimonious description of these points in many
designed chemical experiments.
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7.4 Sampling properties for normal carriers.

The root-n consistency of the pHd estimates is not hard to establish because our method of
moments based estimates of the relevant matrices are clearly root n consistent. We need only
to apply standard perturbation formulae for obtaining the asymptotic distributions.

As in the discussion of SIR, the closeness measure between the estimated e.d.r. space,
B̂y for y based pHd, (respectively, B̂r ), and the true e.d.r. space is given by the squared trace
correlation, R2(B̂y) (respectively, R2(B̂r )), which is the average of the squared canonical
correlation coefficients between b̂′y j x, j = 1, · · · , K , (respectively b̂′r j x, j = 1, · · · , K ), and
β ′j x, j = 1, · · · , K . The closer to one this measure is, the sharper the viewing angle will be.
The following theorem gives an approximation for the expected value of this quantity.

Theorem 7.4.1. Assume that x is normal and that�yxx has rank k. Then under the dimension
reduction model assumption, we have

R2(B̂y) = 1− (p − k)n−1
k∑

j=1

(−1+ λ−2
j var((y − µy)b

′
j (x− µx)))+ o(n−1) (4.1)

and

R2(B̂r ) = 1− (p − k)n−1
k∑

j=1

(−1+ λ−2
j var(rb′j (x− µx)))+ o(n−1) (4.2)

Theorem 7.4.2. Under the same conditions as in the Theorem 7.4.1, we have

n1/2∑p
j=k+1 λ̂ j ∼ N(0, 2(p − k)var(·)) (4.3)

n
∑p

j=k+1 λ̂
2
j ∼ 2var(·)χ2

(p−k+1)(p−k)/2 (4.4)

where respectively, λ̂ j denotes λ̂y j or λ̂r j ; var(·) equals var y or var r .
We can use Theorem 4.2 to suggest whether a component found is likely to be real or

not, by estimating var y (respectively, var r ) with the sample variance of y (respectively,
the mean squares for residuals (n − p)−1�n

i=1r̂2
i ).

Remark 4.1. Theorem 4.2 suggests that the residual based estimate is more powerful in
detecting a real component because var r is typically smaller than var y. See Cook(1998)
for more discussion on some potential inference problems with y-based PHD.

Remark 4.2. For the q− based method, the asymptotic result will be similar. We need only
to replace r by the residual of the quadratic fit.

7.5 Linear conditional expectation for x.

The validity of using pHd to estimate e.d.r. directions is justified earlier for the noraml x via
Stein’s lemma. Now we like to study how the method behaves under the weaker condition,
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the (L.D.C) used in the theory of SIR : for any b ∈ R p

E(b′x|β ′j x, j = 1, · · · , K ) is linear in β ′j x’s (5.1)

Theorem 7.5.1. Under the dimension reduction model assumption and (5.1), the e.d.r. space
B is invariant under the transformation induced by the matrix �−1

x �yxx, in the sense that

{�yxxb : b ∈ B} ⊆ {�xb : b ∈ B}

Proof. Consider any vector u such that u′�xb = 0 for any b in B. Then (5.1) implies
that E(u′x|β ′j x, j = 1, ..., K ) = 0. It follows that u′�yxxb = E((Y − µy)E(u′x|β ′j x, j =
1, ..., K )x′b) = 0. This completes the proof. �

Since invariance spaces of a matrix are spanned by its eigenvectors, this theorem suggests
that the eigenvectors b j ’s can be used to find e.d.r. directions. For instance, if the true e.d.r.
space has only one-dimension, k = 1, then one of the bj ’s must be an e.d.r. direction unless
�yxxβ1 = 0 , or equivalently,

cov(y, (β ′1x− µx)
2) = 0. (5.2)

Thus although it is not clear which b j is the right one to use, for the purpose of data visu-
alization we can display all p bivariate plots, y against b j ’s, and then choose the one that
shows the most interesting structure. But if (5.2) does occur, then we cannot find the e.d.r.
direction by this method. Yet we may still hope that some transformation on y might avoid
(5.2). Suitably combining second moment SIR estimates is likely to be more productive.
Likewise, the case that k = 2 leads to viewing

(p
2

)
sets of three-dimension plots. Some

troubles may begin to occur when the dimension of e.d.r. space, k, gets larger because the
combination number increases quickly. Note that Theorem 7.5.1 does not promise that large
eigenvectors will always be the true e.d.r. directions. But our experience shows that this is
indeed very likely to be the case. Pathological cases can exist of course. This is even more
transparent for the elliptically symmetric distributions.

Theorem 7.5.2. Assume that x follows an elliptically symmetric distribution. Under the
dimension reduction model assumption, for the eigenvalues λ j of the population version of
y-based pHd, at least p−K of them take a common value. In addition, all other eigenvectors
are e.d.r. directions, if p − K is greater than K .

Proof. Due to affine invariance, it suffices to consider that case that x is spherically sym-
metric with identity covariance and mean 0. Let P1 be the projection matrix of rank K
with B as the range space, and P2 = I − P1. We need only to show that the range of P2

is a subspace of some eigenspace of �yxx. First, the result of Theorem 7.5.1 implies that
0 = P2�yxx P1 = P1�yxx P2, or equivalently,

�yxx P2 = P2�yxx P2
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Fundamental properties from elliptical distributions show that given P1x and ‖x‖2, P2x is
still spherically symmetric with mean 0, and the covariance matrix is (p − K )−1(‖x‖2 −
‖P1x‖2)P2. From this we see that

P2�yxx P2 = E((y−µy)E(P2xx′P2|P1x, ‖x‖2)) = (p−k)−1[E(y−µy)(‖x‖2−‖P1x‖2)]P2

Thus �yxx P2 is proportional to P2, implying that the range space of P2 is contained in an
eigenspace of �yxx. This proves the theorem. �

This theorem does not say anything about the size of the common eigenvalue,

(p − k)−1E[(y − µy)(‖x‖2 − ‖P1x‖2)] = (p − k)−1 E(y − µy)‖P2x‖2

= cov(E(y|x), (p− k)−1‖P2x‖2)

But we expect it to be small for most cases. If p is large, (p − k)−1‖P2x‖2, becomes
nearly independent of P1x (unless ||x|| is a constant), and hence is expected to be nearly
uncorrelated with E(y|x) = E(y|P1x). Of course, expections do exist.

It is also clear that our discussion applies to the residual based eigenvectors as defined in
Theorem 7.3.2.

7.6 Extension.

Nonlinear transformations of y can be applied before using pHd. For example, we may want
to trim out large y values in order to decrease the sensitivity to outliers. We may also use the
absolute value of the residual to form the estimate.

We now draw a connection between pHd and second moment based SIR methodology.
Let’s partition the range of y into H intervals, Ih, h = 1, ..., H . Then apply the indicator
transformation ỹ = δh(y) = 1, or 0, depending on whether y falls into the hth interval or
not. Denote ph = P{y ∈ Ih}. Then we have

�ỹxx = E(δh(y)− ph)(x− µx)(x− µx)
′ = ph[E((x− µx)(x− µx)

′|y ∈ Ih)−�x].

The y-based pHd theorem can be applied to ỹ.

Corollary 7.6.1. Assume that x is normal. For each slice h, conduct the eigenvalue decom-
position of the sliced second moment matrix E((x − µx)(x − µx)

′|Y ∈ Ih) with respect to
�x. Then the eigenvectors with eigenvalues distinct from 1 are e.d.r. directions.

The sample version is easy to obtain. First form the sliced second moment matrix (nh −
1)−1∑

xi∈Ih
(xi − x̄)(xi − x̄)′, where nh is the number of cases in the hth slice. Then take

the eigenvalue decomposition of this matrix with respect to �̂x. Let the eigenvalues λ̂hj ’s be
arranged to have the order |λ̂h1 − 1| ≥ · · · ≥ |̂λhp − 1|.

The sliced second moment matrix E((x−µx)(x−µx)
′|y ∈ Ih) discussed above is closely

related to the conditional covariance cov(x|y ∈ Ih) , the core of some specific suggestions
for applying second moments in the SIR approach as discussed in Chapter 5. The difference
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between these two matrices is just a rank-one matrix, (mh − µx)(mh − µx)
′, where mh =

E((x− µx)|y ∈ Ih) is the core of the first moment based SIR estimate.

Remark. Limitations. All methods have limitations. SIR and pHd are no exceptions.
We shall identify cases that e.d.r. directions cannot be estimated from any transformation
version of p.H.d. For simplicity of discussion, take K = 1, and concentrate on the case
that E(x|y) = Ex, which is the condition to nullify the power of the first moment based
SIR. Under this condition, the least squares estimate bls is equal to 0. Thus the residual-
based estimate is the same as the y-based estimate. We are interested in knowing when
the weighted covariance matrix �T (y)xx = E(T (y) − ET (y))(x − µx)(x − µx)

′ will be
degenerated to 0 for any transformation T (y), in which case no e.d.r. directions can be
detected. The following Lemma offers an answer.

Lemma. Assume x is normal and consider (1.1) of Chapter 1 with K = 1. Then,

�T (y)xx = 0, for any transformation T (y),

if and only if
E[(β ′1(x− µx))

2|Y = y] does not depend on y. (6.3)

It is easy to interpret this result from the inverse regression point of view. In general,
the conditional distribution of β ′1x given y should depend on y under (1.1). But if this
dependence is only through moments of order higher than two, then (6.3) will hold. PHD or
any first or second moment based SIR will not find any significant directions. This leaves
room for introducing more complicated procedures based on features other than the first two
moments of the inverse regression.

7.7 Examples.

Example 7.1. The model used to generate the data is given by

y = cos(2β ′1x)− cos(β ′2x)+ .5ε, (7.1)

where x has p = 10 dimensions, β1 = (1, 0, · · ·)′, β2 = (0, 1, 0, · · ·)′, all coordinates of x
and ε are i.i.d. standard normal random variables. For n = 400, we study the performance
of the residual-based estimate b̂r j ’s, after 100 simulation runs. A histogram of the closeness
measure R2(B̂r) is given in Figure 7.1. The views from the first two directions found in a
typical run are given in Figure 7.3, compared with the best views, views from β1, β2, given
in Figure 7.2. One could better appreciate how they are similar to each other by spinning the
two rotation plots and view the data cloud from all angles. Only two directions are found to
be significant.
Example 7.2. This example is used to study how violation of the (L.D.C.) might affect the
estimation. We consider the model

y = β ′x sin(2β ′x) (7.2)
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Figure 7.1: Histogram of R2(B̂) for 100 runs.

Figure 7.2: Best views of the example 7.1

where x is uniform on a ten-dimensional cube, [−1/2, 1/2]10. First when a direction for β
is chosen at random, it is found that the p.H.d. method finds the true direction as well as if x
is indeed normal.

Instead of reporting these favorable cases, we want to study the worst situation. Consider
β ′x as a sum of p independent random variables and borrow insight from the central limit
theorem. We can anticipate the worst case to happen when β is zero on all but two coor-
dinates, the case when β ′x is the least normal in a sense. Now for those directions on the
plan spanned by first two coordinates, there are 4 good directions for which the linear con-
ditional expectation condition holds; namely the two coordinate axes and the two diagonal
lines. Hence we decide to choose β = (1, 2, 0, · · ·)′ on the ground that this direction is mid-
way between the two good directions (1, 1, · · ·)′, and (0, 1, 0, · · ·)′. We generate n = 400
observations, and use the y-based method to find the e.d.r. direction. From the output given
in Table 2, we see some bias in the first direction found. But a close look at the p-values,
it is found that the second direction is marginally significant. In fact, a combination of the
first two directions, as shown in Figure 7.4 (right), yields a high quality reconstruction of the
true curve, shown on the left. By pitching the rotation plots used in producing Figure 7.4 till
the y axis is perpendicular to the screen, Figure 7.5 shows how well the distribution for the
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Figure 7.3: Views by the p.h.d. method for Example 7.1

first two projected directions matches the distribution of the first two coordinates of x. This
demonstrates the potential of our method to find directions b that violate the linear condi-
tional expectation most seriously. One can also argue that under our parameter specification,
we can view (4.2) as a two component model with β1 = (1, 0, · · ·)′, and β2 = (0, 1, · · ·)′.
The linear conditional expectation condition is now satisfied, explaining why we can find
two directions. Of course, the p-values are only suggestive because of the violation of nor-
mality. Judgement based on the pattern of the whole sequence of p-values should be more
informative than the individual numbers. We see the drastic increase from .07 to .70 as a
strong indication that the third component is not likely to be informative. The residual-based
method is also attempted , which yields almost the same result as the one reported here. We
conclude this example by reporting that as we enlarge the range of x so that the response
curve looks more like an M-shape, pHd begins to lose power in detecting the e.d.r. direction.
This is because the conditional variance of β ′x given y becomes more homogeneous, and
Lemma 7.3.1 begins to take effect. It would be interesting to see how well PPR works in
such cases.

Figure 7.4: Best view(left) and the view by the p.h.d. method for Example 7.2

Example 7.3. This example shows how simple transformations can help p.H.d.. We consider
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Figure 7.5: Distribution of x1 and x2(left), compared with distribution of first two p.h.d.’s

the model

y = 1

3
(β ′1x)3 − (β ′1x)(β ′2x)2

for generating the data. The surface of this function is known as the monkey saddle. We take
β1 = (1, 0, · · ·)′, β2 = (0, 1, 0, · · ·)′, and generate n = 300 data points. First, a histogram
of y suggests a long tail distribution. To avoid the dominance of large y in the analysis, we
cut out those cases with the absolute value of y greater than 2. This leaves 261 points in
the sample. We find the y-based and the residual-based methods unsuccessful, as indicated
by the P-values. Then we take the absolute value transformation on the residuals, treat them
as y, and proceed with the p.H.d. method. Two directions are found significant. The best
views for y and the views based on the estimated directions are given in Figures 7.6, 7.7.
Three branches going upward and downward in the monkey saddle can be identified well by
spinning these plots on the computer. Other transformations and other methods of handling
large y values are worth trying.

Figure 7.6: Best views of the monkey saddle.

Example 4.4.1 (continued). We continue the analysis of Ozone Data of Example 4.4.1 from
chpater 4. Instead of using SIR to study the residuals, we apply by the p.H.d. method,
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Figure 7.7: Views by the p.h.d. method for monkey saddle.

treating the residual as y. One component is found to be significant. We use a forward
selection procedure to find that this component can be explained by x3, x5, x6 with about
90% R-squared (if including x8 then R-squared can be about 96%). We then run p.H.d.
again, using only x3, x5, x6 as the regressors. Again one component is found, denoted as
b̂phd . Figure 7.8 gives the plot of the residual against this component. A quadratic pattern
in this figure is detected by eyes and is confirmed by fitting a quadratic polynomial. The
finding here is quite different from SIR plot. This indicates that it may be necessary to find
a model that would use the directions from both SIR and PHD directions.

Figure 7.8: Ozone data(continued from Example 4.4.1), Residuals against the direction
found by p.h.d.



Chapter 8

Linear Design Condition

As indicated earlier in Chapter 2, the linear design condition (L.D.C.) is crucial in the theo-
retic development of the SIR methodology. It is needed in PHD. Moreover, as to be discussed
in later chapters, (L.D.C.) is also the key to achieve robustness for essentially all regression
methods including the least squares linear regression or GLM estimates.

An important case for (L.D.C.) to hold is that the distribution of regressor x is elliptically
symmetric. If data are not yet being collected and the levels of regressors can be set by
us, then (L.D.C.) may be satisfied through a well planned design of experiment. Even in
many observational studies involving survey sampling, if from other sources we have already
had in mind some ideas about the distributions of several key regressors in the population,
then instead of using representative sampling methods like simple random sampling, we
may apply some purposive sampling techniques to induce elliptic symmetry in the selected
sample.

Unfortunately, most data sets do not follow elliptically contoured distribution. One way
to overcome this difficulty is to force them to behave so. Such ideas will be discussed in
Section 8.1.

As mentioned before, elliptic symmetry is not a necessary condition for (L.D.C.) to
hold. In section 8.2, we shall take a close look at (L.D.C.) when the regressor dimension p
is large. As it turns out, we can prove a theorem which can be used to argue that for many
high dimensional data, the violation of (L.D.C.) is negligible. Some practical guidance in
dealing with (L.D..C) is given in Section 8.3.

8.1 Forcing elliptic symmetry.

8.1.1 A simple case: a 2-D square.

Consider that the regressor x = (x1, x2) is generated uniformly from the unit square [o, 1]2;
see Figure 8.1. Then the simplest way to achieve elliptic symmetry is to draw the largest
circle inside the square and simply discard the points outside.

This procedure looks simple and effective. But suppose points are in a cube with ,say,
ten-dimensional space. Then we can no longer do so effectively because most points will be
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X1

(1, 0)

(1, 1)(0, 1)

(0, 0)

X2

Figure 8.1: Achieving Elliptical Symmetry for Uniform Distribution on a 2D square.

cut out.

8.1.2 Brillinger’s normal resampling.

Brillinger(1991) suggests the idea of forcing normality by resampling. To do this, we gen-
erate an i.i.d. normal sample of size n first. Then we use each simulated point to recruit the
closest point in the data as one case in the artificial sample. Thus the constructed sample
also has n observations, each one coming from the original x data. Some points in the orig-
inal data will be used more than once while others won’t be used at all. The resampled x is
expected to follow closer to a normal distribution than the original one.

Which normal distribution to use ? One suggestion is to match the mean and covariance
with the original sample values. But there is a more sophisticate choice given by Cook and
Nachtsheim (1992) which will be discussed next.

8.1.3 Minimum volume ellipsoid and Voronoi tesselation.

Let Qn denote a discrete probability measure that places mass only on the given xi , i =
1, · · · , n. Instead of applying equal mass on each point, the idea is to construct an appropriate
Qn so that it is as close to a target elliptically contoured probability distribution, denoted by
Qt , as possible. This involves two problems that can be considered separately. The first one
is to choose the target distribution Qt . This will be discussed later.

The second one, how to construct a discrete Qn for approximating an specified continu-
ous distribution Qt , has a natural solution using Dirichlet cells (i.e., a Voronoi tessellation).
Let d(xi) be the cell consisting of any x in R p whose Euclidean distance to the point xi is
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shorter than to any other point x j , j �= i :

d(xi ) = {x ∈ R p| ||x − xi || ≤ ||x − x j ||, j �= i}

Then the probability mass on the point xi will be set to
∫

d(xi )
d Qt(x). This integral can be

obtained by the Monte Carlo method; namely generating a large number of points from the
distribution Qt and then enumerating the relative frequency of falling into each cell.

Choosing an appropriate target distribution Qt is a harder issue. A simple suggestion is
to use a normal distribution with mean and covariance matrix matching x̄, and �̂x. Yet one
limitation is that it won’t work well if x is generated from a distribution with more than one
modes. Furthermore, in order for Qn to converge to Qt as n tends to the infinity, a minimum
requirement is that the support of Qt be contained in the support of the true distribution that
generates x. Thus there are both practical and theoretical needs for using other elliptically
symmetric distributions.

The target Qt suggested by Cook and Nachtsheim is based on the minimum volume
ellipsoid (MVE) that trims out a user-specified proportion α of x’ points. A MVE is the
ellipsoid with the smallest volume that contains (1 − α) · 100% of the sample points. The
target distribution Qt has the mean and covariance equal to the sample mean and sample
covariance for the trimmed data. One needs also to specifies the distribution of the radius,
which could be the truncated chi-squares (to reflect the radius of MVE) or simply be the
empirical distribution for the radii of the trimmed sample points. The use of MVE has
the additional advantage of decreasing the influence of outliers. But the optimal choice of
percentage for trimming is an unsettled issue. Cook and Nachtsheim suggest to try 3 or 4
trims ranging from 10 to 50 percent of the data.

Once a discrete Qn is obtained, we can apply SIR for this Qn by using the weight as-
signed by Qn to each xi in carrying out each step of SIR.

In principle, the amount of bias and variance of the SIR estimate depends on the choice
of Qn which in turn is controlled by the trimming percentage α. For a larger value of α, we
may expect to have a smaller bias but a greater variance, and vise versa. How to achieve an
optimal balance between bias and variance is open for further investigation.

8.2 Higher dimension.

8.2.1 Effectiveness of MVE.

It becomes increasingly hard to force elliptical symmetry as the dimension gets higher.
Example 8.1. Consider a ten-dimensional cube [−1/2.1/2]10. The MVE’s are balls centered
at the origin. If we like to have all 2 D-projection to look good, then we can only retain a
very small percentage of points. To get an idea about how bad things can be, we generate
1000 data points. Two 2-D scatter-plots are given in Figures 8.2 (a),(b). It shows square
patterns as expected.

Now let’s select 500 points that are closest to the origin. These are (approximately) the
points inside the MVE with 50 percent trimming. The corresponding 2-D-scatterplots of
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Figure 8.2: How well MVE works in 10 dimensional cube.

these 500 points are shown in Figure 8.2 (c ) ,(d). We see that 50% MVE does very little in
improving the elliptic symmetry along these low dimensional projections. How about other
projections ? Since there are so many projections to look at, let us make a random choice.
Two perpendicular random directions are generated:

(−0.2260.033 − 0.0950.175 − 0.1540.0370.746 − 0.033 − 0.4930.281)

(0.0920.278 − 0.267 − 0.0890.2240.225 − 0.269− 0.654− 0.2570.286)

Figure 8.2(e) gives the projection of the selected 500 data points. It does look like normal
now. Does the normality come from the use of the 50% MVE? Not really so! Figure 8.2 (f)
shows the 2-D scatterplot of all 1000 data points on the same projection. It is already quite
normal.

Example 8.2. Suppose p = 2, x = (x1, x2)
′. Generate x1 from a standard normal distribu-

tion and generate x2, given x1, by x2 = x2
1+0.5ε, where ε is another standard normal random

variable that is independent of x1. 100 pairs of the covariate values is shown in Figure 8.3.
A useful MVE should trim out the points on the upper portion of either wings.
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-3 3-2 -1 0 1 2

Figure 8.3: Will MVE work for this data?

Now consider the situation that p is much larger, say p = 10. Suppose that all other
variables x3, · · · , x10, are all from independent standard normal distributions. The distribu-
tion of x is not elliptically contoured and the projection along the directions , (1, 0, · · · , 0)′

and (0, 1, 0, · · · , 0)′, reveals the most serious departure from elliptical symmetry. This is
the only projection we need to improve for elliptical symmetry. In particular, those points
xi = (xi1, · · · , xip)

′ with xi2 larger than 2.5, for example, had better be trimmed out and the
effective way to do so is to apply MVE only after projecting xi on the first two coordinates,
(xi1, xi2)

′. Without projection, the resulting ten-dimensional MVE is likely to contain many
points outside the two-dimensional MVE. This problem becomes more serious as the dimen-
sion gets larger, because the Euclidean distance between points xi and x j will be dominated
eventually by the projection on the orthogonal complement of the x1 − x2 plane:

||xi − x j ||2 = (xi1 − x j1)
2 + · · · + (xip − x j p)

2 ≈ (xi3 − x j3)
2 + · · · + (xip − x j p)

2

Thus it becomes harder to trim out the outliers in the directions where the improvement is
essential.

Fortunately, as we will see, there are only very few directions that may violate the
(L.D.C). Thus there is still hope that these directions can be detected, and monitored in
forcing elliptic symmetry.

8.2.2 Difference between conditional linearity and the elliptic contoured
distribution.

The design condition needed in the SIR theorem are satisfied by the elliptic contoured dis-
tributions. But it is weaker than elliptic symmetry. We can find many such distributions. For
instance, suppose x is uniform from a cube as in Example 1. If y is related to x only through
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x1, then the dimension reduction model hold with k = 1, β1 = (1, 0, · · · , 0)′. In this case,
the design condition holds. Of course, it does not hold if we take β = (1, 2, 0, · · · , 0)′ for
example. But this is not the direction that generates the data so it does not affect the result
of our theorem.

There is a catch here though. We do not know which one is the true direction! A gloomy
point of view on this is that even if SIR may be doing the job well, we won’t be able appre-
ciate it because we don’t know whether (L.D.C) does hold or not. This weakness appears
rather damaging. But fortunately, as to be discussed in Section 8.2.3. and 8.2.4, there is
another point of view which is much brighter.

There is a basic attitude worthwhile to keep before we move on. Like elsewhere, the
dimension reduction theory presented in this book is at best an approximation of reality. We
cannot expect the conditions assumed in the theory to be met exactly in the real data. A more
sensible approach is to pretend they are O.K. in the first place and then conduct a diagnostic
checking immediately after SIR/PHD is applied and primary analysis is performed. The
effectiveness of any diagnostic checking procedure itself will require certain assumptions as
well. This appears to be an endless loop, so we have to draw a cut at some point.

The above argument should not be used to award licenses to poor methods which rely on
unrealistic assumptions. ”Realistic or not” is subjective, debatable, and often has to be dealt
with on an individual basis. Perhaps it is better to follow the lead of Cook(1998), and replace
this phrase by ”scope-limiting or not”. We shall examine how scope-limiting (L.D.C.) is by
quantifying how often this condition can hold. A somewhat shocking result is that for very
large dimension of x, (L.D.C.) holds with nearly 100 percent chance.

8.2.3 A simulation study.

It would be an ideal situation if (L.D.c) can be verified a priori. But this is not easy because
it involves the unknown d.r. space which is yet to be estimated. Alternatively, Hall and
Li(1993) shows that when the dimension p is large, for most low dimensional B, the (L.D.C)
can hold approximately. This strongly suggests that the hope is great that SIR may still do
well even though we cannot verify (L.D.C.) directly. It is already appealing enough to justify
the routine use of SIR at the exploratory stage of data analysis. Of course, precautionary
measures and retrospective diagnostic checks on (L.D.C) should be encouraged as well.

The following simulation study from Li(1991) is helpful in illustrating the theoretical
result of Hall and Li(1993).
Example 3.1. Take a rational function as the regression function:

y = β ′1x
.5+ (β ′2x+ 1.5)2

+ .5 · ε, ε ∼ N(0, 1) (8.1)

A typical data pattern when viewed from the rotation plot for y against projections of x along
the true d.r. directions looks like Figure 2 of Li(1991). A saddle-like surface is visible during
the rotation. Suppose that x is generated from the uniform distribution on the p = 10 dimen-
sional cube [−√3,

√
3]p. This is not an elliptically contoured distribution. (L.D.C) holds

only for some directions of β1, β2; for example, β1 = (1, 0, · · · , 0)′, β2 = (0, 1, · · · , 0)′.
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But for most directions, the violation is not serious enough to induce a large bias. To see
this, we first generate n = 400 independent xi ’s. Then we repeat the following steps 100
times with these fixed xi ’s:

(1). Generate an orthogonal pair of β1, β2, uniformly from the unit sphere of R p.
(2). Generate independent yi’s from model (2.1) with the fixed xi ’s and the β parameters

provided by (1).
(3). Apply SIR to find b̂1, b̂2.
(4). For i = 1, 2, compute the closeness measure R2(b̂i) between b̂i and the d.r. space

B, spanned by β1, β2:

R2(b̂i) = cos2(angle between b̂i and B)
= R-squared value for regressing b̂′i x on β ′1x and β ′2x

The histogram of the 100 values of the closeness measure for each direction is given in Fig-
ures R.1 and R.2 of Li (1991). From there, we see that most of the time, the R-squares is
over .8. The angle of the estimated d.r. direction to the true d.r. space is most often less
than cos−1

√
.8, or 26.5 degrees. For comparison, the expected value of the closeness mea-

sure between a direction selected at random and the d.r. direction is equal to 2/10 = .2;
cos−1(

√
.2 = 63.4 degrees. Since the difficulty in sharpening the angle increases exponen-

tially as the dimension increases, the reduction from 63.4 to 26.5 degrees means that SIR is
(63.4/26.5)10 = 245 times more efficient than a random projection.

8.2.4 Most low dimension projections are nearly linear.

The theoretical foundation behind the above simulation can be found in Hall and Li(1993).
Suppose that after normalization, Ex = 0, covx = I , and B = (β1, · · · , βk) is formed by k
orthonormal random vectors from the uniform sphere. Then as the dimension p tends to the
infinity, it can be shown that

||E(x|B, B ′x = t)||2 − ||t||2 → 0 (8.2)

in probability, as p tends to the infinity. The needed regularity conditions are mild. Note
that the design condition implies that the left side of the expression is identical to zero. The
proof of this result is quite lengthy and will not be presented here.

This result shows that the set of the directions for which the design condition is seriously
violated should be small in the high dimension cases.

Earlier related results can be found in Diaconis and Freedman(1984). But our result has
a much stronger implication.

8.3 Implication and some guidance.

8.3.1 Blind application.

We may liberally apply SIR/PHD without worrying about (L.D.C). The results from the
previous two sections promise that such blind application is not as dangerous as it may
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sound. But a follow-up diagnostic checking is strongly recommended.

8.3.2 Diagnostic checking.

To do so more effectively, we need to worry about the direction where the violations might be
most severe. This is to be discussed next. Once the most dangerous directions are detected,
then apply MVE or similar methods to force elliptic symmetry on these directions. Then
apply SIR again to see if any change might occur.

8.3.3 The most dangerous directions.

Example 2 shows the need of identifying a small number of projection directions that may
depart from elliptic symmetry most seriously first. There are already several projection pur-
suit density estimation methods for finding these special low dimension projections; see
Huber (1985 ), Friedman(1987), Hall(1989).

But what seems to be more important are those directions that are related to the e.d.r.
space; for example, the first few leading directions of SIR. We shall continue this discussion
in Chapter 10.

Example 8.2 (continued). We take p = 5 and generate 100 cases of xi . Then generate the
response y = exp(x1) as in Cook and Nachtsheim. Now apply SIR directly. The rotation
plot of y against b̂′1x, b̂′2x, the first two projections found by SIR with H = 10 slices, is given
in Figure 8.4(a)(c). Rotating the plot fast enough about the y − axis, we find that the data
points form a shape that spins like a helix. The scatterplot of b̂′1x and b̂′2x is given in Figure
8.4(d). It looks similar to Figure 8.3. In fact, both b̂1, b̂2 are quite close to the x1, x2 plane.
This can be explained by the contour argument.

***Insert Figure 8.3(a)-(d) (see page 92 of original notes Figure 7.2(a)-(d) only) ****

8.3.4 Bias bound.

Duan and Li(1991, Ann. Stat) gives a bound on the bias that might incur for SIR when the
underlying component k = 1. Bounds for linear regression can also be obtained. We shall
discuss these results later.



Chapter 9

Incorporating Discrete Input Variables

Discrete and continuous variables often call for different treatments in probability and statis-
tics. In our context, this difference is less serious for the output variable. By slicing, we have
essentially discretized the output variables anyway (see Chapter 13). But discreteness in the
input variables can cause a lot of trouble for us. For continuous variables, linear combina-
tions can be interpreted as projections. But for discrete variables, such kind of geometric
interpretation is lost. In earlier chapters, we are mainly concerned with continuous input
variables. Now it is time to discuss some ways of handling discrete input variables. The
methods discussed here are designed to deal with the case where most of the input variables
are still continuous. A different treatment would be called for if all (or most of ) the input
variables are discrete. For simplicity, we shall often assume that there is only one discrete
input variable in the data; all other input variables are continuous. The discrete variable will
be denoted by S and all other input variables will be put together as a p-dimension vector
x. It is also useful to differentiate between ordinal (such as the number of cars in a family)
and categorical (such as sex, occupation, or treatment) variables. Sometimes an ordinal vari-
able can be treated as a categorical variable. For more detailed discussion, see Carroll and
Li(1995)

9.1 Stratification.

Stratification is natural to pursue when S is categorical. We simply divide the whole data into
several strata according the values of S. After that, we simply perform our analysis within
each stratum as before. For example, we can run SIR (I or II) to find the best view of data
for each stratum and compare how they differ between strata.

The model for dimension reduction (1.1) of chapter 1 can be used for each stratum sep-
arately :

y = fs(B
′
sx, εs), f or S = s (9.1)

where Bs is a p by Ks matrix. Thus each stratum is allowed to have its own e.d.r. space, the
space spanned by the columns of Bs with a possibly different dimension Ks . The function
fs and the distribution of εs may also vary for different strata. The (L.D.C.) needed for the
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consistency of SIR, has to hold for each stratum :

E(b′x|B ′sx, S = s)is linear in B ′sx f or each b (9.2)

In the following discussion, we shall concentrate on SIR-I although the general principle
applies to the second moment based SIR as well.

9.2 Pooling estimates from different strata.

Important factors for determining the output Y may or may not be the same for different
strata. This is why the e.d.r. spaces might be different for different strata. But in this subsec-
tion, we shall consider the case where it is reasonable to assume that the e.d.r. directions are
the same for all strata; namely each Bs has the same dimension and spans the same column
space. However, we still allow different fs and different distribution for εs . We would like
to pool the results from different strata to yield a better estimate of the e.d.r. space.

There are many ways of pooling the estimates from different strata. The situation is in a
sense comparable to the inference for comparing two population means.

In most general situation, the means and the covariance matrices of x can vary for dif-
ferent strata. Let the sample mean and the (unbiased) sample covavriance matrix of x for
stratum s be denoted by x̄s and �̂x,s respectively. Follow steps 1-5 of the SIR algorithm in
Chapter 2. Let �̂η,s be the covariance matrix of slice means for stratum s.

If we continue to carry out step 6 separately for each stratum, we would end up with
different sets of eigenvectors and we have to glue them together to find the most important
K directions.

Our job is similar to that of common eigenvalue decomposition, but not entirely the
same. It is related with Homals in Gifi’s nonlinear multivariate Analysis ( Gifi1989, Wiley).
To give some flavor of what is involved, consider the case where K = 1. We aim at finding
a common direction b such that

�̂η,sb = λs�x,sb (9.3)

for all s, and λs is the largest eigenvalue for each eigenvalue decomposition. Of course,
this is impossible to achieve exactly. Therefore an approximate solution will be desirable.
The real question now is about the sense of approximation. We have to define a reasonable
measure to evaluate how much (9.3) is violated. For a general K , the problem gets even
more complicated, and more variations are possible.

Another way to look at this problem is to consider the variance of the pooled estimate.
The goal here is to make sure that the pooled estimate should have as small variance as
possible. This can eventually lead to a sensible solution, although details remain to be carried
out. For K = 1, the following procedure is not hard to implement : find the vector b that
maximizes

n−1
∑

s

ns
b′�̂−1/2

x,s �̂η,s�̂
−1/2
x,s b

b′�̂x,sb
. (9.4)
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Remark. 9.1. When the number of strata becomes large, we might not find enough cases
per stratum to estimate each covariance matrix of x. But if we are willing to assume that this
covariance matrix is the same for any stratum, then we can estimate this common covariance
matrix by

�̂x,c = (n − S)′
∑

s

∑
i

(xis − x̄s)(xis − x̄s)
′.

Substitute this common covariance matix for each �x,s in (9.4). To find b, we only need
to conduct the eigenvalue decomposition of the matrix n−1∑

s ns�̂η,s with respect to �̂x,c.
This procedure works for any K .

Remark 9.2. The merit of a complete randomization. When a randomized experiment is
conducted, x is independent of S. Then cov(x|S = s) does not depend on s. We can
combine estimate according to Remark 9.1. Moreover, since E(x|S = s) is also independent
of s, we can even simply run SIR for Y against (x, S) to get the right directions.

9.3 Estimation of treatment effects.

Our focus in 9.2. is mainly on the variable x. But there are situations where we need to
assess the effect of S.

For simplicity, in this section, we shall concentrate on the special case where S has only
two values. We change the notation and use Z to replace S. Despite of the simplicity, this
setting arises quite commonly in treatment comparison; Z = 0 stands for the control group
and Z = 1 stands for the treatment group.

Our dimension reduction model can be rewritten as

y = g(B ′X + θ Z , ε), (1)

where B is a p − 1 by k matrix and θ is a k-vector.
This model is quite different from the existing models for treatment comparison in the

literature. Let us begin with the case that the dimension of X is one.

1. Models for treatment comparisons: univariate X .

Since we have in total of p = 2 regressors, the e.d.r. space can have k = 0, 1, or 2 di-
mensions. The case k = 0 is trial. The case k = 2 does not offer any reduction. It does not
bring any connection between the control and the treatment groups regarding the relationship
between X and Y . We will consider k = 1. There are again two cases:

Y = g(Z , ε) (1.0)

and
Y = g(X + θ Z , ε) (1.1)

where ε is independent of (X, Z)′. The first case implies that in both groups, the X variable
is independent of Y . We shall concentrate on (1.1).



84 Incorporating Discrete Input Variables

The parameter θ in (1.1) can be thought of as the treatment effect. For the control group,
Y is related to X through

Y = g(X, ε).

Without any assumption on g, ε. This allows Y and X to have any joint distribution. But
for the treatment group, (1.1) gives

Y = g(X + θ, ε)
Thus being in the treatment group is equivalent to adding an amount θ in X .

(1.1) covers several interesting special cases of treatment comparison.
(1). Linear model:

Y = a + bX + cZ + ε (1.2)

For this case, parallel lines are anticipated in the plot of Y on X . The parameter c can be
interpreted as the amount of vertical shift needed in order that the line for z = 0 to match
that for z = 1. The matching can also be done by shifting the first line horizontally by the
amount θ = c/b.

(2). Two generalizations of the linear models:

Y = g(X)+ cZ + ε (1.3)

Y = g(X + θ Z)+ ε (1.4)

These represents two different ways of shifting one curve to another. (1.3) is usually
studied in the literature concerning partly linear models or partial splines; see Rice, Speck-
man, Chen, shiao, etc.. The model (1.4) are studied in Haerdle and Marron, Carroll and Hall,
Gasser, Kneip, etc.. Note that (1.3) is not covered under (1.1), however.

(3). Multiplicative error and Taguchi’s method for industrial Statistical problems:

Y = µ+ g(X + θ Z)ε

The mean represents a fixed target, and the uncertainty depends on the regressors. The goal
usually is then to reduce the variance. This is a case where all methods mentioned in (2) do
not work because the treatment does not effect the mean function at all.

(4.) Generalized linear.

Y ∼ Pτ , τ = a + bx + tcz

where Pτ from an exponential family indexed by τ . This allows Y to be discrete, such as
binomial or Poisson.

2. Identifiability.

Before we present the method for estimating θ , there is an identifiability problem to resolve
first. Consider the case that X has a bounded support.

We can always choose a θ large enough in absolute value so that there will be no over-
lapping bewteen the support of X + θ with Z = 1 and that for X with Z = 0. We can
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construct a g function for each part of the support without restriction. Thus in order to have
a meaningful comparison, we should restrict θ to those values for which the support of X+θ
does overlap at least partly with that of X . From now on we shall assume that the value of
θ is unambiguously defined to be the smallest (in absolute value) number needed to shift X
in the control group so that the conditional distribution of Y given X will be the same as that
for the treatment group.

From now on, we shall denote Tθ = X + θ Z . Note that

E(Z |Tθ = t) = P{Z = 1|X + θ Z = t}
= fX |z=1(T − θ)P{Z = 1}

fX |Z=0(t)P{Z = 0} + fX |z=1(t − θ)P{Z = 1}
where all f with subscripts denote conditional densities. It is clear that the design condition
cannot hold unless θ = 0 and Z and X are independent.

Note in general the definition of e.d.r. space could be ambiguous sometimes if the design
space is not convex. As an example, one may imagine two separate balls on the x1, x2 plane,
with one y value associated with each ball. Any projection direction on the x1, x2 plane that
separates the two balls can serve as a one-dimensional e.d.r. space.

3. The method.

One way to estimate θ is to treat it as curve comparison model (1.3) and methods used by
others. But this works only when E(g(X, ε)|X = x) is not a constant. Thus it cannot handle
the multiplicative error model. A different method will be presented here.

Our method is based on the observation that

E(Z |Tθ = t, Y = y) = E(Z |Tθ = t) (3.1)

(3.1) is equivalent to (1.1). (c.f. Remark 4.1 below)

Lemma 3.1. Under model (1.1), θ is the unique solution of the minimization problem:

min
c

E(E(Z |Tc, Y )− E(Z |Tc))
2.

Remark 3.1. Another equivalence is

conditional density of Y |Tθ = t, Z , is equal to conditional density of Y |Tθ = t

Both are stating the same : Y and Z are independent conditioned on Tθ .
The procedure for implementing Lemma 3.1 can be done simply by kernel estimate of

each expectation for example, followed by the search for the minimum of θ . Let

f̂T,Y (t, y, θ) =
(nh1h2)

−1∑n
i=1 zi K1(

yi−y
h1
)K2(

xi+θ zi−t
h2

)

ψ̂(y, t)
(3.1)
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where

ψ̂(y, t) = (nh1h2)
−1

n∑
i=1

K1(
yi − y

h1
)K2(

xi + θ zi − t

h2
) (3.2)

Let

f̂T (t, θ) =
(nh1h2)

−1∑n
i=1 zi K2(

xi+θ zi−t
h2

)

(nh1h2)−1
∑n

i=1 K2(
xi+θ zi−t

h2
)

which is equal to ∫
ψ̂(y, t) f̂ T,Y (y, t, θ)dy

We then estimate θ by minizing

n∑
j=1

( f̂T,Y (t j , y j , θ)− f̂T (t j , θ))
2

If Y is discrete, then the task is simpler. Only univariate kernel is required in (3.1) and
(3.2).

4. Multivariate X .

Treatment comparison for high dimensional X rarely goes beyond linear models in the lit-
erature. The dimension recuction model we consider here provides new thoughts on how
treatment and control groups should be compared.

A quick glance at (1.1) shows that the space spanned by columns of B is the e.d.r. space
for both the treatment group and the control group. After we reduce the p − 1 dimensional
X to the k dimensional W = B ′X , then the treatment effect amounts to shifting W by θ .
Unlike the univariate case, this shift involves not only the size but also the direction. Thus
for example, the treatment may have an effect equivalent to certain increment in one covariate
but not in others.

To study (1.1) more closely, let’s rewrite it as

Y = g(v′X + Zθ, B ′c X, ε) (4.1)

where Bc is a p by k − 1 matrix, v is a p-vector with B ′cv = 0, and θ is now a real number.
The e.d.r. space is spanned by v and columns of Bo for both the treatment and the control
groups. The treatment effect amounts to adding θ to the variable v ′x while setting B ′c X fixed;
unless v = 0.

We may look at the problem from another direction. First the e.d.r. space ( with smallest
dimension) for the control group may be different from that of the treatment group. Then we
can write it as

Y = g j (B
′
j x, ε j ), f or Z = j (= 0, or 1)

In general, B0 and B1 can hav different column spaces and even with different dimensions.
Now let BI be a joint and Bu be a union of B1 and B2. The case that v is not equal to zero is
the special case that B1 = B2.
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We see that the case that v is zero or not has quite different interpretation.
In general, if X satisfies the same condition as x given before, then we can estimate the

e.d.r. space for each group. If the reduced variable has one dimension, then we can apply
the method outlined before to W . If W has more than one dimension, but small, then we can
still extend the method to estimating the shift parameter θ .
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Chapter 10

Quasi-Helices in High Dimensional
Regression

It is not uncommon to find nonlinear patterns in the scatterplots of regressors variables.
But how the detected nonlinearity affects standard regression analysis remains largely un-
explored. The diversity of nonlinear patterns makes it difficult to find a comprehensive ap-
proach. This chapter brings out a special nonlinear structure, a helix/spiral/curved slide-like
pattern, for study. The importance of quasi-helical structures is addressed by taking a fresh
new look on central issues such as the validity of prediction and inference, diagnostics, func-
tional approximation, model uncertainty, Fisher information, robustness, and adaptiveness.
A method of finding such quasi-helical objects is proposed. This chapter extends the discus-
sion of (L.D.C.). The material is largely taken from Li(1997).

10.1 Quasi-helical confounding.

Throughout most part of this chapter, we shall take k = 1 in the model (1.1) of Chapter 1.
We can rewrite it in the form :

y = f (α + β ′x, ε) (1.1)

where y is the output variable and x is a p−dimensional regressor. The ”intercept” term α

may seem a bit redundant at this moment because it can be absorbed into f . But we shall see
soon why it is needed. As we have mentioned before, various specifications on the structure
of f and the distribution of ε lead to linear regression, the Box-Cox power transformation
model, the generalized linear model with a canonical link, and many others. Once the model
assumptions are specified, maximum likelihood estimates of the unknown vector β can be
obtained and their sampling properties are well studied.

How does the distribution of x affects the standard analysis ? In multiple linear regres-
sion, this issue has received a good deal of attention. There are largely two areas of study.
The first one focuses on the detection of unusual observations (outliers) and assessing the
importance of individual cases. The notion of leverage and other regression diagnostics have
become popular. They are implemented in almost every regression package. (In nonlinear
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regression, the study seems just to begin; see Laurent and Cook,1992). The second area is
on the linear relationship between input variables. It is well-known that near collinearity
inflates the variances of regression coefficients and induces inaccuracy in computing due to
rounding errors. Diagnostic methods are available and a rich literature can be found, for
example, from the recent article of Stewart(1987) with discussions and the references given
there.

We are interested in studying the impact of various nonlinear patterns in x on regression
analysis. This seems to be a new area. If the regression model holds exactly, then the impact
of regressor nonlinearity may amount to only a second order effect. But it could become a
dominant one if the model is only approximately correct or even completely unknown.

A comprehensive approach for addressing this issue is hard to pursue. In part, this is due
to the diversity of nonlinear structures to be encountered once we depart from linearity . We
shall concentrate on one prototype of nonlinearity : a helix/spiral/curved slide- like structure.

Example 1.1 Consider two regressors, x = (x1, x2)
′, with a strong nonlinear relationship :

|x2 − log x1| ≤ δ (1.2)

for a small number δ, data generated from the simple linear model

y = x2 + ε (1.3)

can also be expressed as
y ≈ log x1 + ε

Conversely, data generated from
y = log x1 + ε (1.4)

can be approximated by
y ≈ x2 + ε

In either case, the 3-D scatterplot of y against x1 (the x-axis) and x2 (the z-axis) has
almost the same pattern. Data points cling around a 3 dimensional curve which draws
a descending arc, bent and twisted about the y axis. When the plot is spin about the y
axis in fast motion, it appears like a portion of a helical/spiral/curved-slide object screwing
around the computer screen. Figures 10.1(a)-(d) exhibit a couple of static angles of a 3-D
rotation for 100 observations generated from model (1.4) with x1 ∼ uni f orm[0, 1] and
ε ∼ Normal(0, 1). Here x2 is generated by adding a uniform random variable between
[−.5, .5] to log x2 so that (1.2) holds with δ = .5. Notice the drastic geometric change from
different projections. This never occurs in the collinearity study. Suppose instead of (1.2),
x1 and x2 satisfies the linear constraint |x2−a−bx1| ≤ δ. Then the rotation plot for (1.3) al-
ways appears linear, while for (1.4) it always shows a logarithmic curve from any projection.
Scale is the only change that takes place in the collinearity study.

We shall use the descriptive word “quasi-helix” rather liberally. It refers to any three-
dimensional curved object which appears like a portion of helix/spiral/curved-slide. The
object needs not necessarily cling closely to a cone or cylinder.
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Figure 10.1: How well MVE works in 10 dimensional cube.

The presence of a quasi-helix poses a major difficulty in modeling. In Example 1.1,
it is hard to distinguish between the data generated from (1.3) and those from (1.4). A
straightforward application of linear models may end up with selecting the wrong variable if
(1.4) is indeed the true model. Yet this danger is hard to detect with any available regression
diagnostic methods.

A generic terminology “quasi-helical confounding” will be used for referring to the am-
biguity in modeling due to the shape change when rotating the plot of y against two curvi-
linearly associated factors, β ′x and b′x.

In the extreme case that β ′x = h(b′x) for some nonlinear function h(·), model (1.1) can
also be written as y = f (α+h(b′x), ε) and we cannot tell which direction is correct without
knowing the functional form of f . Factor β ′x and factor b′x are thus totally confounded, a
situation similar to (but not the same as) the confounding between interactions (and/or main
effects) in the fractional factorial design literature.

Quasi-helical confounding is geometrically different from the confounding due to collinear-
ity. If β ′x = c1+ c2b′x, then plotting y against b′x is the same as plotting against β ′x except
for a location shift and a scale change in the horizontal axis. A straight line remains linear
and a parabolic pattern remains quadratic, etc.. Because collinearity does not incur the shape
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change, it does not make the task of specifying the form of f in (1.1) more difficult.
A companion problem associated with model uncertainty is in predicting the future out-

come at a given x = xo level. In general, as xo gets closer to the existing data points, better
accuracy in prediction is anticipated. In multiple linear regression, this is well represented by
the Mahalanobis distance which uses the inverse of the sample covariance matrix to define
a metric. The center xo = x̄, the sample mean of x, is the most accurate cite for prediction.
But when we have a curvilinear relationship in x like (1.2), x̄ may not be even close to the
data points. Thus unless the linear model is extremely accurate, it would be very misleading
to rely on the Mahalanobis distance for assessing the accuracy of prediction.

Example 1.1 has only two regressors. We can visualize the entire distribution by a single
plot. This helps us to detect any pathology, to speculate possible causes and to find ways
of remedy. However, it becomes harder to visualize the entire distribution as the regressor
dimension gets larger. Scrutiny on plots of y against each of

(p
2

)
pairs of coordinates is

already laborious. Yet there is even more room for quasi-helices to hide in other projections.
We need a systematic approach in order to reveal them effectively.

10.2 The κ measure of nonlinearity.

We begin with a bivariate regessor x = (x1, x2)
′. Consider the following decomposition :

x2 = E(x2|x1)+
= l(x1)+ k(x1)+ e (2.1)

The random part, e = x2 − E(x2|x1), is uncorrelated with the deterministic part E(x2|x1).
The latter is further decomposed into a linear function l(x1) and a nonlinear function k(x1)

in the least squares sense :

E(E(x2|x1)− l(x1))
2 = min

a,b
E(E(x2|x1)− a − bx1)

2

k(x1) = E(x2|x1)− l(x1)

Definition 2.1. For any two random variables with the decomposition (2.1), define the κ
measure of nonlinearity for x2 on x1 as

κx2|x1 =
var k(x1)

var(x2 − l(x1))
= var k(x1)

var k(x1)+ var e

The κ measure is undefined for the case that x2 is a linear function of x1 because of
the zero in the denominator. In linear regression, the terminology “R-square” refers to the
proportion of variation in the dependent variable explained by the regression. The R-square
of x2 on x1 is var l(x1)/var x2. Similarly, κx2|x1 is just the proportion of the variation in
the residual x2 − l(x1) explained by nonlinear regression on x1. Thus the κ measure may be
considered as “nonlinear R-square”. It reflects only the strict curvillinearity and is free from
the influence of collinearity. In particular, we see that for any constants a0, a1, a2,

κa2x2+a1x1+a0|x1 = κx2|x1, (2.2)
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Unlike R-squares, the κ measure is asymmetric; κx1|x2 is not the same as κx2|x1 . But if
x1, x2 are highly correlated, then we can expect κx1|x2 ≈ κx1|x2 . More precisely, given a fixed
bivariate random variable (z1, z2)

′, suppose x1 = a1z1 + a2z2, x2 = a′1z1 + a′2z2. Then as
ρ(x2, x1) tends to 1, we have

κx1|x2 = κx2|x1 + o(1) (2.2′)

To see this, let x̃ be a combination of z1, z2, which is uncorrelated with x1. Then from from
(2.2), we can derive κx2|x1 = κx̃|x1 ≈ κx̃|x2 = κx1|x2 .

We can generalize this measure of nonlinearity to multivariate regressors by considering
one-dimensional projections.

Definition 2.2. For any p dimensional random variable x, the κ measure of x in the direction
b is defined as

κb = max
v∈R p

κv′x|b′x

Any direction v that achieves κb is considered as a most nonlinear direction against b.
Because of (2.2), any linear combination of a most nonlinear direction v and b itself is also
a most nonlinear direction for projection. But the degree of linear association varies. For
the clearest exhibition of nonlinearity, we may choose a most nonlinear direction from those
that are uncorrelated with the direction b :

κb = max
ρ(v′x,b′x)=0

κv′x|b′x (2.3)

There is an easy way to find κb. Let r be the residual for the linear regression of x on b′x:

r = x− Lb(b′x) (2.4)

Lb(b′x) = Ex+ (var(b′x))−1 ·�xb · b′(x− Ex) (2.5)

where �x = cov x. Take the eigenvalue decomposition of the matrix

�b = cov(E(r|b′x)) (2.6)

with respect to �x :

�bγi = λi�xγi , i = 1, · · · , p (2.7)

λ1 ≥ · · · ≥ λp

Lemma 2.1. The nonlinear R-square κb is equal to the largest eigenvalue λ1 given in (2.7)
and the first eigenvector γ1 is a most nonlinear direction.

This lemma can be shown from a decomposition analogous to (2.1) :

x = E(x|b′x)+ e

= Lb(b′x)+Kb(b′x)+ e (2.8)
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where the linear part Lb(b′x) is from linear least squares (2.5) and the nonlinear partKb(b′x)
is obtained by substracting the linear part from E(x|b′x). It is easy to see that

�b = cov(Kb(b′x)) (2.9)

Left-multiplying both sides of (2.8) by v′, we get

v′x = v′Lb(b′x)+ v′Kb(b′x)+ v′e (2.10)

This is exactly the same decomposition as (2.1) if we take x1, x2 to be b′x and v′x respec-
tively. For any direction v uncorrelated with b, the linear part v ′Lb(b′x) vanishes, implying
that

κv′x|b′x = var(v′Kb(b′x))
var v′x

= v′�bv

v′�xv

The maximization problem of (2.3) is thus reduced to the eigenvalue decomposition (2.7),
completing the proof of Lemma 2.1. Note that the first eigenvector γ1 is automatically un-
correlated to b because b is in the null space of �b :

b′�bb = var(E(b′r|b′x)) = var 0 = 0

10.3 Searching for quasi-helices.

We can easily implement the procedure suggested by Lemma 2.1 for finding the most non-
linear direction against a given direction b. The residual r and the covariance matrix �x

can be replaced by their natural sample estimates, r̂, �̂x. For �b, a simple estimate can be
formed by slicing :

(1) Divide the range of b′x into H slices.
(2) For each slice find the sample mean of r.
(3) Find the covariance of the slice means, weighted by the proportion of cases in each

slice.
The eigenvalue decomposition (2.1) can be carried out to obtain estimates γ̂i , λ̂i . If the

number of slices is large so that the number of cases in each slice is small, then the variance
in estimating the sliced mean becomes sizable and λ̂i tends to over-estimate λi . We propose
the following rule for modification :

λ̃i = max ((nλ̂i − H )/(n − H ), 0)

This is motivated from the ANOVA identity used to justify the slice-two method of SIR
(Li1991).

Example 3.1 Consider Example 1.1 again and set u1 = x1, u2 = x2. Expand the set of
input variables by generating u3, u4, u5, from the standard normal distribution. To make
the problem look more difficult, instead of u1, · · · , u5, data-analysts are given the following
transformed variables as the input variables :

x1 = u1 + u3, x2 = u2 + u4 + u5, x3 = u3 − u4, x4 = u4, x5 = u5
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The y variable is the same as in Example 1.1. Thus the quasi-helix is hidden in these two
projections :

u1 = (1, 0,−1, 1, 0)x; u2 = (0, 1, 0,−1,−1)x

It would be hard to find it from any scatterplot of coordinate variables. The linear regression
gives

β̂ls = (.667, .756,−.729,−1.49,−.699)′

The projection β̂ ′lsx is shown in the x-axis of Figure 10.2(a). The quasi-helix-searching
procedure is carried out with H = 15 slices. All but the first eigenvalues are zero and
λ̃1 = .578. The most nonlinear direction is γ̂1 = (−1.36,−.553, 1.41, 1.96, .509)′ . The
projection γ̂ ′1x is given by the z−axis. A quasi-helix is now revealed; see Figure 10.2(a)-(e).
Both least squares direction and the most nonlinear direction are highly correlated with u1

and u2 :

β̂ ′x ≈ − .64+ .70u1 + .75u2

γ̂ ′1x ≈ 5.59u1 − 1.30u2

with a correlation coefficient of more than .99 in each case. The scatterplot of the two
approximations is given in Figure 10.2(f), which looks almost identical to Figure 10.2(e).

Example 3.2. We apply our quasi-helix-searching method to the Boston Housing Data(
Harrison, D. and Rubinfeld, D.L. 1978; Breiman and Friedman, 1985) for a low-crime rate
group which consists of 374 cases. Take y to be the housing price and the remaining 13
variables as the regressor. A quasi-helix is exhibited; Figure 10.3 (a)-(e). We use H = 15
slices here but other values also give similar results. The least squares direction β̂ ′lsx is
highly correlated with x6, a correlation coefficent of about .95; the most nonlinear direction
γ̂ ′1x against the least squares direction is highly correlated with

0.32x1 + 1.43x6 + 19.6x13

with a correlation coefficent of about 0.94. Figure 10.3(f) shows the scatterplot of these two
variables, which looks very similar to Figure 10.3(e). The first eigenvalue is much larger
than others :

(.44, .08, .05, .03, .00, · · ·)
It is interesting to notice that x6, the number of rooms, is a physical measurement variable,
while x1, x13 are the socio-economic variables. Users of multiple regression may unduely
down-weight the importance of the socio-economic variable without the aid of the quasi-
helix found here.

In the above two examples, the direction b is taken to be the slope vector β̂ls from the
linear least squares regression. Our procedure finds the most nonlinear direction γ̂1 for sup-
plementing β̂ls . This yields a three dimensional plot, y against projections along these two
directions, for scrutiny. This plot is likely to exhibit a quasi-helix-like pattern if λ̃1 is large.

An immediate use of this plot is in prediction. A well-accepted perception is that inter-
polation is generally more reliable than extrapolation. But for high dimension regression, it
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Figure 10.2: Rotation plot for Example 3.1

is not easy to tell if a new case xo is inside or outside the data cloud. Standard regression
practice is to rely on the Mahalanobis distance. As we have argued before, this practice can
be misleading if quasi-helical structures exist. Our three-dimensional plot provides a simple
remedy. Just compute β̂ ′lsxo, γ̂

′
1xo and mark its position in the x− z plane of our plot. We can

now visually assess how close it is to the existing data points. If desired, we could even apply
simple two-dimensional nonparametric regression methods such as the nearest neighbor or
kernel estimates to obtain alternative predictions and compare with the result from the linear
model.

Our procedure can also be applied to find a complementary direction for any regression
estimate β̂ for β in (1.1). We need only to take b = β̂ and carry out the same procedure
as described in the beginning of this section for finding the most nonlinear direction γ̂1 for
projection. We may also consider the weighted version of Lemma 2.1 because β̂ is often
obtained by iterative weighted least squares.

In the subsequent sections, the issue of quasi-helical confounding will be examined more
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Figure 10.3: Rotation plots for Boston Housing data

closely from several perspectives. The κ measure is found to play a key role in each case.

10.4 Sensitivity of geometric shape change.

As claimed earlier, geometric shape change in the regression function poses a major differ-
ence between collinearity and quasi-helical confounding. A closer look at this issue will be
taken here.

We begin with a linear regression function E(y|x) = a+v′x. If E(y|x) is plotted against
a different projection b′x, then from (2.10) we see that in addition to the linear pattern from
v′Lb(b′x), the plot contains a nonlinear trend v′Kb(b′x), blurred by the noise term v′e.
When the linear trend is removed, the residual becomes

v′K(b′x)+ v′e

We may measure the clarity of the nonlinear trend in the residual plot by the signal to noise
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ratio
E[ v′K(b′x)]2

E (v′e)2

which equals to
κv′x|b′x

1− κv′x|b′x
Thus the larger the κ measure is, the sharper the change in the shape of the regression func-
tion may be seen.

10.5 Over-linearization in linear approximation.

Simplicity is a good reason for the popularity of linear least squares regression. When the
true model is linear with i.i.d. normal errors, it offers the best unbiased estimation of the
regression coefficients. Yet in practice, linear models are rarely exact. They are often inter-
preted as a simple approximation to the true regression function. It is commonly believed
that if the L2 norm of the approximation error is small, then the analysis is still valid. Fur-
thermore, we can use residual plots to detect if serious departure from linearity is present or
not.

However, very little attention has been paid to the fact that the distribution of x affects
the sense of linear approximation. As we shall argue in this section, large κ measure can
incur a substantial degree of overlinearization, thus weakening the power of residual plots in
detecting any lack of fit.

Linear least squares regression approximates a general regression surface G(x) = E(y|x)
in the L2 sense with respect to the distribution of x :

min
a,b

E(G(x)− a − b′x)2 (5.1)

Denote the least squares solution by als , βls and the approximation error as

Hls(x) = G(x)− als − β ′ls x. (5.2)

The approximation error in linearizing the nonlinear surface G(x) can be quantified by
E Hls(x)2.

The adequacy of L2 norm in approximation has met some challenges and other norms,
e.g., the L1 norm, have been considered. Our interest is different. We adhere to the L2 norm
but will examine closely the role of the distribution of x in the approximation.

Suppose that the regression surface G(x) is indeed only one dimensional:

G(x) = g(α + β ′x) (5.3)

for some function g(·). Consider the linear approximation for this function :

min
a,b

E(g(α + u)− a − bu)2, u = β ′x (5.4)
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where the expectation is taken with respect to the distribution of u = β ′x. Denote the
approximation error by

h(u) = g(α + u)− ao − bou, (5.5)

where (ao, bo) is the least square solution of (5.4). In general, βls is not in the same direction
as β. The lack of fit from the least square direction, E Hls(x)2, is smaller than the true
approximation Eh(u)2. The plot of y against β ′ls x typically appears more linear than the plot
of y against u = β ′x.

Definition 5.1. For a nonlinear function of the form (5.3), the over-linearization of multiple
linear regression is defined to be the ratio :

OL = var(h(u))− var(Hls(x))
var(h(u))

The OL measure is strongly affected by the nonlinearity in the regressor. If κβ is zero,
then Brillinger’s surprising result, which shows that the least square βls is proportional to
β, implies that OL = 0. The relationship between over-linearization and the κ measure in
general is explored in the following.

First, fitting (5.4) can be viewed as fitting a submodel of (5.1). Let br be the slope vector
for regressing h(u) on x :

min
a,v

E(h(u)− a − v′x))2 (5.6)

We can obtain the least squares direction βls from

βls = br + boβ (5.7)

The overlinearization measure OL is just the R-square in the regression (5.6) :

OL = var(b′r x)
var(h(u))

= ρ(h(u), b′r x)2 = max
v
ρ(h(u), v′x)2 (5.8)

For any direction v, consider the decomposition (2.10) with b = β. Since h(u) is uncor-
related with u = β ′x, the maximization in (5.8) can be restricted to those directions v that
are uncorrelated with β. The first term in (2.10) thus vanishes. Consequently we have

ρ(h(u), v′x)2 = cov(h(u), v′x)2

var(h(u)) · var(v′x)

= cov(h(u), v′Kβ(u))2

var(h(u)) · var(v′x)
= ρ(h(u), v′Kβ(u))

2 · κv′x|β ′x (5.9)

where the second identity is due to the decomposition (2.10).
Now from (5.7), (5.8), (5.9), and (2.2), we obtain the key identity

OL = max
v

ρ(h(u), v′Kβ(u))
2 · κv′x|β ′x

= ρ(h(u), β ′lsKβ(u))
2 · κβ ′ls x|β ′x (5.10)



100 Quasi-Helices in High Dimensional Regression

Dropping the correlation coefficient term, we obtain an upper bound for OL. This is
given in the following theorem.
Theorem 5.1. For a nonlinear regression function of the form (5.3), the over-linearization of
multiple linear regression is bounded by the κ measure of nonlinearity in regressor:

OL ≤ κβ ′ls x|β ′x ≤ κβ

This theorem shows how the curvillinearity between regressors can affect the amount of
over-linearization. Over-linearization may not be serious unless there is a strong curvillinear-
ity among regressors. The result of Hall and Li(1993) assures that in many cases the κ mea-
sure is small. This helps in explaining why residual plots in multiple regression are often
useful. But the other side of the coin is also important to bear in mind. If OL is large, then
not much signal will be left in the residuals for detecting the lack of fit. The performance
of residual plots can be seriously impaired by quasi-helical confounding. We illustrate this
with the setting of Example 3.1.

Example 5.1. We generate the data again from the model considered in Example 3.1, but
with a larger noise level, σ = .5. Figure 10.4(a) shows the standard residual plot for linear
regression. No obvious nonlinear pattern can be found from this plot. By comparison, the
residual plot from regressing y against the correct projection u1, Figure 10.4(e), shows a clear
nonlinear trend. Multiple linear regression has over-linearized the true regression function
to an extent that the residual plot has lost power of detecting the nonlinearity. We now carry
out our quasi-helix-hunting procedure as done in Example 3.1. The first eigenvalue is large,
about .45, indicating a serious quasi-helical confounding. Figures 10.4(b)-(d) show some
angles from the rotation plot of y against β̂ ′ls x and γ̂ ′1x. Figure 10.4(f) is the residual plot of
regressing y linearly against a special angle, .27β̂ ′ls x+ .15γ̂ ′1x. This is the angle that has the
highest correlation, about .99, with u1. This plot is almost identical to Figure 10.4 (e).

We turn to a related question: how close is the least squares direction βls to the true
direction β ? We measure the closeness by the square of the correlation coefficient between
β ′x and β ′ls x. The quantity 1−ρ(β ′x, β ′ls x)2 shows the size of bias of the regression estimate
βls .

Theorem 5.2 (maximum bias for least squares). For any δ > o, consider the class Fδ
of regression functions with the form (5.3), such that the proportion of the variance of the
approximation error, var(h(u))/var(g(α+u)) does not exceed δ. Then the maximum of the
bias in the linear least square estimate is related to the nonlinear R-square of the regressors :

max
G(·)∈Fδ

1− ρ(β ′ls x, β ′x)2 = δκβ

1− δ(1 − κβ)
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Figure 10.4: Residual plots and helix.

Denote ρ = ρ(β ′x)β ′ls x. We can also relate OL, ρ to the R-square of the multiple linear
regression, R2 = var(β ′ls x)/var y:

OL = (1− ρ2)R2

(1− ρ2 R2 − var(ε)
var(y) )

≥ (1− ρ2)R2

1− ρ2 R2

ρ2 =
R2 − OL(1− var(ε)

var(y) )

R2(1− OL)
≥ R2 − OL

R2(1− OL)
≥ R2 − κβ

R2(1− κβ)

The same lower bound for ρ2 is also derived in Duan and Li(1991) which uses a different
argument without the overlinearization measure.
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10.6 Over-fit in nonlinear approximation.

In many applications, nonlinear functions are also used for approximation. Sigmoidal func-
tions such as the logistic Go(t) = (1 + e−t)−1, for example, are popular in neural network
modeling (e.g., White 1989). Lik in linear regression, overfitting can be severe when there
is κ mesure is large unless the nonlinear model is exact. For better understanding, we need a
weighted version of the κ measure. This will not be discussed here.

10.7 Model uncertainty and information loss

. Linear regression estimate is efficient when the true regression function is linear and the er-
rors are i.i.d. normal. The Fisher information matrix for the slope vector β per observation is
equal to I = σ−2�x and the covariance matrix of β̂ls is n−1I−1. If the true function is only
approximately linear, how much information will be lost in estimating β? To answer this
question, we may parametrize any reasonable patterns of departure from linearity, treat the
additional parameters as the nuisance parameters, and then eliminate their influence when
finding the information matrices for β. A least favorable submodel is the one which yields
the smallest information Imin . The information loss, I − Imin , due to the model uncertainty
will be examined in this section. As it turns out, a major source of the loss comes from
nonlinearity in the regressor. If the distribution of x is elliptically symmetric, there will be
no loss of information in estimating β up to a proportionality constant. On the other hand,
the loss may be grave if a serious quasi-helical confounding condition is present. The con-
sideration of least favorable submodels is essential in the semiparametrics and adaptiveness
studies; see Bickel et al (1993).

10.7.1 Least favorable submodel.

Model uncertainty can be addressed in a more general context to cover nonlinear regression
as well. Consider

y = g(α + β ′x)+ ε (7.1)

where ε is normal with mean 0 and variance σ 2. We will construct a least favorable submodel
in the neighborhood of a given function go(·) for any direction βo.

Define the function
η(u) = E(x|β ′ox = u) (7.2)

Then our least favorable submodel is :

y = go(α + β ′x− δ′η(β ′x))+ ε (7.3)

with δ being a p-dimensional nuisance parameter. When δ = 0, we are reduced to (7.1) with
g(·) = go(·).

Generically for any parametric family of distributions with density functions { f (y;β, δ)},
the Fisher information for the parameter of interest β, in presence of the nuisance parameter
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δ, can be founded by first computing the Fisher scores,

Sβ = ∂log f (y;β, δ)
∂β

; Sδ = ∂log f (y;β, δ)
∂δ

Sβ and Sδ are correlated in general. Elimination of the influence of the nuisance score can be
done by orthogonalization. A matrix M can be found so that S = Sβ − M Sδ is uncorrelated
with Sδ. In other words, S is the residual for regressing Sβ on Sδ linearly. After eliminating
the nuisance parameter, the Fisher’s information for β is just the covariance matrix of S.

Following the above recipe and treating both α and δ as nuisance parameters in model
(7.3), at α = αo, β = βo, δ = 0, we find

Sα = σ−2εġo(αo + β ′ox)

Sβ = σ−2εġo(αo + β ′ox)x

Sδ = σ−2εġo(αo + β ′ox)η(β ′ox)

S = σ−2εġo(αo + β ′ox)(x− η(β ′ox))

By conditioning, it is easy to see that S is uncorrelated with Sα, Sδ :

cov(S, Sα) = σ−2 E[ġo(αo + β ′ox)2 E(x− η(β ′ox)|β ′ox)] = 0

cov(S, Sδ) = σ−2 E[ġo(αo + β ′ox)2η(β ′ox)E(x− η(β ′ox)|β ′ox)] = 0

Theorem 7.1. For the parametric model (7.2), the Fisher information of β per observation is
equal to

Imin = σ−2 Eġo(αo + β ′ox)2(x− η(β ′ox))(x− η(β ′ox))′ (7.4)

This Fisher information is no greater than the information matrix for β derived from any
parametric model

y = g(α + β ′x; δ̃)+ ε (7.5)

at β = βo, δ̃ = 0, α = αo, where δ̃ is a finite dimensional nuisance parameter with g(αo +
β ′ox; 0) = go(αo + β ′ox)

We briefly describe how our least favorable submodel is found. Consider a direction β
in a small neighborhood of βo. The principle of least favorable model is to find a g function
so that g(α + β ′x) can be as close to go(α + β ′ox) as possible because this would make
the task of discriminating β from βo the most difficult. For the extreme case that β ′ox is a
function of β ′x, say β ′ox = h(β ′x), the least favorable g is obvious. We need only to set
g(α + u) = go(α + h(u)), in which case we cannot identify between β and βo at all, a
completely confounded case as mentioned in Section 1. For the general case, the idea is to
replace h(u) by the condition expectation E(β ′ox|β ′x = h). This leads to consider

g(α + u) = go(α + E(β ′ox|β ′x = u))

Observe that

E(β ′ox|β ′x = u) = E(β ′x|β ′x = u)− (β − βo)
′E(x|β ′x)

= u − (β − βo)
′E(x|β ′ox = u)+ o(β − βo) (7.6)
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Dropping the little o term and taking β − βo as δ, we have

g(α + u) ≈ go(α + u − δ′η(u))

This leads to the least favorable submodel (7.3).

10.7.2 Information loss for nearly linear regression.

The information loss when the regression function is known only to be approximately linear
can be assessed by taking

go(u) = u

in Theorem 7.1. Thus the minimum Fisher information is

Imin = σ−2 E(x− η(β ′ox))(x− η(β ′ox))′ (7.7)

To compare this with the Fisher information I from the linear model theory, we recall the
notations in (2.4)- (2.9) with b = βo and decompose σ 2I as

σ 2I = cov Lβo(β
′
ox)+ covKβo(β

′
ox)+ cov e

= (var(β ′ox))−1 · �xβoβ
′
o�x +�βo + Imin (7.8)

The first term in (7.8) is a rank one matrix. The loss of this term is because we cannot
distinguish β from its scalar multiple under (7.1); any scalar multiple of β can be absorbed
into the g. The least favorable submodel also reflects this limitation because for δ in the
direction of βo, the function δ′η(·) becomes a multiple of the identity function and we only
identify β up to a proportion. The second and the third terms in (7.8) constitute the infor-
mation for estimating β up to a proportionality in the linear model. To see this, consider any
homogeneous functions of β :

φ(cβ) = φ(β), f or any c �= 0

One example is φ(β) = β

||β|| · sign(β), where sign, taking values +1 or −1, can be set
in any convenient way so that the function will be symmetric under the sign change of the
argument. The asymptotic covariance matrix for the least squares estimate is φ(β̂ls) equals

∇φ(βo)I−1∇φ(βo)
′ = ∇φ(βo)(�βo + Imin)

−∇φ(βo)
′

where the superscript − denotes a generalized inverse matrix, and the gradient operator
returns a row vector. The equality comes from the fact that ∇φ(βo) is orthogonal to βo.

We are ready to claim the following observation.

Observation 7.1. When g is approximately linear, the information loss in estimating the
regression slope vector up to a proportionality constant is equal to σ−2�βo .

The most nonlinear direction γ1 against βo given by Lemma 2.1 (with b = βo) is the
direction where the relative information loss is the greatest. This observation depicts well
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the relationship between the quasi-helical confounding and the information loss. If κβo is
zero then there is no information loss. But when the quasi-helical confounding is serious,
κβo is large and so is the information loss. The scatterplot of the projection γ ′1x against β ′ox
reveals the nonlinear pattern that causes the most serious information loss. Suppose we are
allowed to collect more data. Then the information on this direction can be fortified if the
projections of the added data points on this plot are distributed in a way to flatten out the
curvilinearity as much as possible. This opens up a new aspect in guiding the selection of a
future sample from any given set of possible cites. The same consideration should be given
simultaneously to the i th most nonlinear direction γ̂ ′i x as well if the information loss on that
direction, reflected by the associated eigenvalue, is still large.

Remark 7.1. Let β̂min denote any efficient estimate under the least favorable submodel. We
can verify that the ratio of var(u ′β̂min) to var(u′β̂ls) is the largest when u = �xγ1, among
all u′βo = 0.

10.8 Hypothesis testing for nearly linear regression.

This section discusses the impact of quasi-helical confounding in testing the null hypothesis
that β is in the direction of a given βo �= 0:

Ho : β = cβo, f or some c ∈ R

when the regression model is only approximately linear. We will examine the level and the
power of the standard F-test in Sections 8.1-8.2. Then an alternative test will be given in
section 8.3.

10.8.1 Significance levels for F-tests.

If the model (7.1) is known to be exactly linear, g(t) = t , an F-test can be conducted in
the usual way. However, if the model is only approximately linear, by how much will the
level of the test exceed the nominal value under Ho ? As it turns out, this problem becomes
more serious as the nonlinearity measure κβo gets larger. Thus quasi-helical confounding
can substantially increase the chance of falsely rejecting the null hypothesis. Likewise, in
the next subsection, we shall show that the power of the F-test is also seriously impaired.

For a given sample, (yi , xi), i = 1, · · · , n, the usual F-test is based on the ratio :

F = (SS Eo − SS E1)/(p − 1)

SS E1/(n − p − 1)
(8.1)

SS Eo = residual sum of squares under Ho

SS E1 = residual sum of squares under H1

Under the exact linear model assumption, SS Eo/σ
2 and SS E1/σ

2 are chi-square random
variables with (n − 2) and (n − p − 1) degrees of freedom respectively when the null hy-
pothesis is true. When the sample size is large, SS E1/(n − p − 1) converges to σ 2, and
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we can approximate the F-test by a chi-square test with p − 1 degrees of freedom. The null
hypothesis is rejected if (p − 1)F > Cp−1,α where C p−1,α denotes the (1− α) quantile of a
chi-square distribution with p − 1 degrees of freedom.

When g(·) is not linear, both SS E1/σ
2 and SS Eo/σ

2 follow noncentral chi-square dis-
tributions, conditional on x. The overlinearization measure defined in section 5 is a major
source for the noncentrality parameters. Set β = βo and recall the two lack of fit functions
Hls(·), and h(·), from (5.2), (5.5). Let

var h(β ′ox)/σ 2 = δ∗

be the measure for the departure of g(·) from linearity. It is easy to see that, SS E1/n con-
verges to

var(ε + Hls(β
′
ox)) = σ 2 + var Hls(β

′
ox) = σ 2(1+ (1− OL)δ)

Similarly, SS Eo/n converge to σ 2(1 + δ∗). Thus the noncentrality parameter for (SS Eo −
SS E1)/σ

2 is approximately equal to nδ∗ · OL. If follows that approximately

(p − 1)F ∼ (1+ (1− OL)δ)−1χ2
p−1(φ), (8.2)

where χ 2
p−1(φ) denotes a noncentral chi-square distribution with the noncentrality parameter

φ = nδ∗ · OL. Denote the level of the test at g(·) by

αg = P{(p − 1)F > Cp−1;α |Ho}

Using the approximation (8.2), we see that

αg ≈ P{χ 2
p−1(nδ

∗ · OL) > (1+ (1− OL)δ∗)Cp−1;α}

which increases as OL gets larger. By Theorem 5.1, the maximum over all functions with a
given δ∗ is obtained when OL = κβo . Therefore the worst level is approximately equal to

max
g
αg ≈ P{χ 2

p−1(nδ
∗κβo) > Cp−1;α(1+ (1− κβo)δ

∗)} (8.3)

The last expression shows that the chance of falsely rejecting Ho is an increasing function
of the nonlinearity measure in x along the direction βo. This is another ill-effect of quasi-
helical confounding. From (8.3), we see that the worst level easily exceeds 50% if the
noncentrality parameter, φ = nδ∗κβo , is greater than (1+(1−κβo)δ

∗)Cp−1;α . In other words,
in order to keep the α level under 50%, we absolutely cannot accommodate the nonlinearity
with

δ∗ >
Cp−1;α

(n + Cp−1;α)κβo − Cp−1;α
(8.4)

Thus we see that stricter linearity condition must be imposed when the quasi-helical con-
founding gets more serious. On the other hand, the most favorable situation is when κβo = 0,
which implies OL = 0. The significant levels can be guaranteed as long as δ = o(1) (as
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opposed to the rate o(n−1) inferred from (8.4) ). For more discussion, see Remark 8.1 at the
end of this subsection.

Serious quasi-helical confounding can make the assumption (8.4) too stringent to be
practical. Here is a simple way for tempering this problem. First follow Sections 2-3 and
find the most nonlinear direction γ1 against βo. Then conduct an usual F-test for the null
hypothesis

H ∗
o : β is in the space spanned by γ1, βo

We then reject our original hypothesis Ho only if the intermediate hypothesis H ∗
o is re-

jected. This procedure definitely makes the probability of falsely rejecting Ho much smaller.
In fact, the worst α-level can be approximated by (8.3) with κβo replaced by the second
eigenvalue λ2 = κγ ′2x|β ′ox from (2.7). If this is still too big, we can enlarge the space for Ho

by including γi ’s successively.
The drawback of using the intermediate hypothesis H ∗

o is the lack of power in differen-
tiating the direction γ1 from the direction βo. But the standard F test for Ho does not have
much power either if κβo is large. This is discussed in the next subsection. Another testing
procedure is considered in subsection 8.3.

Remark 8.1. The nominal level of the F-test is better maintained if OL = 0. This can
be argued from a couple of viewpoints. First, if x is elliptically symmetric, the asymptotic
distribution for (p − 1)F statistic (without conditioning on x) is a chi-square distribution,
with p − 1 degrees of freedom. This follows easily from Li and Duan (1989). If x is not
elliptically symmetric, then the result still holds under the condition that

Eh(β ′ox)2(x− Ex)(x− Ex)′ = o(1) (8.5)

Condition (8.5) is the same as δ∗ = o(1) if the support of x is bounded. If (8.5) does not
hold, then the noncentrality parameter does not vanish. Unlike the case that OL �= 0, the
magnitude of the noncentrality parameter remains bounded as the sample size n increases.

10.8.2 Loss of power for F-tests.

The power of an F-test under exact linear model assumption can be computed using noncen-
tral F-distributions or noncentral chi-squares for a large sample size. In our case, the power
at β is approximately equal to

Pβ ≈ P{χ 2
p−1(φ) > Cp−1;α}

where the noncentrality parameter φ is just the residual sum of squares for regressing β ′x on
β ′ox. Thus

φ ≈ n(β ′�xβ − (β ′�xβo)
2/β ′o�xβo)/σ

2

which increases at rate n. If the true regression function g(α+β ′x) deviates from the nonlin-
earity, then the noncentrality parameter can get either smaller or larger. The worst situation
is when the (population) least squares estimate βls , defined in (5.1) with G(x) = g(α+β ′x),
is proportional to βo :

βls = cβo, for some c (8.2.1)
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In this case, the noncentrality parameter will not tend to the infinity as n increases. The
power of the test remains bounded away from one even for very large sample sizes; in other
words, the F-test will not be consistent.

Consider g(·) with the decomposition

g(α + β ′x) = α + β ′x+ h(β ′x) (8.2.2)

var h(β ′x) ≤ δo

where h(β ′x) is uncorrelated with β ′x. We want to find the smallest δo, denoted by δβ , so
that there exists such a g for which (8.2.1) holds. We may consider δβ as the largest amount
of nonlinearity that can be incorporated into the linear model to maintain the consistency of
the F-test.

Recall the notation �b again from section 2, with b = β. It can be shown that

δβ = (cβo − β)′�x�
−
β �x(cβo − β) (8.2.3)

c = β ′�xβ/β
′�xβo (8.2.4)

Geometrically, if we take�x = I , then cβo is just the vector from the βo line whose pro-
jection on the β line is equal to β. In general, (8.2.4) is satisfied if (cβo−β)′x is uncorrelated
with β ′x. We can derive a lower bound for (8.2.3) from the eigenvalue decomposition (2.7)
with b = β :

δβ ≥ κ−1
β (cβo − β)′�x(cβo − β) (8.2.5)

We see that for maintaining consistency of the F-test, larger deviation from linearity can
be allowed if the nonlinearity in x along the direction β is less serious.

When we are concerned with local powers of the F−test, β is assumed to be close to
βo. Put β = βo + v, where v is a direction uncorrelated with βo, v′�xβo = 0. We can
approximate �β by �βo , and c ≈ 1, as v′�xv tends to zero. Thus we can approximate
(8.2.3) by

δβ ≈ v′�x�
−
βo
�xv ≥ κ−1

βo
v′�xv (8.2.6)

This again shows how the nonlinearity in x along the direction βo may impair the power
of the test locally. The most nonlinear direction γ1 is the direction where the power loss can
be the most serious.

10.8.3 A quasi-helix-robust test based on the least favorable submodel.

In this subsection, we consider an alternative test based on the least favorable submodel (7.3)
with go(·) being the identify function. By making the task of differentiating between βo and
β the hardest, the least favorable submodel gives the null hypothesis Ho the maximum benefit
of doubt. This explains why the significance level of the derived test can be guaranteed even
if the true g(·) does not belong to the model (7.3).

(7.3) involves nonlinear regression. It may be laborious to carry out a likelihood ratio
test. To simplify the task, we propose the following model as an approximation :

y = α + β ′x− δ′η(β ′ox)+ ε (8.3.1)
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Here we simply replace β in the argument of the η function by βo in (7.3) and ignore the
approximation error δ′(η(β ′x)− η(β ′ox)).

(8.3.1) is a linear model with parameters α, β, δ. But there is an estimability problem due
to the collinearity between x and η(β ′ox), because of the identity β ′ox = βoη(βo). To avoid
this problem, we may require the nuisance parameter δ to be uncorrelated βo : δ′�xβo = 0.
Rewrite (8.3.1) as

y = α + β ′x− δ′Kβo(β
′
ox)+ ε (8.3.2)

Now we can conduct a standard F-test for the null hypothesis Ho :

F∗ = (SS E∗o − SS E∗1)/(p − 1)

SS E∗1/(n − 2p)

SS E∗1 = residual sum of squares under (8.3.2)

SS E∗o = residual sum of squares under (8.3.2) and Ho

We then reject Ho if F exceeds the (1 − α) quantile of an F-distribution with degrees of
freedom (p − 1, n − 2p).

When g(·) is nonlinear, the significance level of this test is much better protected than the
standard F-test outlined in section 8.1. Under Ho, we can show that even if g(·) is nonlinear,
the β parameter for the best fit under the linear model (8.3.2) is always in the direction of
βo: the solution β∗, δ∗ for the following minimization is achieved at β∗ = c∗βo:

min
a,b,δ

E(g(α + β ′ox)− a − b′x− δ′Kβo(β
′
ox))2 (8.3.3)

An easy way to see this is to consider the decomposition (2.8) with b = βo again. We
have

E(g(α + β ′ox)− a − b′(Lβo(β
′
ox))− (b+ δ)′Kβo(β

′
ox)− b′e)2

≥ E(g(α + β ′ox)− a − b′(Lβo(β
′
ox))− (b+ δ)′Kβo(β

′
ox))2 + E(b′e)2

The last term in the preceding expression vanishes if b is in the direction of βo. Therefore
this shows that β∗o = c∗βo.

The nuisance parameter δ in the linear model (7.3) serves as an outlet for absorbing the
bias of multiple linear regression due to the nonlinearity in g(·). The immediate consequence
is that the expectation of SS E∗o − SS E∗1 remains bounded as n increases. The significance
level is under much better protection.

To carry out this test, we need to estimateKβo(·). This is not hard to implement because
involves only p one-variable against one-variable nonparametric regressions. However, we
prefer to carry out the quasi-helix searching procedure as suggested in Section 3 first. Then
keep only a small number of non-zero eigenvectors, γ̂1, · · · , γ̂k . We estimate only γ̂ ′iKβo(·);
this reduces the number of nonparametric regressions to just k. For each i, 1 ≤ i ≤ k, let zi

denote any nonparametric regression fit of γ̂i x against β̂ls x. Instead of (8.3.2), we can now
implement the F test for the model

y = α + β ′x−
k∑

i=1

δi zi + ε (8.3.4)
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Our experience indicates that the result does not change much for a wide range of smoothing
parameter. We shall refer to this testing procedure as a quasi-helix-robust test.

Example 8.3.1 For the data generated in Example 5.1., consider the hypothesis

Ho : β = cβo = c(1, 0,−1,−1, 0)′, for some c

In this case, βo is the true direction that generates the data. The standard F-test (8.1)
gives a large value of F = 12.6; with R-squares of .587 and .730 respectively under the
null and the alternative hypotheses. Thus Ho is falsely rejected by the standard F-test.
Recall also that the standard residual plot fails to recognize any nonlinear pattern, which
only reinforces the misleading conclusion. We now carry out the quasi-helix-hunting pro-
cedure for the direction b = βo. Only one nonzero eigenvalue is found, λ̃1 = 0.628,
γ̂1 = (4.60,−1.47,−4.66,−3.02, 1.46)′ . This suggests the possibility of quasi-helical con-
founding. We use only the first nonlinear direction γ̂1 to carry out our quasi-helix-robust
test. The LOWESS function from Xlips.stat (Tierney 1991) is used for smoothing. Figure
8.1 shows the result for z1 = γ̂ ′1x against β̂ ′lsx. The F value is reduced to 1.57, with the
R-squares of .729 and .746. The p-value of the test is .19. Hence the correct null hypothesis
won’t be rejected by our test. Note that Figure 10.5 is produced using the default values.
Improvement on smoothing is certainly quite feasible. We report this suboptimal situation
to indicate that our testing procedure is not sensitive to the choice of smoothing parameters.
Other values have been tried and yield similar results.

Figure 10.5: Smoothing by LOWESS for the most nonlinear direction against the null direc-
tion.



Chapter 11

Errors in Regressors

This chapter is taken from Carroll and Li(1992).
Errors in the regressors can cause severe bias in estimation. For linear models, there

are many references and techniques available, see Fuller (1987). The standard least squares
estimate tends to flatten the slope parameters. Thus adjustment is needed to correct the bias.

For nonlinear models, bias of course persists for the standard maximum likelihood es-
timation. Yet it gets even harder to make correction and relatively less attention has been
given until recently, see Carroll (1989), Carroll and Stefanski (1990) and Carroll and Wand
(1990) for recent reviews.Applications of binary measurement error models are discussed by
Carroll, et al. (1984), Rosner et al. (1989) and Tosteson, et al. (1989), among others.

We will address the nonlinear case from the viewpoint of dimension reduction and data
visualization as in the regressor-error-free situation.

11.1 The setting.

With errors in the regressor variables, nonlinear regression becomes much more complicated.
For example, the likelihood function generally involves multiple integration and issues of
model sensitivity and robustness are not well understood. Let Y be the response, x the true
predictor( which is typically unobervable) and w the observed surrogate. Likelihood analysis
requires specifying functional forms for the distributions of Y given x and x given w. Part of
our goal is to reduce the necessity for fully specifying these functional forms.

We adopt the dimension reduction model for Y and x from Chapter 1. Like Chapter 10,
we consider only the case that the e.d.r. space has only one dimension:

Y = g(α + β ′x, ε), (1.1)

The surrogate w is related to x via the linear model :

w = γ + �x+ δ (1.2)

where � is a q by p matrix, which can be known , unknown, or partly known. We assume
that δ is independent of x and ε, although this can be relaxed to δ and Y independent given
β ′x. An important case is when p = q and � equals the identity.
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We shall present some methods of estimating β, for p ≥ 2, up to a constant of propor-
tionality without knowledge of the functional form of g.

11.1.1 The basic idea.

Similar to SIR, the key is to consider the inverse regression curve η(y) = E(w|Y = y). For
the special case that

w = x+ δ
we see easily that

E(w|Y = y) = E(x+ δ|Y = y) = E(x|Y = y)

Thus the inverse regression curve is exactly the same as when the regressor is without error.
This immediate leads to the suggestion of applying SIR for Y on w. But since the covariance
matrix of x is not the same as the covariance matrix of w in general:

�w = �x +�δ
we need correction when conducting eigenvalue decomposition. Suppose that knowledge of
�δ is available from other sources. Then an appropriate eigenvalue decomposition would be
for cov(Ew|Y ) on �w − �δ. This is largely in line with (but not exactly the same as) what
we shall pursue for the more general case of (1.2) in the next section.

11.2 Basic theory.

11.2.1 Preliminaries

If x were known, then we have shown that

E(x|Y = y)− Ex ∝ �xβ (2.1)

under the linear design condition: for any b,

E(b′x|β ′x) = c0 + c1β
′x (2.2)

(2.1) is the key to the theory of SIR. But since x is not available, this result cannot be applied
immediately. Our strategy is to predict x from w. Let

u = Lw

L = cov(x,w)�−1
w

Clearly u is the best linear prediction of x from w.
Theorem 2.1 below shows that u behaves just like x. This allows us to apply methods

available for x to u.
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Theorem 2.1: Under (1.1), (1.2), (2.2), we have

E(u|Y = y)− Eu ∝ �uβ (2.3)

Proof: We can assume that Ew = Ex = 0. Now,

E(u|Y ) = L E(w|Y ) = L�E(x|Y )
∝ L��xβ

= Lcov(w, x)β

= cov(x,w)�−1
w cov(x,w)′β

= �uβ

This proves the theorem. �

There are two ways to apply this theorem, to be described below.

11.2.2 Linear regression type method

.
We can apply a standard linear least squares regression of Y against u.

min
b1∈Rq ,a∈R

E(Y − a − b′1u)2.

Then the regression slope bls will be proportional to β:

bls ∝ β (2.4)

Upon observing that

cov(Y, u) = E(Y (u− Eu)) = E{Y [E(u|Y )− Eu]} ∝ �uβ

the proof of (2.4) follows easily from the least squares formula, bls = cov(y, u)�u.
This result can be viewed as an extension of Brillinger (1977, 1983), where the usual

linear least squares estimate was shown to be consistent for estimating the direction of the
slope vector when the regressor variable is free of error. Li and Duan (1989) extended
Brillinger’s result to other regression estimates, including generalized linear models and M-
estimates.

11.2.3 SIR type method

Denote ζ(y) = E(u|Y = y) and define the covariance matrix cov
{
ζ(Y )

}
by �ζ . We can

find the nondegenerate direction by applying a suitable principal component analysis as the
following Corollary suggests.

Corollary 2.1. Under the same conditions as given in Theorem 2.1, the covariance matrix
�ζ has rank at most one. Assuming that �ζ is of rank one, let v be the nonzero eigenvector
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for the eigenvalue decomposition of �ζ with respect to �u: �ζv = λ�uv, where λ is the
nonzero eigenvalue. Then v is proportional to β : for some scalar c, v = cβ.

Note that the eigenvalue λ = E
[

E
{
β ′(x− Ex)|Y}2

]
/β ′�uβ.

Remark 2.1: If the joint distribution of x and w is normal, we can extend the result of Li
and Duan (1989) to the error-in-regressors problem by pretending that we have observed an
error-free regressor u. Specifically, for any function ρ(Y, θ) which is convex in θ , under
(1.1) the solution (aρ, bρ) of the minimization

mina∈R,b∈R p Eρ(Y, a + b′u)

satisfies the condition that bρ is proportional to β. In fact , the normality assumption can be
weakened by assuming that conditional on β ′u, β ′x is independent of u.

11.3 Estimation

Given an i.i.d. sample, (Yi ,wi), i = 1, · · · , n, we discuss how to implement the two methods
in Section 2. We distinguish among three different situations:

� L known;

� L unknown and estimated by an independent validation sample of (x,w);

� L unknown, but p = q and � is known, so that L can be estimated by an independent
sample containing replicates of w.

11.3.1 Least squares with known L

If L is known, define ui = Lwi . The least squares estimate is

b̃ls = �̃−1
u (n − 1)−1

n∑
i=1

Yi(ui − ū), (3.1)

where �̃u = L�̂1wL ′ is the sample covariance for u, and �̂1w is the sample covariance of
w. It can be shown that this estimate is root n consistent and is asymptotically normal with
mean bls defined by (2.4), and covariance matrix

�(b̃ls) = n−1�−1
u cov

{
ei(ui − Eu)

}
�−1

u . (3.3)

where ei = Yi − EY − b′ls(ui − Eu)
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11.3.2 SIR with known L

We can apply the SIR algorithm to u:

(I). Divide the range of Y into H slices and let p̂h be the proportion of Yi ’s falling into the
hth slice Ih .

(II). Within each slice compute the sample mean of u, ūh = (n p̂h)
−1∑

Yi∈Ih
ui , h =

1, · · · , H .

(III). Form the covariance matrix �̃ζ =
∑H

h=1 p̂h(ūh − ū)(ūh − ū)′. Then conduct an
eigenvalue decomposition of �̃ζ with respect to the sample covariance of u, �̃u:

�̃ζ b̃sir = λ̃�̃ub̃sir

where λ̃ is the largest eigenvalue.

The asymptotic distribution of b̃sir can be derived.
Theorem 3.1: Under the same conditions as given in Theorem 2.1, the estimate b̃sir is root
n consistent in estimating the direction of β. Moreover, there exists a version of b̃sir which
is asymptotically normal with covariance matrix

�(b̃sir) = n−1�−1
u cov

{
ẽi(ui − Eu)

}
�−1

u .

where ẽi = Ỹi − EỸi − b′sir (ui − Eu)) and bsir is the regerssion slope of Ỹ

11.3.3 Least squares with unknown L: validation

Often L is unknown and has to be estimated from another independent sample of size m,
called a validation sample, (xi ,wi), i = n + 1, · · · , n + m. Typically, m is smaller than n.
We now study the effect on our estimates in (3.1), due to the uncertainty from estimating L.
We consider the estimate of L defined by

L̂ = ĉov(x,w)�̂−1
2w , (3.8)

where ĉov(x,w) is the sample covariance between x and w and �̂2w is the sample covariance
of w, all based on the validation sample (xi ,wi), i = n+ 1 · · · , n +m. Each row of L̂ is the
usual least squares regression slope of the corresponding coordinate of x against w.

Denote ûi = L̂wi for i = 1, · · · , n and define the associated sample covariance

�̂u = L̂�̂1w L̂ ′. (3.9)

We shall replace ui ’s by ûi’s in constructing our estimates. The resulting estimates of β will
be denoted by b̂ls and b̂sir respectively. Now let

ri = xi − ui = xi − Lwi ; �rwi = (ri − Eri)(wi − Ew)′.
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Theorem 3.2: The asymptotic covariance matrix of b̂ is given by

�(b̂ls) = cov
{

I (bls)
}+�(b̃ls),

where �(b̃ls) is given by (3.3) and

cov
{

I (bls)
} = m−1cov

{
�−1

u (ui − Eu)(ri − Eri)b
′
ls

}
.

Compared to the result in section 3.1, the first term reflects the cost of estimating L.

11.3.4 SIR with unknown L: validation

After estimating L by L̂ , the SIR type estimate can be carried out in the same way as de-
scribed in Section 11.3.2. The matrix �̃ζ will be replaced by

�̂ζ = L̂�̂η L̂ ′ , where (3.13)

�̂η =
H∑

h=1

p̂h(w̄h − w̄)(w̄h − w̄)′, (3.14)

and where w̄h is the slice mean for w, (n p̂h)
−1∑

Yi∈Ih
wi . The maximum eigenvector of the

eigenvalue decomposition �̂ζ with respect to �̂u, see (3.9), is our estimate b̂sir. We shall
find the asymptotic distribution for b̂sir below.

Theorem 3.3: There exists a version of b̂sir with the asymptotic mean bsir given by (3.7)
and the covariance matrix

�(b̂sir) = cov{I (bsir)} +�(b̃sir),

where�(b̃sir) is given in Theorem 3.1, and cov{I (bsir)} is the same as the term cov{I (bls)}
given in Theorem 3.2, with bls replaced by bsir.

Remark 3.2: If � is known, then we can estimate L by �̂x�
′�̂−1

2w . The derivation of the
asymptotic distribution will be similar.
Remark 3.3: Note that the term cov{I (bsir)} (respectively, cov{I (bls)}) is the asymptotic
covariance matrix for the estimated slope when we regress b′sirx ( respectively, b′lsx) against
u based on the validation sample, if bsir (respectively, bls) were known. Thus the additional
uncertainty in our estimate due to estimating L is easy to assess. This information may be
particularly useful in planning of the sample sizes m and n.
Remark 3.4: In Theorem 3.3, we have assumed that the slices are fixed. In practice, it is
more convenient to choose approximately the same number of observations for each slice,
unless Y is discrete. This makes our procedure invariant under monotone transformations of
Y . The case that H increases as the sample size increases, in particular two observations per
slice, can be treated using the methods of Hsing and Carroll (1990).
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11.3.5 Least squares with unknown L: replication

An important special case occurs when � is known and p = q. Without loss we will take
� = I , in which case w is an unbiased surrogate for x. In many experiments, instead of
validation we will have a replicated data set, i.e.,

wi j = α + xi + δi j , j = 1, 2; i = n + 1, ..., n + m. (3.17)

If �δ is the covariance of δi j , then we find that L = I − �δ�−1
w . Define �̂δ and �̂w to be

(1/2) the sample covariance matrices of wi1 −wi2 and wi1 +wi2 respectively, and define

L̂ = I − �̂δ�̂−1
w . (3.18)

With this choice of L, the results similar to those in Section 11.3.3 can be derived.

11.3.6 SIR with unknown L: replication

In the replication model (3.17), with the estimate (3.18), the results similar to those in Section
11.3.4 go through analogously.

11.4 Statistical inference

We shall show how to apply the results of Section 3 to hypothesis testing and confidence
interval problems.

In the nonlinear measurement error model literature, hypothesis testing has not been
much discussed. An exception is the case of testing for a simultaneous null effect in all
components of x measured with error, where score test ideas can be used; see Tosteson and
Tsiatis (1988) and Stefanski and Carroll (1990). These methods do not apply for testing
components of x which are measured precisely, see Carroll (1989) for examples. We can
handle such problems using the techniques in Section 3.

Now consider the hypothesis testing problem of the form

H0 : Mβ = 0 v.s. H1 : Mβ �= 0

where M is a given r by p matrix of rank r ≤ p. For instance, if we take M = (1, 0, · · · , 0),
then r = 1 and we are testing if the first variable in x affects the response Y or not. Let
β̂ denote any estimator constructed in Section 3. In order to construct a Wald test for the
hypothesis, we need a consistent estimate �̂(β̂) of �(β̂), the asymptotic covariance of β̂.
For the least squares estimates of Sections 3.1, 3.3 and 3.5, consistent estimation of �(β̂)
is easy: just substitute population quantities by their estimates. The only point that needs a
little case is that in the population version of (3.19), the term wi1 − wi2 should be replaced
by wi1 − wi2 − m−1∑m

k=1(wk1 − wk2).
For the SIR estimates, we can use Theorems 3.1 and 3.3 to construct estimate of the

needed covariance.
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The Wald test at level α rejects the hypothesis if

β̂ ′M ′
{

M�̂(β̂)M ′
}−1

Mβ̂ > χ2
r (1− α),

where χ 2
r (1−α) is the appropriate percentage point of the chi–squared random variable with

r degrees of freedom.

11.5 Generalizations

The method based on SIR is easy to generalize to other settings. First instead of (1.1) we
may consider a model

Y = g(α + β ′x, T, ε),

where T is a stratification variable such as sex , age group, etc, so that g can be an arbitrary
function with three arguments. We assume the design distribution to satisfy the linear con-
ditional expectation condition (2.2) after conditioning on T ; namely, for any direction b in
R p, there are functions of T , c0(T ), c1(T ), such that

E(b′x|β ′x, T ) = c0(T )+ c1(T )β
′x.

It is clear that the inverse regression curves, η(y|T ) = E(w|Y = y, T ) and ζ(y|T ) =
E(u|Y = y, T ), still have the same property as given in Theorem 2.1, and (2.7):

η(y|T ) = E(u|T )+ c(y|T )�u|Tβ, (2.7′)

where c(y|T ) = (β ′�x|Tβ)−1 E(β ′(x − Ex)|Y = y, T ) and �x|T is the conditional covari-
ance of x given T . Thus when creating slices we need to use both Y and T . We can estimate
β from each stratum of T and then combine the estimates.

Under the additional assumption that �x|T does not depend on T , we can combine the
estimate of the covariance�ζ from each stratum:∑

t

∑
h

p̂h,t(ūh,t − ūt)(ūh,t − ūt)
′),

where p̂h,t is the proportion of the cases falling into slice h at stratum T = t , ūh,t is the
sample average of u for T = t and slice h, and ūt is the sample average of u for T = t .
Then we can estimate β by the largest eigenvector of this matrix with respect to�x as before.
The asymptotic property will be similar to what is discussed before. The result of Hsing and
Carroll (1990) can be used to justify the consistency property of the resulting estimate even
if the number of cases per slice is small.

Another generalization is to consider the K component model (1.2). We can use the
largest K eigenvectors of SIR (Step III of Section 3.2) to estimate the space spanned by the
β’s. We can justify our method based on the generalization of (2.7):

η(y)− E(u) falls into the space spanned by �uβ1, · · · , �uβK .

The proof of this result follows along the same line as that in the proof of Theorem 3.1 of Li
(1990a), incorporating the crucial property that E(δ|Y = y, x) = E(δ) = 0 as employed in
the proof of our Theorem 2.1.
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11.6 Data visualization

When regressors are subject to error, even when x and w are scalar, plots of Y against w
might give misleading information about the regression slope (or functions) of Y against x
(Spiegelman, 1986; Fuller, 1987). This can be the case even if the measurement error is
small (Carroll and Stefanski, 1990). Despite these possibilities, in many instances curvature
in E(Y |w) does reflect curvature in E(Y |x), and plotting Y against w may still be valuable.
This section presents a theory for informatively visualizing the data when regressors are
subject to errors.

When x is observable, the best viewing angle is β ′x under (1.1). But since x is not
available, we can at best find a projection on w so that the projected variable has the highest
correlation with β ′x to ensure the best viewing angle obtainable from w, i.e., the one that
is closest to the best view from x. From Remark 2.2 at the end of Section 2, we see that
β ′u, or its scalar multiple, is the desired variable. Since we can estimate the direction of
β by β̂, which denotes any estimate obtained earlier, we suggest plotting Y against β̂ ′u.
If the correlation between β ′x and β ′u is high, then our plot may be useful , for instance,
in suggesting the appropriate functional form in (1.1). When a validation sample of (x,w)
is available, we can use it to estimate corr(β ′x, β ′u) by considering the sample correlation
between β̂ ′x and β̂ ′u.

The following is a simulation example to see how effective our method is. We consider
two models for generating the data:

Y = (α + β ′x+ ε)2; (6.1)

Y = (α + β ′x)2 + ε. (6.2)

The first falls into the Box-Cox transformation family while for the second, the transforma-
tion is taken only for the mean response function , a special case of a “Transform–Both–
Sides”model considered by Carroll and Ruppert 1988 (c.f. Remark 6.1 below). Each co-
ordinate of x and ε are independent standard normal random variables. We set the dimen-
sion parameters as p = 6 = q, the primary sample size n = 200, the validation sample
size m = 100, and β = (1, 1, 1, 0, 0, 0)′, α = 4. The relationship between w and x will
be governed by the linear model (2.1) with p = q = 6, � = I . The distribution of
δ is normal with mean 0 and covariance being a diagonal matrix with diagonal element
(0, 1/3, 1/3, 1/3, 1/3, 1/3). Thus except for the first one, each coordinate of x is contami-
nated by an error of a size equal to .577 of its standard deviation.

Since our procedure does not require the knowledge of the functional form that generates
the data, we can apply it to both (6.1) and ( 6.2). After a hundred simulation runs, we sum-
marize the results for b̂sir in Tables 6.1 and 6.2. Since we are only interested in estimating
the direction of β, we have standardized our estimate to have unit length. For each model the
mean of b̂sir is very close to the theoretical value (.577, .577, .577, 0, 0, 0)′ = β/||β||. This
demonstrates that our procedure can avoid the bias that one normally would have anticipated
to occur without proper model specification. For instance, the naive estimate of regressing
the square root of Y against w for data generated by (6.1) gives the slope (1, .75, .75, 0, 0, 0)′

on the average, which is not proportional to β. The standard deviation of our estimate is rea-
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sonably small, compared, for instance, to the ideal value of .07 ≈ 1√
n

, the standard deviation
of the least squares estimate for β under (6.1) if the square transformation were known and
if x were observed without errors. The cosine of the angle between b̂sir and β, which is
the same as the correlation coefficient between b̂′sirx and β ′x, is very close to one, with the
lowest value in the neighborhood of .95, see the next to the last column in each table. We
considered three choices of the number of slices H = 5, 10, 20, with an equal number of
observation per slice. This illustrates the stability of our procedure in regard to the change in
H at least for this example.

Table 6.1: Summary of b̂sir = (b̂1, · · · , b̂6)
′ for model (6.1). Standard deviation and mini-

mum are in parentheses and brackets respectively.

# of slices b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 cosx corrw

5 .571 .567 .569 .001 -.002 .007 .986 .986
(.069) (.059) (.059) (.075) (.071) (.079) [.949] [.950]

10 .571 .568 .570 -.002 -.005 .004 .987 .988
(.067) ( .052) (.058) (.069) (.070) (.077) [.959] [.959]

20 .571 .569 .568 .005 -.005 .006 .986 .987
(.066) (.054) (.062) (.073) (.067) (.078) [.950] [.949]

Table 6.2: Summary of b̂sir = (b̂1, · · · , b̂6)
′ for model (6.2). Standard deviation and mini-

mum are in parentheses and brackets respectively.

# of slices b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 cosx corrw

5 .569 .573 .571 .007 .000 .002 .989 .990
(0.059) (.047) (.053) (.060) (.072) (.067) [.968] [.971]

10 .573 .571 .572 .005 -.001 .004 .990 .991
(.060) (.045) (.051) (.057) (.065) (.062) [.974] [.972]

20 .570 .573 .573 .006 -.004 .003 .990 .991
(.059) (.045) (.053) (.057) (.064) (.061) [.970] [.968]

Now to demonstrate the application of our method for data visualization, a single addi-
tional run is taken. For this realization, we found that

b̂sir = (−0.54,−0.64,−0.53,−0.03,−0.09,−0.01)′ for model (6.1);

(−0.57,−0.58,−0.56, 0.04,−0.03,−0.00)′ for model (6.2).

The estimate of the transformation L is given in Table 6.3. Then we compute b̂′sirûi =
(L̂b̂sir)

′wi for i = 1, · · · , n. The scatterplots of Yi against b̂′sirûi are given in Figures 11.1.
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Table 6.3: Estimated L.

1.00 .000 .000 .000 .000 .000
.077 .765 .030 .104 .012 .023
.038 −.006 .785 .013 .013 −.020
.012 .015 .048 .760 −.048 .107
.059 −.0619 −.044 −.063 .704 −.047
.037 −.010 −.059 .065 .046 .747



and 11.4, respectively for models (6.1) and (6.2). These plots suggest that analysis based on
transformation is reasonable to pursue further.

In Figures 11.2 and 11.5, we plot Yi against β ′ui , the best view on Y from the surrogate
variable if L and β were known. Compared to what we had seen in Figures 6.1 and 6.4, we
see that very little has been lost due to the estimation. The correlation between the variable
β ′u and our estimated variable β̂ ′u is as high as .99. The last column in each of Tables 6.1
and 6.4 gives the mean and the lowest possible value of this correlation over the same 100
simulation runs done earlier. The lowest number is still as high as .95. This suggests that
approximately the same view would be obtained from other simulation runs.

We also provide plots of Yi against β ′xi in Figures 11.3 and 11.6, the best view of the
models from the uncontaminated regressor. We find that the views obtained by our estimate,
Figures 11.1 and 11.4, are also very close to these best views. This can be attributed to the
fact that for our parameter setting, in spite of the apparent heavy contamination rate, the
correlation between β ′x and β ′u is high, equaling to about .91. Figures 11.3, and 11.6 are
supposed to be close to Figures 11.2 and 11.5 respectively, which in turn have been shown
to be similar to Figures 11.1 and 11.4.

If we have a small number of additional data points available on (Y, x), we can plot Y
against β̂ ′x as well. To illustrate this, we generate ten new data points for (Y, x) from (6.2).
The plot is given in Figure 11.7, which shows a quadratic trend well.
Remark 6.1: Carroll and Ruppert (1988) considered the Transform–Both–Sides model,
which allows another transformation on Y before getting a model like (6.2). Since our pro-
cedure is invariant under the monotone transformation, we would have obtained the same
estimate if our data were given after applying any unknown monotone transformation to Y
in the model (6.2).

11.7 A case study.

We have access to a restricted data set containing breast cancer incidence Y and x = (age,
body mass, nutient intake), the latter in this case being the logarithm of satuated fat. The
primary data set was of size n = 2800 while the validation data were of size m = 650.
The fallible version of nutrient intake was assessed in the study by an interview detailing the
previous day’s diet, while the version of truth used here was the average of 4 such interviews.



122 Errors in Regressors

The measurement error is quite large: fully more than 50% of the observed variability in fat
is error. All measurement error analyses of these data performed previously have shown a
large age effect and a negligible effect due to body mass. Some analyses show a significant
effect due to the nutrient intake, while others do not: in all cases the coefficient has been
negative.

Programming the methods discussed in this paper is very easy. This is particularly the
case for binary regression, because the least squares and SIR methods discussed in Section 3
yield identical estimates of β, in terms of unit length. In this example, the ordinary logistic
regression estimate of unit length obtained from regressing Y on w was (0.97,−0.12,−0.20)
with two–sided significance levels (.00, .68, .06). Our methods yielded estimates
(0.87,−0.14,−0.47) with two–sided significance levels (.00, .64, .02). Note that this mea-
surement error analysis yields a larger estimated relative effect due to the nutrient than did
the ordinary logistic regression. The difference in statistical significance for the saturated
fat coefficient may be due to the use of information standard errors for the ordinary logis-
tic analysis: an analysis using M–estimator techniques to construct standard errors yielded
lover significance levels. For example, if we assume that given observed fat, the true fat
is independent of age and body mass (checked by a linear regression analysis), then the
method of Rosner, et al. (1989) applied to these data yielded estimates and significance
levels (0.91,−.11,−.40) and (.00, .64, .01) respectively.

Appendix

A.1. Proof of Fisher consistency in convex regression, Remark 2.1

We use the conditional argument similar to that for the proof of Theorem 2.1 in Li and Duan
(1989). For any b ∈ R p, by Jensen’s inequality, we shall have

Eρ(Y, a + b′u) = E

[
E
{
ρ(Y, a + b′u)|β ′x, ε, β ′u

}]
≥ E

[
ρ
{

Y, a + E(b′u|β ′x, β ′u)
}]

= E

[
ρ
{

Y, a + E(b′u|β ′u)
}]

= E
{
ρ(Y, a + c0 + c1β

′u)
}
, for some real numbers c0, c1.

Here the second to the last equality is due to the fact that given β ′u, u is independent of β ′x,
a consequence of the joint normality of x and w. It is now clear that a minimizer can be
found along the direction of β, proving our claim.



Chapter 12

Censored Regression via the SIR Approach

This chapter is taken from Li, Wang, and Chen(1999).
Censoring makes high-dimensional regression analysis even more complex. One may

apply SIR directly to the regressor and see what happens. If the censoring time is independent
of the lifetime, this is fine. Otherwise, some modification is needed to adjust for the censoring
bias. A key identity leading to the bias correction is derived and the root-n consistency of the
modified estimate is established. Patterns of censoring can also be studied under a similar
dimension reduction framework.

12.1 Introduction.

Survival data are often subject to censoring. When this occurs, the incompleteness of the
observed data may induce a substantial bias in the sample. Several approaches have been
suggested to overcome the associated difficulties in regression, including the accelerated
failure time model, censored linear regression, Cox proportional hazard model, and many
others. Survival analysis becomes even more intricate when the dimension of the regres-
sor increases. To apply any of the aforementioned methods, users are required to specify a
functional form which relates the outcome variable to the input ones. However in reality,
knowledge needed for an appropriate model specification are often inadequate. As a matter
of fact, the acquisition of such information may well turn out to be just one of the primary
goals of the study itself. Under such circumstances, it seems preferable to have exploratory
tools that rely less on such model specification. We shall see how our dimension reduction
approach can be extended to settings which allow for censoring in the data. We shall offer
methods of finding low-dimensional projections of the data for visually examining the cen-
soring pattern. We shall show how censored regression data can still be analyzed without
assuming the functional form a priori.

Recall the dimension reduction model from Chapter 1 :

Y = g(β ′1x, · · · , β ′kx, ε). (1.1)

To incorporate censoring into the dimension reduction framework, let

Y o = the true (unobservable) lifetime,
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C = the censoring time,

δ = the censoring indicator; δ = 1, if Y o ≤ C, and δ = 0, otherwise.

Y = min{Y o,C}, the observed time.

We assume that

Y o follows model (1.1), (1.2)

Conditional on x, C is independent of Y o. (1.3)

The observed sample consists of n i.i.d. observations, (Yi , xi , δi), i = 1, ...., n from the
distribution of (Y, x, δ). The continuous random variables, Y o,C , are not observed. Condi-
tion (1.3) is the usual independence assumption to ensure identifiability under the random
censoring scheme. If (1.3) is violated, then one needs more information on the censoring
mechanism to build an appropriate model. This is not considered in this paper.

For k = 1, our formulation may include the generalized linear model (McCullagh and
Nelder 1989) and the linear transformation model (Doksum 1987) as special cases. The latter
also includes several survival analysis models such as the accelerated failure time model, the
proportional hazard model, the proportional odds model, and the logit and probit models
(Doksum and Gasko 1990).

For exploratory purpose, we may want to temporarily ignore the presence of censoring
and apply SIR on (Y, x). But the question is what can be inferred from the output. How
does censoring affect SIR estimates? The answer depends on the relationship between the
censoring time C and the regressor x. The independence case in which

C is independent of x, and Y o. (1.4)

is easy and will be treated first. The dependence case is more complicated. Of special
interest to us is the one that uses a dimension reduction assumption on the censored time C
as a counterpart of (1.2):

C = h(γ ′1x, · · · , γ ′cx, ε′). (1.5)

12.2 SIR under the independence assumption (1.4).

Denote the uncensored inverse regression curve by ηo(yo) = E(x|Y o = yo). Without cen-
soring (i.e., Y = Y o), the population version of SIR is based on the following eigenvalue
decomposition:

�ηo bi = λi�xbi , (2.1)

λ1 ≥ · · · ≥ λp,

where
�ηo = cov(E(x|Y o)), (2.2)

and
�x = cov(x).
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The justification for using the first k eigenvectors bi with nonzero eigenvalues to estimate
the e.d.r. (lifetime) directions follows from Theorem 2.1 in Chapter 2, which can be stated
as follows:

Lemma 2.1.Assume that the dimension reduction assumption (1.2) holds. Then for any yo,
�−1

x (ηo(y)− E(x)) falls into the e.d.r. (lifetime) space under the condition that

for any vector b, E(b′x|β ′1x, · · · , β ′kx) is linear. (2.3)

Design condition (2.3) is called the (L.D.C.) earlier and is extensively Discussed in
Chapter 8.

Censoring alters the distribution of the observed time Y . Its effect on SIR can be studied
by comparing the censored inverse regression curve η(y) = E(x|Y = y)with the uncensored
one ηo(yo). By conditioning, we have

E(x|Y = y) = E(E(x|Y o,C)|Y = y). (2.4)

Under (1.4), E(x|Y o,C) is equal to E(x|Y o), implying that

E(x|Y = y) = E(ηo(Y o)|Y = y). (2.5)

Since Lemma 2.1 applies to ηo(yo), the following result is obtained.

Lemma 2.2. Assume that (1.2) and (1.4) hold. Then �−1
x (η(y)− E(x)) falls into the e.d.r.

lifetime space under (2.3).
The sample version of SIR can be implemented as described before without change.

With Lemma 2.2, we can obtain the root-n consistency of SIR estimates b̂i for finding e.d.r.
lifetime directions. Thus censoring does not introduce bias to SIR. But this is true only when
the censoring time is independent of the regressors and the true lifetime. Without (1.4), this
appealing result vanishes and substantial bias may be induced by censoring under the more
general condition (1.3).

12.3 A strategy for modifying SIR under (1.3).

An ideal way of bypassing the difficulties caused by general censoring (1.3) is to slice the
true survival time Y o. At first sight, this does not appear feasible because under censoring,
Y o is unobservable. But the promise comes from an identity derived in Section 3.1, which
relates the conditional expectation of x in each slice to the observed time Y and the censored
indicator. This leads to a modified slicing step by a suitable weighting scheme for offsetting
the censoring bias in estimating the slice means. The consistency of this new procedure is
discussed in Section 3.2.



126 Censored Regression via the SIR Approach

12.3.1 An identity.

Let 0 = t1 < t2 < · · · < tH < ∞ = tH+1 be a partition on the survival time. The expected
value of x in a slice, m j = E{x|Y o ∈ [t j , t j+1)}, can be written as

m j = E{x1(Y o ∈ [t j , t j+1))}
P{Y o ∈ [t j , t j+1)} = E{x1(Y o ≥ t j )} − E{x1(Y o ≥ t j+1)}

E{1(Y o ≥ t j )} − E{1(Y o ≥ t j+1)} , (3.1)

where 1(·) is the indicator function. The two numerator terms take the same form which
involves the unobservable indicator 1(Y o ≥ t). They can be converted into terms with Y and
δ via the identity:

E{x1(Y o ≥ t)} = E{x1(Y ≥ t)} + E{x1(Y < t, δ = 0)w(Y, t, x)}, (3.2)

where for t ′ < t ,

w(t ′, t, x) = So(t |x)
So(t ′|x), (3.3)

So(t |x) = P{Y o ≥ t |x} = conditional survival function for Y o, given x. (3.4)

I

II

C

Y
o

censored
region

observed region

Figure 12.1: Integration regions.

Consider the plane of variables Y o and C in Figure 12.1. The integration region Y o ≥ t
is decomposed into two parts. The first region (area I in Figure 12.1) with Y o ≥ t,C ≥ t ,
or equivalently, Y ≥ t , contributes to first term on the right side of (3.2). The second region
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with Y o ≥ t,C < t , falls into the censored area, δ = 0. It is contained in the larger region
(dashed area II in Figure 12.1) with Y < t and δ = 0. The second term on the right side
of (3.2) comes from integration over this larger region with the weight adjustment w(·, ·, ·).
Conditioning is the key to justify this term:

E{x1(Y o ≥ t,C < t)} = E{x1(Y < t, δ = 0)1(Y o ≥ t)}
= E{x1(Y < t, δ = 0)E[1(Y o ≥ t)|Y, δ = 0, x]}
= E{x1(Y < t, δ = 0)E[1(Y o ≥ t)|C, Y o > C, x]}
= E{x1(Y < t, δ = 0)w(C, t, x)}
= E{x1(Y < t, δ = 0)w(Y, t, x)}.

Here the next to the last equality is due to the conditional independence assumption (1.3)
which assures that conditional on x, the probability for the true survival time Y o to exceed t
given C = t ′ and Y o ≥ t ′ is equal to the conditional probability given by (3.3).

By a similar argument, the denominator terms can be converted via the identity:

E{1(Y o ≥ t)} = E{1(Y ≥ t)} + E{1(Y < t, δ = 0)w(Y, t, x)}. (3.5)

The weight function (3.3) can be further expressed as

w(t ′, t, x) = exp{−�(t ′, t |x)}, (3.6)

where

�(t ′, t |x) = E{1(t
′ < Y < t, δ = 1)

SY (Y |x) |x},
SY (·|x) = the conditional survival function of Y conditional on x.

(3.6) follows from the well-known relationship between survival functions and cumulated
hazards; for a proof, see Appendix A. The term�(t ′, t |x) is simply the integrated conditional
hazard (given x) function over the interval [t ′, t].

12.3.2 Estimation.

To construct an estimate for m j , we replace each expectation term in (3.2) and (3.5) by the
corresponding first sample moment:

m̂ j = Ê{x1(Y o ≥ t j )} − Ê{x1(Y o ≥ t j+1)}
P̂{Y o ≥ t j } − P̂{Y o ≥ t j+1}

(3.7)

Ê{x1(Y o ≥ t)} = n−1
n∑

i : Yi≥t

xi + n−1
n∑

i : Yi<t,δi=0

xi · ŵ(Yi , t, xi) (3.8)

P̂{Y o ≥ t} = #{i : Yi ≥ t}/n + n−1
n∑

i : Yi<t,δi=0

ŵ(Yi , t, xi) (3.9)
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where ŵ(·, ·, ·) denotes an estimate of the weight function (3.3) to be discussed later.
After estimating each slice mean by (3.7) , we can form the covariance matrix of the slice

means in the usual way:

�̂ηo =
∑

j

(m̂ j − x̄)(m̂ j − x̄)′ p̂ j

p̂ j = P̂{Y o ≥ t j} − P̂{Y o ≥ t j+1}

Finally, we may conduct the eigenvalue decomposition as before to find the SIR directions:

�̂ηo b̂o
i = λ̂i�̂xb̂o

i , (3.10)

λ̂1 ≥ · · · ≥ λ̂p.

Smoothing is needed in estimating w(t ′, t, x). There are several ways to proceed. For
example, we can apply Beran’s estimates for conditional survival functions and their vari-
ants. Under appropriate conditions, Beran(1981) and Dabrowska(1987, 1992) established
the consistency of their estimates at convergence rates (slower than the root n rate) similar
to those commonly found in nonparametric regression. These consistency results lead to the
consistency of m̂h as an estimate of mh . It is easy to see that �̂ηo is also consistent for the
covariance matrix of the slice means mh’s. As in Li(1991), we can apply Lemma 2.1 to
establish the consistency of b̂i as estimates of e.d.r. lifetime directions.

Despite the slow rate of convergence in estimating conditional survival functions (hence
the weight (3.3)), it is still possible to establish the root n convergence for m̂h . We only
consider the kernel smoothing method here for simplicity. Let K p(·) be a kernel function on
R p and hn be the bandwidth in each coordinate. We shall assume that hn = o(1) and nh p

n

tends to infinity. Further constraints will be imposed later. It is common for K p(·) to take a
product form : K p(x1, · · · , xp) = K (x1) · · · K (xp), for some one-dimension kernel function
K (·). Our kernel estimate of (3.6) is defined by setting

�̂(t ′, t |x) = n−1∑n
i : t ′<Yi<t,δi=1(ŜY (Yi |xi))

−1h−p
n K p(h−1

n (xi − x))

f̂ (x)
, (3.11)

ŜY (Yi |xi) =
n−1∑n

j : Y j>Yi
h−p

n K p(h−1
n (x j − xi))

f̂ (xi)
, (3.12)

f̂ (x) = n−1
n∑
i

h−p
n K p(h

−1
n (xi − x)). (3.13)

Under the regularity conditions , one can show that m̂h is a root-n consistent estimate for
mh, h = 1, · · · , H. This in turn implies that b̂h is a root-n consistent estimate for an e.d.r.
direction.

Assume that f (·) and S(·|x) are d-times continuously differentiable and that the kernel
function satisfied the moment conditions :

∫
xi K p(x)dx = 0 for i = 1, · · · , d − 1, and∫

xd K p(x)dx is nonzero. Then the regularity assumptions needed can be satisfied with
bandwidth h ∝ n−1/2d provided p ≤ d.
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What we have presented so far in this section is a general strategy for offsetting the
bias due to censoring. However, a direct application of this method may not help much in
practice. The problem is that kernel smoothing only works well in the low dimensional case.

12.4 Dimension reduction model for censoring time.

Analyzing the censoring pattern is an important step in studying the censored data. It helps
the recognition of the information-poor region in x, the region where censoring is heavy
and the regression structure is thus harder to explore. Sometimes, such analysis may even
become a primary part of the study. In some industrial applications, Y o may be the potential
yield of a production process and censoring C may occur because of machine malfunctioning
for example. In addition to learning how various input variables x may affect the potential
yield, quality-control engineers may equally be interested in how they affect the censoring
rate- they need such knowledge to prevent machine malfunctioning as much as possible.

Like its counterpart Y o, we now assume that the censoring time C also has a dimension
reduction structure given by (1.5). Again, the functional form of h and the distributional
form of ε′ are both unspecified. This model suggests only that the dimension of the regressor
can be reduced from p to c. The relationship between the e.d.r. space for the censoring time
and the e.d.r. space for the true lifetime is arbitrary. They can be either identical, partly
overlapped, or disjoint. Linear combinations of their elements form a space which will be
called the joint e.d.r. space. If Y o and C were used for slicing, then by the same argument
used in deriving Lemma 2.1, it is easy to see that

�−1
x (E(x|Y o,C)− E(x)) falls into the joint e.d.r. space. (4.1)

But instead of (Y o,C), we can only observe Y and δ. This suggests that Y and δ can
be used simultaneously for slicing. Let ηd(Y, 0) = E(x|Y = y, δ = 0), and ηd(Y, 1) =
E(x|Y = y, δ = 1). We may replace (2.1) with

Cov(ηd(Y, δ))bi = λi�xbi , (4.2)

λ1 ≤ · · · ≤ λp.

By conditioning, E(x|Y, δ) = E(E(x|Y o,C)|Y, δ)). Thus from (4.1), we see that

�−1
x (ηd(y, δ)− E(x)) falls into the joint e.d.r. space.

This justifies the use of eigenvectors from (4.2) to estimate the joint e.d.r. space.
The sample version of (4.2) is easy to carry out. Denote the number of slices for the

uncensored (δ = 1 ) observations by H1. Let I1 j , j = 1, · · · , H1 be a partition of the
positive real line into non-overlapping intervals. Similarly, denote the number of slices for
the censored (δ = 0) observations by H0, and let I ′0 j , j = 1, · · · , H0 be another partition of
the positive real line. We first form the individual slice means by taking

x̄l j = (n p̂l j )
−1

n∑
i=1

xi 1(δi = l, Yi ∈ Il j ),
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where p̂l j is the proportion of cases with δi = l falling into interval Il j . Then we compute
the covariance matrix for the slice means, �̂d =

∑
l

∑
j p̂l j (x̄l j − x)(x̄l j − x). Finally we

conduct the eigenvalue decomposition:

�̂d b̂di = λ̂di�̂xb̂di , (4.3)

λ̂d1 ≥ · · · ≥ λ̂dp.

Note that the chi-squared test for determining the number of significant e.d.r. directions
obtained by SIR can also be used for the double-slicing case.

Example 4.1. Take p = 6 and let x = (x1, · · · , x6)
′ be generated from the standard normal

distribution. Suppose

Y o = 4− (|x1 − 1|)+ σ1ε1,

C = 3+ σ2ε2, for x1 > 0, x2 + x3 > 0

= 10, otherwise

where σ1 = σ2 = 0.1, ε1, ε2 are normal random variables. Generate 300 cases. 66 obser-
vations in the data set are censored. Now apply double-slicing with the number of slices
equal to 5 and 10, respectively for the censored and the uncensored groups. The eigenval-
ues of SIR are found to be .76, .35, .08, .06, · · ·, indicating that the first two eigenvectors,
b̂d1 = (1.14, .05,−.03,−.00,−.04, .04)′ and b̂d2 = (−.06, .69, .74,−.02,−.10,−.05)′ ,
are important. This is confirmed by the chi-squared test in Li(1991).

The joint e.d.r. directions (1, 0, 0, 0, 0, 0)′ and 1√
2
(0, 1, 1, 0, 0, 0)′ are captured success-

fully by b̂d1 and b̂d2. The censored cases are found to cluster in the first quadrant in the
plot of the first two SIR variates; see Figure 12.2(c). The statistical information about the
behavior of the true lifetime in that region is very little.

Y

XZ

(a) (b) (c)

X

ZY

X
Z

Figure 12.2: 3-D scatterplot of Y against the first two SIR variates found by double-slicing.
The highlighted points are censored.
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12.5 Implementation of modified SIR.

The directions found by double slicing can be used to relieve the difficulties encountered in
Section 3 when kernel smoothing is to be applied for estimating the weight function (3.3).
Under the dimension reduction assumptions for both the true lifetime and the censoring time,
(1.2) and (1.5), it is easy to see that the dependence of the weight function (3.3) on x is only
through joint e.d.r. variates. This suggests the following two-stage procedure:

(1) Apply double-slicing on (Y, δ) and find the joint e.d.r. directions, b̂di . Let B̂r =
(b̂d1, · · · , b̂dr ) be the matrix formed by the first r significant directions.

(2) Apply r -dimensional kernel smoothing on B̂ ′rx, to obtain the weight function ŵ:

ŵ(t ′, t, x) = exp{−�̂(t ′, t |x)} (5.1)

where

�̂ ∗ (t ′, t |x) = n−1∑n
i : t ′<Yi<t,δi=1(ŜY (Yi |xi))

−1h−r
n Kr (h−1

n (B̂r(xi − x)))

f̂ (x)
(5.2)

ŜY (Yi |xi) = max

{
n−1∑n

j : Y j>Yi
h−r

n Kr (h−1
n (B̂r(x j − xi)))

f̂ (xi)
, c

}
(5.3)

f̂ (x) = n−1
n∑
i

h−r
n Kr(h

−1
n B̂r ((xi − x))). (5.4)

Note that a small positive number c (set to .05 in our examples) is used to bound ŜY (Yi |xi)

away from zero. This is needed in order to increase the stability of the factor ŜY (Yi |xi)
−1 in

(5.2). After estimating the weight function, we can apply (3.7) ∼ (3.9) and then carry out
the eigenvalue decomposition (3.10) to obtain estimates of e.d.r. lifetime directions.

We first conduct two simulation studies to illustrate how this strategy works. Then we
apply our method to a data set concerning a study of the primary biliary cirrhosis in the liver
(PBC).

Example 5.1. We take p = 6 and generate x = (x1, · · · , x6)
′ from the standard normal

distribution. The true survival time Y o and the censoring time C are generated from

Y o = − log ε1

ex1
;C = − log ε2

ex2

where ε1, ε2 are independent uniform random variables from [0, 1]. Conditional on x, Y o and
C are seen to follow the exponential distributions with the natural parameters λ1, λ2 linking
to x via λ1 = ex1; λ2 = ex2, respectively.

We obtain 300 independent observations of (Y, δ), among them 138 cases are censored.
We proceed with the SIR analysis. First, the method of double slicing on Y and δ as de-
scribed by (4.3) gives eigenvalues 0.34, 0.27, 0.05, · · ·. The first two eigenvectors, b̂d1 =
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(−.67,−.70,−.08, .06, .11, 0.15)′ and b̂d2 = (.69,−.73, .12,−.04,−.10,−0.12)′ , are close
to the joint e.d.r. space for Y o and C . We use these two directions to reduce the x dimension
before estimating the weight function w(·, ·, ·). With the weight adjustment given by (5.1),
we perform SIR as described by (3.7) ∼ (3.10) to find the e.d.r. lifetime directions. The
eigenvalues are .40, .10, .03, · · ·, and the leading eigenvector is
b̂o

1 = (−.92,−0.12,−0.21, .08, 0.25, 0.11)′ . We see that b̂o
1 is quite close to the true e.d.r.

lifetime direction (1, 0, · · · , 0)′.
For comparison, we also carry out the SIR analysis on Y without weight adjustment as if

the censoring were independent of x. The first direction,
(−.68,−.69,−.058, .07, 0.13, 0.08)′ , does have a substantial bias. Therefore the weight
adjustment is crucial in this example.

We used the bivariate normal kernel function here and the bandwidth is set at .18. The
sensitivity to the bandwidth choice seems mild.

Example 5.2. Important prognostic variables affecting the hazard rate may be different at
different survival stages. In this example, we assume that the true survival time Y o follows an
exponential distribution with the natural parameter equal to e2x1 until time τ = log2. From
time τ on, the additional survival time follows the exponential distribution with the natural
parameter e3x2. More specifically, we assume

Y ∗ ∼ exponential with parameter λ = e2x1,

Y ∗∗ ∼ exponential with parameter λ = e3x2,

Y o = Y ∗1(Y ∗ < τ)+ (τ + Y ∗∗)1(Y ∗ > τ).

The censoring time C follows an exponential distribution with parameter equal to ex3−1.
Again 300 independent observations of (Y, δ) are obtained. Among them, 98 cases are

censored. The output of the double slicing procedure is given in Table 5.1. The first three
eigenvectors, which have relatively larger eigenvalues compared to the rest, are then used in
estimating the weight function for finding the true e.d.r. lifetime directions. After the weight
adjustment, the final output of SIR is given in Table 5.2. Now we see that only the first two
eigenvectors stand out and the important variables x1 and x2 can be identified.

Table 5.1: The first three eigenvectors and eigenvalues of SIR for Example 5.2 with the
double-slicing procedure.

first vector (-.93, -.11, .03, .03, .04, -.06)
second vector (.09, -.76, -.60, -.01, .03, -.13)
third vector (-.10, .55, -.73, -.03, -.02 .27)
eigenvalues (.52, .21, .15, .03, .01, .01)

Example 5.3. The PBC data set collected at the Mayo Clinic between 1974 and 1986 has
been analyzed in the literature. The data set and a detailed description can be found in
Fleming and Harrington(1991). There are originally seventeen regressors. Fleming and
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Table 5.2: The first two eigenvectors and eigenvalues of SIR for final result of Example 5.2
with weight adjustment.

first vector (-.97, -.15, .10, -.04, .10, -.15)
second vector (.16, -.95, -.18, -.02, -.06, -.20)
eigenvalues (.66, .34, .05, .04, .02, .02)

Harrington selected five of them in their final equation for fitting a Cox proportional model.
These five regressors plus another variable, the platelet count (x5 below), will be used in this
illustration:

Y = number of days between registration and the earlier of death or censoring

δ = 1 if Y is due to death; 0 otherwise

x1 = Age in years

x2 = presence of edema

x3 = Serum bilirubin, in mg/dl

x4 = Albumin, in gm/dl

x5 = Platelet count

x6 = prothrombin time

Cases with missing values are ignored and there are 308 cases remaining. We first apply
double censoring with slice numbers H1 = H0 = 10. The first two directions are significant,
as judged from the sequence of output eigenvalues 0.55, 0.15, 0.05, 0.0, 0.0, 0.0. Figure
12.3 shows the scatterplot of the first two SIR variates. Two outliers labeled as 104 and 276
are found from the 3-D plot(not shown here) of Y against the first two SIR variates. They
are removed. We apply double slicing again to the remaining 306 cases. The SIR output
essentially remains the same. This suggests that the dimension of the joint e.d.r. space is
two.

We proceed to find the true e.d.r. lifetime directions. We take r = 2 and use the two
SIR directions reported in Table 5.3 to reduce the x dimension before estimating the weight
function. The kernel function and the bandwidth are the same as in Example 5.1. The output
of the weighted SIR is given in Table 5.4. Judging from the eigenvalue sequence, the first
direction b̂o

1 is clearly important. The second direction is also worth further examination.

Figure 12.4(a)(b) show the scatterplots of Y against b̂o
1

′
x and against b̂o

2

′
x.

Earlier analysis in Fleming and Harrington(1991) yields that the true lifetime depends on
x through the variate Q = 0.0333x1+0.7847x2+0.8792logx3−3.0553logx4+3.0157logx6.

This variate turns out highly correlated with the first SIR variate b̂o
1

′
x; the correlation coef-

ficient is
√

0.858. The correlation between Q and 1.3b̂o
1

′
x − 0.25b̂o

2

′
x is equal to

√
0.89.

Variable x5 makes very little contribution to the first two SIR variates, with a squared mul-
tiple correlation of only 0.11. This is consistent with Fleming and Harrington’s finding that
platelet count is not important.
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Figure 12.3: Scatterplot of the first two SIR variates found by double-slicing. x = observed,
square = censored cases.

Table 5.3: The first two eigenvectors and eigenvalues of SIR for the PBC data in Example
5.3.

first vector (.02, 1.04, .10, -.50, -.00, .39)
second vector (.02, -1.62, .17, -.97, -.00, -.87)
eigenvalues (.54, .16, .05, .01, .00, .00)

Finally, we estimate the censoring e.d.r. directions by reversing the roles of censoring
time and the true lifetime. This amounts to replacing δ with 1− δ throughout our estimation
procedure. The output is given by Table 5.5 and Figure 12.5. The assumption of independent
censoring (1.4) is seen to be invalid for this data set. We further notice that the first censoring
time direction is quite close to the first lifetime direction. The correlation coefficient between
the first lifetime SIR variate and the first censoring SIR variate turns out to be

√
0.93.

Some caution needs to be taken regarding the design condition. Of the special concern
is the second regressor (presence of edema) which is discrete and takes only three values (0,
0.5, 1). Nevertheless, the corresponding regression coefficient from Table 5.4 is 0.90, which
is quite close to the coefficient 0.7847 based on Cox proportional hazard model. A further
study would be to carry out another SIR analysis by focusing on the group with x2 = 0.
The other groups have only 29 and 19 cases and thus it is not feasible to carry out separate
analyses for them.
Remark 5.1. In both of our simulation examples, we take p = 6. As the regressor dimension
p gets larger, the problem certainly gets harder and one might expect the performance of our
procedure to deteriorate as well. To study this effect, we vary p from 6 to 10, 15, and 20. The
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Figure 12.4: Scatterplot of Y against the first two lifetime SIR variates. x = observed, dot =
censored cases.

Table 5.4: The first two eigenvectors and eigenvalues of the lifetime SIR directions for the
PBC data in Example 5.3.

first vector (.02, .90, .09, -.62, -.00, .38)
second vector (.03, -2.3, .20, -.28, -.00, -.68)
eigenvalues (.54, .16, .05, .02, .01, .00)

sample size is kept the same, n = 300. For each simulation run, we compute an R-squared
term for evaluating how close to the true e.d.r. life time directions the estimated directions
are. For the setup of Example 5.1 which has only one true e.d.r. life time direction, the R-
squared term is simply the squared correlation coefficient between b̂o′

1 x and β ′1x. Since β ′1x =
x1, the R-squared term is equal to the square of the first coordinate of b̂o

1. Table 5.6 (left-
side panel ) gives a summary of the R-squared values for 100 simulation runs in each case.
For comparison, the R-squared values for the SIR estimate without the weight adjustment
are given in the right-side panel. We can see that the improvement for the modified SIR
procedure is still substantial for p as large as 20.

The setup of Example 5.2 has two true e.d.r. life time directions. For the first modified
SIR direction, the R-squared term is just the R-squared value for regressing b̂o′

1 x against β ′1x

Table 5.5: The first two eigenvectors and eigenvalues, of the censoring time SIR variates for
the PBC data in Example 5.3.

first vector (.01, 1.43, .05, -.42, -.00, .55)
second vector (.02, .38, -.15, 1.22, .00, .85)
eigenvalues (.39, .22, .05, .03, .01, .00)
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and β ′2x linearly. This is equal to the sum of the square of the first two coefficients in b̂o. The
R-squared value for the second modified SIR direction is defined similarly. A summary for
100 simulation runs is given in Table 5.7.

Table 5.6: Performance of modified SIR as the number of regressors(p) increases under the
setting of Example 5.1 with 100 runs.

mean(standard deviation) for R2

p Modified SIR Original SIR
6 .9172(0.0599) .4751(0.1100)
10 .8630(0.0632) .4736(0.0937)
15 .7963(0.0899) .4322(0.0915)
20 .7576(0.0815) .4152(0.0881)

Table 5.7: Performance of modified SIR as the number of regressors(p) increases under the
setting of Example 5.2 with 100 runs.

mean(standard deviation) for R2

0 First modified SIR direction Second modified SIR direction
6 .9730(0.0237) .9132(0.0689)
10 .9434(0.0270) .8455(0.0739)
15 .9239(0.0267) .7911(0.0755)
20 .8933(0.0340) .7149(0.1017)

12.6 Conclusion.

We have demonstrated how to extend the dimension reduction method of SIR to censored
data. The extension is straightforward if censoring time is independent of the regressor. SIR
can be applied to the observed data (Yi , xi) directly. But if censoring time depends on the
regressor, then SIR needs to be modified. We introduce a weight function in estimating
the slice means. The estimation of the weight function requires nonparametric smoothing.
There are two options. The first one is to apply the kernel smoothing method of Section
3. This is feasible only if the number of regressors is small (e.g. p ≤ 3) or if the sample
size is substantially large. The other option, which seems more realistic, is the two-stage
procedure of Section 5. We conduct a double-slicing SIR first to reduce the dimension of x
before applying kernel smoothing. This two-stage procedure relies on condition (1.5) which
assumes that the censoring variable also has a dimension reduction structure with respect to
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the regressor. This assumption appears reasonable and it offers the possibility to examine the
censoring pattern visually.

The main feature that distinguishes our approach from most other methods in survival
analysis is that it does not require the estimation of g at the dimension reduction stage of
data analysis. Instead, after the dimension is reduced, the estimation of g can be pursued by
applying any low dimensional smoothing methods. Furthermore, our approach can be used
to check if a popular survival model is appropriate by examining the eigenvalues and the
low dimensional plots generated by SIR. These plots provide valuable information about the
general pattern of censoring, possible presence of outliers, and the shape of the regression
surface.

Imputation is a powerful way of dealing with the incomplete censored observation. We
can impute the censored Y observation first and then apply SIR directly to the imputed data.
One possible imputation method is given in Fan and Gijbels(1995). While their method is
effective for one or two regressors, it is not appropriate in the higher dimensional situation.
A feasible alternative is to apply the dimension reduction method as outlined in this article
first, and then apply imputation to the reduced variables. This prospect merits further study.

The proof of root n consistency as outlined in Appendix B can perhaps be improved with
less strenuous assumptions. While this requires further theoretical investigation, it should
not affect the applicability of the procedure proposed here.

Appendices

A. Derivation of (3.6).

It suffices to show that

So(t |x) = exp{E[
1(t < Y, δ = 1)

SY (Y |x) |x]}. (A.1)

First, the conditional independence assumption (1.3) implies that SY (y|x) = So(y|x)SC(y|x),
where SC(y|x) = P{C > y|x}. Using this relationship, the expectation term in (A.1) can be
written as

E{1(t < Y, δ = 1)

SY (Y |x) |x} = E{1(t < Y o)1(Y o < C)

So(Y o|x)SC(Y o|x) |x}

= E{ 1(t < Y o)

So(Y o|x)SC(Y o|x)E(1(Y o < C)|x, Y o)|x}

By (1.3) again, we have E(1(Y o < C)|x, Y o) = SC(Y o|x). The last expression is seen to
become

E{1(t < Y o)

So(Y o|x) |x}

The rest of the derivation is straightforward from the relationship between the hazard and the
survival functions. ♦
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Chapter 13

PHD-aided Analysis of Variance for Two
Level Factorial Designs

While the method of principal Hessian direction is primarily developed for dealing with
continuous input variables, its application for data obtained by designed experiments is also
noteworthy. We shall discuss the important case of two-level complete factorial designs.
This chapter is taken largely from Filliben and Li(1997).

13.1 Traditional analysis for 2p factorial designs.

The primary components of a traditional analysis consist of

(1). least squares estimated effects–ranked via magnitude;

(2). half-normal probability plot of estimated effects;

(3). residual standard deviation for various models;

(4). parsimonious fitted model.

The default general model for 2p full factorial experiments is

Ey = µ+ 1

2
(

p∑
i

αi xi +
∑
i< j

αi j xi x j +
∑

i< j<k

αi j k xi x j xk + · · ·) (13.1)

Here each factor xi takes on the coded values +1 and -1, µ is the general additive con-
stant, αi are main effects, αi j are two-term interactions, etc. The magnitude of αi is the
expected change in the response as we proceed from the −1 setting of factor i to the +1
setting of factor i. The advantage of this model is that (1). its coefficients have a natural
interpretation (= expected change in the response); (2) the form for the maximum likelihood
and least squares estimates of the coefficients is trivial (= difference of 2 averages); and (3)
the prediction equation yields a perfect fit (at all 2 p sample points). In addition, all effects
can be estimated by the Yates algorithm. The disadvantage of this model is that it has a large
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number (2p) of terms, and so even for moderate p (such as p = 10), the model becomes
unwieldy. Fortunately in practice, methods exist for pruning out most terms from the orig-
inal default model so as to produce a more parsimonious and more manageable prediction
equation.

13.1.1 Digital-to-analog converter error.

A p-bit DAC (digital to analog converter) (see, Soulders and Stenbakken 1985, Stenbakken,
G. N. et. al. 1985, Stenbakken, G.N. and T. M. Souders 1987, Stenbakken, G.N., T. M.
Souders, and G.W. Stewart 1989, Souders T.M., and G. N. Stenbakken 1990) is a device
which has a total of 2p code states, each code state being a combination of 0 (low level
voltage) or 1 (high level voltage) for each of p bits. Such systems have a quite natural 2-level
factorial design representation: the response variable Y being the converter’s measured error
(= the difference between the pre-conversion digital voltage and the post-conversion analog
voltage at a given code state), the control factors being the individual p bits, and the factor
levels being the individual bit settings (low and high).

The data set for DAC to be analyzed here came from a 210 full factorial design. The sam-
ple size is of course n = 210 = 1024. The response variable y is converter error–the difference
between the pre-conversion digital voltage and the post-conversion analog voltage. The 10
factors are the 10 bits in the DAC.

Table 13.1 presents the ranked effects for the first 25 out of the 1023 estimated effects.
Note that several of these large effects are 2-term and even 3-term interactions. The normal
probability plot of all 1023 estimated effects is given in figure 13.1. It appears that all of
these top 25 (and perhaps more) effects are significant. Any reasonably fitted models would
thus include many terms. The presence of 2-way and 3-way interactions makes it hard to
interpret the predicting equation.

Figure 13.1: Normal plot of estimated effects for A-D cnverter
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Table 1.1: Largest 25 effects from Yates analysis for the D/A converter.

Indentifier Effect T-value
Mean - .24024

9 - .87372 - 130.7
5 .72651 108.7
6 - .43429 -65.0
4 .41247 61.7
7 .30054 45.0
10 - .25472 -38.1

9,10 .23835 35.7
3 .20031 30.0

8,9,10 -.16659 -24.9
8,10 .16114 24.1

2 .12872 19.3
1 .12473 18.7

8,9 .09420 14.1
7,9,10 - .09387 -14.0

7,9 .09313 13.9
7,10 .08108 12.1
5,10 - .05616 -8.4
4,10 -.02798 -4.2
3,10 -.02303 -3.3

7,8,10 .02195 3.3
5,9 -.02097 -3.1

13.1.2 Effect abundance.

Research on methods of identifying significant effects in the analysis of factorial designs has
been rekindled recently. Alternatives to the usual normal probability plot and half-normal
probability plot have been proposed; e.g., Box and Meyer (1986), Lenth (1989), Dong
(1992). When viewed as a regression model fitting/selection problem, then one could also
include well-known criteria such as Mallows’ C p (Mallows 1973), cross-validation (Stone
1974, Geisser 1975), generalized cross-validation (Golub, Heath, and Wahba 1979), or the
recent Bayesian method of Mitchell and Beauchamp (1988).

The aforementioned new procedures are based on the assumption of ”effect sparsity”
(Box and Meyer 1986), namely that there are only a few non-zero main or interactions. Thus
once these significant effects are found and the response function (= prediction equation) is
constructed, we can easily provide answers to the typical subsequent questions: What is the
predicted response at new level combinations? What are the optimal settings for achieving a
specified goal? Where should we run our next experiment?
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But the problem that we faced in the D-to-A converter example is quite the opposite of
“effect sparsity”. Since many interaction terms are non-zero, we have, by definition, “effect
abundance”. Effect abundance raises many important new questions.

The first group of questions concern the merit of the single prediction equation which
presumably is valid for all level combinations. Can this global equation be improved upon?
Are the predicted values equally good over the entire domain? How reliable are the results if
in some applications, the equation is to be applied for interpolating and extrapolating to other
regions of input variables? Are the coefficients in the prediction equation highly sensitive to
which sub-domain of the data we are in? Are certain coefficients more stable, invariant, and
robust over the entire data domain than others? Could improved (parsimonious and better-
fitted) sub-models be derived for certain sub-domains? Would our insight be improved by
replacing (or at least augmenting) the global prediction equation with a series of simpler
local sub-domain prediction equations? If so, what is the least number of sub-domains that
we could derive that would have linear (the ultimate in parsimony) sub-models.

The second group of questions concern the interpretability and readability of a final anal-
ysis from the scientist’s point of view . The popularity of two level complete factorial designs
is often attributed to its simplicity in interpreting the analysis results which are based on the
notions of main effects and interactions of any order. Main effects require nothing but com-
mon sense to understand. The notions of interactions are still crystal clear in definition. One
by one, they can be understood well by disciplined scientists so that at the end of analysis,
a clear picture on how factors interact with each other in affecting the outcome variable can
be formed in mind. But this is so, only when the number of interactions is small. Under
effect abundance, will the picture still be as clear? If not, what additional efforts should be
made? Are there any systematic ways in mapping out the relationship between the detected
interactions? During such attempts, are some factors more important than others, at least for
the purpose of reaching a parsimonious and crystal clear picture ?

Our methodology will answer these two groups of questions at the same time.

13.2 pHd for 2p factorial designs

When applied to complete factorial designs with two levels, all three versions of pHd turns
out to be identical. We need only to conduct the eigenvalue decomposition of B̂, the p by p
matrix of estimated two-term interactions :

B̂ = 1

2


0 α̂12 · · · · · · α̂1p

α̂21 0 α̂23 · · · α̂2p

· · · · · · 0 · · · · · ·
· · · · · · · · · 0 · · ·
α̂p1 · · · · · · α̂p (p−1) 0

 (13.2)

In fact, it is easy to see that B̂ = �yxx = �rxx . For the q−based pHd, B̂ is already equal
to the matrix for the estimated quadratic terms. Note that for orthogonal designs (as is a 2p

full factorial), the covariance matrix of x is an identity matrix. Thus it can be ignored in
implementing pHd.
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Let v̂1, · · · , v̂p be the eigenvectors associated with the eigenvalues λ̂1, · · · , λ̂p, in de-
creasing order of absolute value:

B̂v̂i = λ̂i v̂i , i = 1, · · · , p

The length of the eigenvectors are normalized to have unit length.

13.2.1 pHd plots.

The first few eigenvectors are important directions for studying the nonlinear structure in the
data. In particular, we will plot the “main effects model” residual r̂ = y− µ̂− 1

2(
∑p

i=1 α̂i xi)

against the projection along first two pHd directions, v̂ ′1x, v̂′2x. We will examine what PHD
plots should look like for some specific cases.

Case 1: Underlying models with 2-term interactions.

First consider we may consider an intermediate model:

Ey = µ+ 1

2
(

p∑
i

αi xi +
∑
i< j

α1 j x1x j) (13.3)

This model involves 2p coefficients: the additive constant + p main effects + the (p − 1)
interactions. We shall refer to this model as the single source interaction model because all
interactions are associated with factor 1, the common-source factor. In application, which
factor plays the role of source factor has to be decided from the data; methods to be discussed
later. The expectation of the matrix of two-factor interactions takes the form:

E B̂ = 1

2

[
0 a1

′

a1 O

]
(13.4)

where a1 denotes the column vector (α12, · · · , α1p)
′, and O is a p − 1 by p − 1 matrix of

zeros. In this case, there are only two nonzero eigenvalues, λ1 = 1
2 ||a1||, λ2 = −1

2 ||a1||,
with eigenvectors

v1 = 1√
2
(1, a′1/||a1||)′, v2 = 1√

2
(1,−a′1/||a1||)′.

It follows that

E B̂ = λ1v1v
′
1 + λ2v2v

′
2.

The key factor x1 is in the projection of x along the direction of v1+v2 = (
√

2, 0, · · · , 0)′.
This indicates that the pHd plot can be used to find the common-source-factor. For the ideal
situation, the direction v1 − v2 reveals two perpendicular lines, Figure 13.2. This is an
important characteristic for the single-source-interaction model.

Now consider the general model with all two-term interactions and main effects. The
”main effects model” residual r has the expectation
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Figure 13.2: PHD plot for an ideal single interaction source model.

Er̂ =
∑
i< j

αi j xi x j

The method of pHd explores the structure of this quadratic surface in the same way as in
the canonical analysis of the quadratic response surface (e.g. Box and Draper 1987). Er̂ can
be written in terms of the eigenvectors and eigenvalues of E B̂:

Er̂ =
∑

i

λi(v
′
i x)

2

A useful reduction of the model can be achieved if only a small number of eigenvalues
λi are significant. In particular, if the leading two eigenvalues have much larger size than
others, we anticipate to find clear quadratic patterns in the pHd plot. In fact, the case that
there are only two nonzero eignvalues can be characterized by the model

Ey = µ+ 1

2
(
∑

i

αi xi + (
∑
i∈I1

ci xi)(
∑
i∈I2

di xi)

where the first group I1 of factors has no intersection with the second group I2.

Example 13.1: Fracture Force. This is a small (n = 8) data set. A 23 full factorial design
was conducted. The response variable y is the force (in pounds) required to fracture a con-
nection joint consisting of a plate, and a nut-bolt assembly. The fracture force was dependent
on the following 3 factors: plate surface preparation at the connection point, torque applied
to the connecting nut, and size of the connecting nut. The data are given in table 13.2 below.

*** Insert table 13.2 here–Fracture Force Data (the file for this table is in the plot folder)
***

The matrix B̂ is

B̂ =
 0 6.75 17.75

6.75 0 1
17.75 1 0
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Now applying pHd, we find the first two pHd directions :

v̂1 = (−.655,−.260,−.615)′

v̂2 = (−.667, .208, .622)′

The absolute values of the three eigenvalues are

19.33, 18.67 and 0.66

The third value is much smaller, an indication that the third direction is not important.
The 3-D pHd plot is shown in Figure 13.3. From the figures, we can easily locate the two

perpendicular line-clusters and attribute this dichotomy to factor 1. This shows that factor 1
(surface preparation) is indeed the optimal choice for further splitting. Further confirmation
is seen by observing that v̂1+v̂2(= (−1.322,−.052, .007)′) is approximately in the direction
of (1, 0, 0)′ except for an opposite sign.

x1 highlighted x2 highlighted x3 highlighted

Figure 13.3: 3-D pHd plots(with each factor coded) Automotive fracture force example.

Example 13.2: Chemical Reactor Efficiency.
This example is taken from Box, Hunter, and Hunter (1978). A 25 complete factorial

design was run. The response variable y is reactor efficiency (percent of chemical reaction
completed). The 5 factors are feed rate, catalyst, agitation, temperature, and concentration.
The data is from table 12.1a on page 377 of Box, Hunter, and Hunter. Figure 13.4 is the
normal plot.

The matrix of two term interactions is given by

B̂ =


0 1.375 .75 .875 .125

1.375 0 .875 13.25 2.0
.75 .875 0 2.125 .875
.875 13.25 2.125 0 −11.0
.125 2.0 .875 −11.0 0


The pHd eigenvalues, in absolute value, are found to be
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9.22, 8.22, 1.49, .34, .15,

Again, the leading two eigenvalues are much larger than others. The first two pHd eigen-
vectors are given by

v̂1 = (.07,−.54,−.08, .67, .46)′

v̂2 = (.01, .53, .10, .71,−.41)′

The pHd plot is given in Figure 13.5. Factor 4 is seen to be the source factor for causing
the dichotomous grouping and the perpendicular line clusters. Further confirmation may
come from the calculation that v̂1 + v̂2, is approximately in the direction of (0, 0, 0, 1, 0).
We use x4 for splitting.

Figure 13.4: Normal plot for estimated effects in Chemical reactor example.

Figure 13.5: Line clusters found by rotating pHd plot in Chemical reactor example.
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13.2.2 Underlying models with higher-order interactions.

The method of pHd does not use information from the higher order interaction terms. But this
limitation can be somewhat lifted by recursive splitting. For example, suppose the response
y can be written in terms of main effects, two-term interactions involving x1, and three-term
interactions involving x1 and x2:

Ey = µ+ 1

2
(

p∑
i=1

αi xi +
p∑

i=2

α1i x1xi +
p∑

i=3

α12i x1x2xi)

The pHd method picks up only the directions to find x1 and a′1x. But as to be shown in
the following, we may ferret out three-term interactions by applying the pHd method twice.

First due to the presence of the third order interactions, the shape of the pHd plot might
look different from the perpendicular linear pattern described earlier. But the crucial feature
of two clusters due to x1 can still be expected. This suggests us to split the data into two
groups by x1 as before. After splitting, we get

E y = (µ+ 1

2
α1)+ 1

2

p∑
i=2

(αi + α1i)xi + 1

2

p∑
i=3

α12i x2xi , for x1 = +1

= (µ− 1

2
α1)+ 1

2

p∑
i=2

(αi − α1i)xi − 1

2

p∑
i=3

α12i x2xi , for x1 = −1

Each split sample still forms a two-level factorial design but the number of factors has been
decreased by 1. Each also follows the sole-source-interaction model, with p−1 main effects
and p − 2 two-term interactions involving only the factor x2. Therefore, if we apply the
analysis with pHd on each split sample, the role of x2 can be revealed from each pHd plot.
More discussion on recursive splitting is to be discussed later.

13.3 A flow chart for the pHd based partition .

The flow chart given by figure 13.6 illustrates our recursive process of analyzing the data and
steps involved in growing the partition tree:

Step 1. Start with the top node of the tree which includes all data points. Apply Yates
algorithm to the entire data set. Find the linear residuals by removing the mean and the main
effects from each observed y. Run a pHd analysis. Locate important effects with normal or
half-normal probability plots.

Termination. Compute the standard deviation for the linear residuals (residuals from
the main-effect model). If it is smaller than a pre-specified value (an engineering cutoff point,
for example), then stop and report the linear equation (based on significant main effects) as
the prediction function; otherwise go to Step 2.

Step 2. Compute a crude estimate of σ by temporarily assuming all interactions involv-
ing three or more are negligible. Then use this information to evaluate the number of the
significant pHd directions.
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Figure 13.6: General flow chart

Step 3. Examine the 3-D pHd plot and look for patterns of clustering.

Step 4. Find the factors that cause the clustering. Split the sample according to the
factors found. Consult Section 9 for details of splitting.

Step 5. Grow children nodes. Each child node represents one split subsample. Now
repeat the same procedure as described in Step 1 for each node. Continue the analysis with
Steps 2,3,4, if applicable. When Step 5 is reached again, more children nodes are grown.

Step 6. Since no pattern of clustering is found, the choice on the splitting factor may be
not be clear. Give a flag to point out the weakness in this portion of data. Then go to Step 7.

Step 7. Find the number of significant two-term interactions. If the number is large,
then split the data by Method 9.4 and go to Step 5. Otherwise go to Step 8.

Step 8. Draw the normal and the half-normal probability plots for all interactions
involving three or more factors.
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Step 9. A terminal node is reached. If Step 8 is reached via Step 2, then only main
effects are significant for this node. If Step 8 is reached via Step 7, then a small number of
two-term interactions may also be significant. Report the linear fit (plus a small number of
two-term interactions, if necessary) and the residual standard deviation.

Step 10. Find the number of significant interactions involving three or more terms.
Step 11. A terminal node is reached. Report the linear plus the significant interactions

and construct the fitted equation based on them. Report also the standard deviation for the
residuals after the fit.

Step 12. If there are still a few interactions involving three or more factors remaining,
then we have an unresolved node.

13.4 Applications.

In this section, we discuss the results of applying the recursive partition method to earlier
examples.

13.4.1 Tree for fracture force example.

For the fracture force example, we only need one splitting. The tree is given in figure 14. For
each terminal node, the interaction term in the fitted equation may be treated as the random
error.

Figure 13.7: Tree for linear domain splitting. Automotive fracture force example.

13.4.2 Tree for chemical reactor efficiency example.

Consult figure 13.8. The starting node shows 5 factors to begin with. The standard deviation
for residuals after linear fit is 10.1. Names of the leading interactions and their sizes (in
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parentheses) are given. The size is measured by the ratio of the effect estimate to the standard
deviation of all interactions involving three or more terms. The first split is based on factor
x4, the temperature.

Figure 13.8: Tree for linear domain splitting. Chemical reactor example.

After splitting, consider the branch for x4 = −1. The linear fit is now adequate for this
subsample. The residual standard deviation is reduced to 3.49 and the fitted equation is given
in the leftmost panel. The standard error for the estimated coefficient, given in parenthesis is
.87.

Consider the other branch, x4 = 1. The standard deviation for the ”main effects model”
residual is 2.92, slightly smaller than that for x4 = −1. One large interaction term, the
interaction of factors 1 and 2, is found. The pHd plot shows line clusters again, suggesting
further splitting by factor x2.

After splitting by x2, each subsample becomes linear. The residual standard deviation is
smaller when x2 is set at the high level.

We have seen that the output tree given in figure 15 provides us a clearer picture about
structure of the data which can not be easily sorted out from a traditional analysis. We find
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that x4, temperature, is the most crucial factor, to be followed by the factor x2, catalyst. We
can compare the response equations for different regions. For example, when the temperature
is set at the low level, the case for the left-most panel, the mean response (60.125), is a lot
smaller than the mean response (87.25) when setting both the temperature and the catalyst
at high levels, the region corresponding to the right-most panel. At the latter setting, the
effect of factor x5, concentration is three times as strong as that for the former setting, and
in opposite directions. The residual is also a lot smaller in the latter setting. If our goal is
to find an optimal setting for maximizing the yield, then we are led to focus the search on
the region defined by the right-most panel; namely by x4 = 1, x2 = 1. We may further set
x5 = −1, and x3 = 1. The effect of x1, feed rate, seems negligible, and can be set at a
convenient level.

13.4.3 Tree for DAC error example.

We apply our method to the Digital-to-Analog converter data, which is much more compli-
cated than the first two examples.

Figure 13.9 gives the partition tree. The bottom panels show the fitted equations in each
terminal node. All of them are linear except for the first panel which also includes a statistical
significant ( but practically insignificant by the judgment of the engineer whom we consult
with) two-factor interaction term. The order of factors for successive split largely coincides
with the engineering intuition on the order of bit importance. The voltage reading in an A-
to-D converter is equivalent to the binary coding for the associated bit combination. Thus
x10 is the most important bit, and x1 is the least important bit; miss-coding in bit x10 would
result in an error in the magnitude of 29, compared to that of 23 for miss-coding in bit x4, for
example.

Splitting starts with x10, as suggested by figure 13.10.
The right branch x10 = 1 is further split by by x8 and x9 simultaneously because pHd

plot finds four clusters, figure 13.11.
After that, the response in each node becomes linear and no more splitting is necessary.
The left branch x10 = −1 is split by x9. After splitting, nonlinearity still exists and the

pHd plots , not reported here, suggest bit x5, and bit x8 respectively in each sub-branch.
Continue the splitting with these factors, we end up with the four terminal panels on the left.

The role of x5 is unexpected. It is used to split the leftmost branch of the tree before
reaching the terminal nodes. It also has the largest main effect in each of the remaining
terminal nodes. In addition, the nearly diminishing role of x7 in the first two terminal panels
also surprises our engineer. Finally, large scale off-line analysis like this may offer important
guideline on how to take sample for on-line quality control. which forbids the extensive
testing on all code states. For example, highly fractionated factorial design can be used in
each panel where only main effects are present.
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Figure 13.9: Tree for linear domain splitting. Digital-to-analog Converter.
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Figure 13.10: 3-D pHd plot(all data)(Coding based on factor 10) Digital-to-analog example.
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Figure 13.11: 3-D pHd plot(subset based on factor 10 = +1) (Coding based on factor 9)
Digital-to-analog example.
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Chapter 14

Generalizing Fisher’s linear discriminant
analysis via the SIR approach

This chapter is a minor modification of Chen and Li(1998).

Despite of the rich literature in discriminant analysis, this complicated subject remains
much to be explored. In this chapter, we study the theoretical foundation that supports
Fisher’s linear discriminant analysis (LDA) by setting up the classification problem under
the dimension reduction model (1.1) of chapter 1. Through the connection between SIR
and LDA, our theory helps identify sources of strength and weakness in using CRIMCO-
ORDS( Gnanadesikan 1977) as a graphical tool for displaying group separation patterns.
This connection also leads to several ways of generalizing LDA for better exploration and
exploitation of nonlinear data patterns.

14.1 Introduction.

Discriminant analysis aims at the classification of an object into one of K given classes based
on information from a set of p predictor variables. Among the many available methods, the
simplest and most popular approach is linear discriminant analysis (LDA).

A most well-known property for LDA is that LDA is a Bayes rule under a normality
condition about the predictor distribution. More precisely, the condition requires that for the
i th class, i = 1, · · · , K , the p-dimensional predictor variable x = (x1, · · · , xp)

′ follows a
multi-variate normal distribution with mean µi and a common covariance�c. Together with
the prior probability πi , i = 1, ..., K , about the relative occurrence frequency for each class,
this basic normality assumption leads to a Bayes discriminant rule which coincides with the
rule of LDA.

Another way of deriving LDA originates from the consideration about group separation
when there are only two classes, K = 2 (Fisher 1936, 1938). The idea is to find a linear
combination of the predictors , z = a1x1 + · · · , apxp, that exhibits the largest difference
in the group means relative to the within-group variance. The derived variate z is known
as Fisher’s discriminant function, or the first canonical variate. Fisher’s result is further
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generalized by Rao(1952, Sec 9c) to the multiple class problem, K ≥ 2. In general, after
finding the first r canonical variates, the (r + 1)th canonical variate is the next best linear
combination z that can be obtained subject to the constraint that z must be uncorrelated to all
canonical variates obtained earlier. Canonical variates are also referred to as the discriminant
coordinates (CRIMCOORDS ) in Gnanadesikan(1977).

Empirical evidence has shown that scatterplots of the first few CRIMCOORDS can reveal
interesting clustering patterns. Such graphical displays are helpful in studying the degree and
nature of class separation and for detecting possible outliers. However, the nonlinear patterns
often observed in such plots also point to the limitation of the commonly-used normality
assumption in justifying LDA. The data points within each class do not always appear ellip-
tically distributed. Even if they do appear so, they hardly have the same orientation-violating
the equal covariance assumption.

The motivation of our study stems from the concern about the theoretic foundation of
LDA. To what extent, can LDA be applied effectively without the normality assumption?
In what sense, can the reduction from the original p predictors to the first few CRIMCO-
ORDS be deemed ”effective” ? Are there any other linear combinations more useful than
the CRIMCOORDS in providing graphical information about group separation? If so, how
can one find them? In this article, we address these issues by formulating the classification
problems via the dimension reduction approach of Li(1991). A key notion in that article is
the effective dimension reduction (e.d.r.) space for general regression problems.

This chapter is organized in the following way. In Section 2, we review the dimension
reduction approach and bring out the connection of sliced inverse regression(SIR) with LDA.
It turns out that the e.d.r. directions found by SIR are proportional to the vectors a used in the
canonical variates. Via this connection, the theory of SIR is applied to offer a new theoretical
support for using CRIMCOORDS.

Prior information about the occurrence frequency for each class plays a crucial role in
discriminant analysis. It is certainly needed in forming a Bayes rule. But how critical is
it for dimension reduction? This issue is discussed in Section 3. We argue that dimension
reduction can be pursued independent of the specification of a prior distribution.

LDA can be viewed as a two-stage procedure. The first stage is to find the canonical
variates for reducing the predictor dimension from p to K or less; the second stage is to
split the canonical space linearly into K regions for class-membership prediction via the
Mahalanobis distance. While the SIR theory justifies the use of canonical variates at the
first stage, the theory itself does not support the use of linear split rules at the second stage.
Section 4 discusses this issue. Nonparametric classification rules more effective than LDA
can be formed using the first few canonical variates found at the first stage of LDA.

As is known, the first moment based SIR does not always work in finding the entire e.d.r.
space. Knowledge about when SIR will fail helps identify sources of potential weakness in
using CRIMCOORDS. An important special case is when there are only K = 2 classes.
There is only one CRIMCOORD available now, no matter how complex the true dimension
reduction model is. This may not be enough for locating the entire e.d.r. space because
the e.d.r. space can have more than one dimension. In section 5, more general methods
will be considered to help find more e.d.r. directions that cannot be found by SIR. There
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are two types of generalization. The first one follows the thoughts of Principal Hessian
directions (PHD) (Li 1992a). It amounts to the comparison of the second moments of the
predictors between classes. The second type of generalization explores an idea of double-
slicing mentioned. Several simulation examples are provided and an application to a real
data set is given.

Further discussion and some concluding remarks are given in Section 6.

14.2 SIR and Fisher’s canonical variates.

In this section, the relationship between SIR and canonical variates is established first. Then
the assumptions used to guarantee the success of SIR are discussed in the context of classifi-
cation. These assumptions provide more general theoretical support for the use of canonical
variates than the well-known normality assumption underlying LDA.

14.2.1 Connection.

Recall the dimension reduction model (1.1) from Chapter 1. For ease of presentation, let’s
rewrite it here:

Y = g(β ′1x, · · · , β ′dx, ε). (2.1)

Here Y is the response variable, and g is an unknown function with (d + 1) arguments.
Notice that we have changed the notation a little bit : d is used to replace K as the dimension
of the e.d.r. space. This change is because K is reserved for the number of classes.

Recall the population version of SIR from Chapter 2 first. Denote the covariance matrix
of x by �x. The central idea of SIR is to reverse the roles of x and Y . Instead of regressing
Y on x , we may consider the inverse regression curve E(x|Y ) = (E(x1|Y ), · · · , E(x p|Y ))′.
In general, this curve is in the p dimensional space. However, Theorem 3.1 of Li(1991)
shows that under (2.1) and another condition to be discussed later, the inverse regression
curve indeed falls into a d dimensional subspace. This subspace is determined only by the
e.d.r. directions and �x. Denote the covariance matrix of the random vector η = E(x|Y )
by �η = cov(η) = cov(E(x|Y )). We are led to the following eigenvalue decomposition for
finding e.d.r. directions:

�ηbi = λi�xbi

λ1 ≥ · · · ≥ λp, (2.2)

Li’s theorem implies that all but the first K eigenvalues must be zero and that the eigenvectors
associated with nonzero eigenvalues are the e.d.r. directions.

The sample version of SIR is to substitute �η and �x in (2.2) by their estimates from
an i.i.d. sample (Yi , xi), i = 1, · · · , n. The estimate of �x is just the sample covariance
�̂x = n−1∑n

i=1(xi − x̄)(xi − x̄)′. Here x̄ denotes the sample mean. The estimate of �η can
be formed by first partitioning the response variable Y into H intervals, Ih, h = 1, · · · , H .
Within each slice, compute the mean of x, m̂h = n−1

h

∑
Yi∈Ih

xi , where nh is the number of
cases in slice h. These slice means constitute a simple estimate of E(x|Y ) and they can be
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combined to give a weighted covariance matrix, �̂η = n−1∑H
j=1 n j (m̂ j − x̄)(m̂ j − x̄)′, for

estimating �η. The eigenvectors b̂i ’s are the SIR directions and we shall call b̂′i x the SIR
variates.

The examples and discussion in earlier chapters focuse on the case where the response
variable Y is continuous. But the continuity of Y is not required in (2.1). In fact, when
Y is discrete and can take only K distinct values, the slicing step of SIR is automatic for
H = K . This special circumstance fits well into our classification problem. We can regard
each (xi , Yi) as one case in the training set and the response variable Yi is just the class label
for that case. The slice mean m̂ j corresponds to the vector of the predictor’s mean for the
j th group. The matrix �̂η coincides with the between group variance-covariance matrix in
one-way multivariate analysis of variance (MANOVA).

To elucidate how canonical variates are related to the e.d.r. directions found by SIR,
recall that the first canonical variate is derived by maximizing the ratio of the between-group
variance to the within-group variance. In our notation, for a linear combination z = a′x, the
group means are just a′m̂ j , j = 1, · · · , K . The between-group variance, n−1∑ n j (a′m̂ j −
a′x̄)2, can be written as a′�̂ηa. On the other hand, the within-group variance can be written as
n−1∑n

i=1(a
′xi −a′m̂ j (i))

2 = a′�̂ea, where the class membership for the i-th case is denoted
by j (i) and �̂e is the within-group variance-covariance matrix. The first canonical variate is
the linear combination of x formed by the vector a which solves the following maximization
problem:

max
a

a′�̂ηa
a′�̂ea

, (2.3)

The solution of (2.3) is the largest eigenvector of the following eigenvalue decomposi-
tion:

�̂ηai = γ̂i�̂eai , (2.4)

γ̂1 ≥ γ̂2 ≥ · · · ≥ γ̂p

To see the connection with SIR, we can rearrange the above eigenvalue decomposition
equation by adding γ̂i�̂ηai on both sides :

(1+ γ̂i)�̂ηai = γ̂i(�̂η + �̂e)ai

Now we can use the identity that the sum of the between-group variance and within-group
variance equals the total variance, �̂x = �̂η + �̂e, to obtain :

�̂ηai = γ̂i

1+ γ̂i
�̂xai

Comparing this equation with the sample version of (2.2), we see that λ̂i = γ̂i/(1+ γ̂i ), and
ai ∝ b̂i . We now reach the following observation.

Observation I : The SIR variates are the same as the canonical variates except for
possible differences in scaling.
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Canonical variates are often associated with LDA, which can only be theoretically justi-
fied under the normality assumption :

x|Y = j ∼ N(µ j , �c). (2.6)

If we further assume that

the vectorsµ j − µ1, j = 2, · · · , K , spans a d dimensional space, (2.7)

then the Bayes discriminant rule will depend on x only through the first d canonical variates.
This is the traditional support for using only the first few significant canonical variates in
applying LDA. But (2.6) is apparently too stringent. In fact, one can even argue that if
the predictors’ distribution is normal, then there won’t be any interesting patterns to see
in the CRIMCOORDS plots. Thus to fully justify the merit of CRIMCOORDS, we need
to consider a different situation where CRIMCOORDS can serve as an effective way of
conveying the importance informance in the predictors.

By relating the cannocial variates with SIR variates, Observation I brings in a very broad
context for using CRIMCOORDS to reduce the dimension of the predictors. This is because
SIR can be justified under much weaker conditions. We shall discuss these conditions next.

14.2.2 Condition (2.1).

SIR is founded on two assumptions. One of them is the dimension reduction model (2.1).
A general comparison of (2.1) to (2.6)-(2.7) can be made more clear by re-formulating (2.1)
from the inverse regression point of view. Put B = (β1, · · · , βk). (2.1) implies that the
conditional density of Y given x, f (Y |x) depends only on B ′x; f (Y |x) = f (Y |B ′x). Thus
the conditional density of x given Y can be written as

f (x|Y ) = f (Y |x) fx(x)
fY (Y )

= f (Y |B ′x) fx(x)
fY (Y )

= f (Y, B ′x) fx(x)
fY (Y ) fB ′x(B ′x)

= f (B ′x|Y ) fx(x)
fB ′x(B ′x)

(2.8)

Here all f with subscripts are marginal density functions.
For classification problems, the rightmost side in the expression (2.8) gives a useful fac-

torization for comparing the predictor distributions in different classes. This can be summa-
rized by the following statement:

Observation II. For classification problems, (2.1) is equivalent to the condition that for
any two classes, j and j ′, the ratio of their density functions of x depends only on B ′x :

f (x|Y = j)

f (x|Y = j ′) = f (B ′x|Y= j )
f (B ′x|Y= j ′)

(2.9)

It is straightfoward to verify that (2.6) and (2.7) imply (2.9) if we take β1, · · · , βd to be
any basis of the space spanned by the differences in µi ’s.
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14.2.3 Condition on the predictor distribution.

Recall that in addition to (2.1) (or equivalently (2.9) for classification problems), SIR requires
another condition on the distribution of x: (L.D.C): for any b ∈ R p,

the conditional expectation E(b′x|β ′1x, · · · , β ′dx) is linear (2.10)

(2.10) is the same as the condition that for any variate a′x,

cov(a′x, B ′x) = 0 implies E(a′x|B ′x) = a′Ex, (2.11)

(2.11) is much weaker than (2.6)-(2.7). Normality assumption is not needed here. Within
group-covariances also need not be entirely the same.

As we have known before, one sufficient condition for (2.10) (or equivalently (2.11)) to
hold is that

x follows an elliptically-contoured distribution. (2.12)

But this often leads to the impression that (2.12) is equivalent to (2.10). A counter-example
to this impression is indeed the normal model, (2.6) and (2.7). As a mixture of normal
distributions, the marginal distribution of x certainly cannot be elliptically symmetric. As
we have seen in Chapter 8, this predictor distribution condition is not too restrictive.

Remark 2.1. SIR variates are scaled to have unitary variance but canonical variates are
usually scaled to have unitary within-group variance. Since the covariance is no longer the
same for every group, we prefer the way SIR variates are scaled.

14.3 Prior distribution and dimension reduction.

The discussion in Section 2 assumes that the training set consists of i.i.d observations from
the same population as the target population where the test set will come from. This may
not be the case in some applications. This section discusses the case that the training sample
is obtained by stratified sampling. More specifically, a pre-specified number n j of cases
are drawn independently from each class j . The sampling allocation n j/n does not always
match the prior π j (= P{Y = j}), the probability that a random test case from the target
population falls into group j . Recall that under the 0-1 loss, the Bayes rule classifies a future
observation by

max
y
πy fx|Y (x|y). (3.1)

Now suppose the target population follows a dimension reduction model (2.1), or equiva-
lently (2.9). We can translate (3.1) into

max
y
πy f (B ′x|y). (3.2)

This shows that in order to find the Bayes rule, we only have to focus on the e.d.r. variates.
The next question is whether SIR is still applicable for finding the e.d.r. space under

stratified sampling. To answer this question, we study the population version of SIR by
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letting n j tend to the infinity; while fixing p j = n j/n. We notice that SIR takes the same
form as (2.2) but with a slightly different interpretation about the two covariance operators.
By fixing p j = n j/n and �η is still the between group variance-covariance matrix as in the
one-way MANOVA with the weight for group j being p j instead of π j . Similarly, �x is the
overall sample covariance of x.

Theorem 3.1. Suppose the sample is drawn by stratified sampling. Then under (2.9) and
(2.11), the eigenvectors with nonzero eigenvalues in the eigenvalue decomposition(2.2) fall
into the e.d.r. space.

Proof. From (2.11), we see that for any a such that a′�x B = 0, we must have a′�ηa = 0,
or equivalently �ηa = 0. This shows that the eigenspace for (2.2) associated with the zero
eigenvalue must contain any such vector a. Since all non-zero eigenvectors b j must be
orthogonal to a with respect to �x, they must fall into the column space of B. The theorem
is now proved.

14.4 Nonparametric regression after SIR.

Observation I, Observation II and Theorem 3.1 provide a general theoretical foundation for
LDA. But this only justifies the first stage of LDA, namely using the canonical covariates to
reduce the dimension. The further use of linear split rule can only be justified under normal-
ity assumption on the distributions for the e.d.r. variates are completely arbitrary. Without
the normality assumption, it is only natural to apply nonparametric density estimation tech-
niques after dimension reduction. For illustration, we shall discuss only the standard kernel
estimation here. Other nonparametric procedures can similarly be applied.

Let xyi , i = 1, · · · , ny be the sample drawn from class Y = y. The SIR directions,
b̂1, · · · , b̂d , converge to b1, · · · , bd respectively at the usual root n rate, provided that all d
nonzero eigenvalues are distinct. The kernel estimate of the density function of B ′x for class
Y = y takes the following form:

f̂ B ′x(t1, · · · , td) = 1

nhd

ny∑
i=1

"d
j=1K(

b̂′j xyi − t j

h
), (4.1)

where the kernel K(·) is a one-dimensional density function. The bandwidth h has to con-
verge to 0 at an appropriate rate.

(4.1) can be compared to the ”theoretical” kernel density estimate, should we be given B
exactly:

f̃ B ′x(t1, · · · , td) = 1

nh p

ny∑
i=1

"k
j=1K(

b′j xyi − t j

h
). (4.2)

The consistency of (4.2) for estimating fB ′x(t1, · · · , td) is the subject of standard kernel den-
sity estimation. This allows us to conclude that the discriminant rule obtained by substituting
f (B ′x|y) in (3.2) by the kernel estimate (4.1) is asymptotically Bayes.

Example 4.1 Wave recognition. This example is taken from Breiman et al. (1984, pp
49-55); see also Loh and Vanichsetakul (1988). There are three classes and 21 variables.
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Three triangular basic waveforms w1(·), w2(·), w3(·), are involved: for j = 1, · · · , 21,

w1( j) = max(6 − | j − 11|, 0); w2(i) = w1( j − 4); w3( j) = w1( j + 4). (4.3)

Each class is a random convex combination of two basic waveforms with noise added. Let
wi = (wi(1), · · · , wi(21))′, i = 1, 2, 3, and u1, u2, u3 be independent random variables
uniformly distributed on [0, 1]. The predictor x is generated by

x = u1w1 + (1− u1)w2 + ε, for Y = 1

= u2w2 + (1− u2)w3 + ε, for Y = 2 (4.4)

= u3w3 + (1− u3)w1 + ε, for Y = 3,

where ε follows the standard normal distribution.
The vector space parallel to the three-dimensional hyperplane spanned by w1,w2,w3 is

the e.d.r. space. This can be seen by verifying (2.9).
Now generate 200 cases from each group. Then SIR is applied. The eigenvalues are

(0.651, 0.546, 0, · · · ). Kernel estimation is applied. Figures 4.1(a)-(b) show the Bayes
rules with πy = 1/3 and πy = y/6 respectively. Classification boundaries are seen to be
approximately linear. This is as expected. In fact, SIR variates for the population version can
be represented by mixtures of normals with means being on a equilateral triangular, Figure
4.1(c). By a geometric argument, we can show that the contours for the likelihood ratios
must be straight lines.

Another interesting feature about this example is that the e.d.r. space does not depend
on the distribution of uy, y = 1, 2, 3. We generate another 200 cases from each group but
with ui from the density f (u) = 3u2 for u ∈ [0, 1]. Apply SIR and kernel estimation again.
For equal prior πy = 1/3, the result is shown in Figure 4.1(d). Now the Bayes rules are
nonlinear.

14.5 Other SIR type methods for dimension reduction.

SIR may only recover part of the e.d.r. space if the dimension of the hyperplane spanned by
the group means E(x|y) is less than the dimension of the e.d.r. space d. When this happens,
other SIR type methods can help find more e.d.r. directions that cannot be found by using
CRIMCOORDS.

14.5.1 SIR-II.

In our context, SIR-II explores the variation in the group covariance matrices. Let �a =
E[Cov(x|Y )] be the average of the group covariance matrices. Define

�I I = E{[Cov(x|Y )−�a]�−1
x [Cov(x|Y )−�a]}. (5.1)

Then the eigenvalue decomposition for SIR-II is

�I I ci = γi�xci

γ1 ≥ · · · ≥ γp.
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Figure 4.1: Wave Recognition Problem:
(a). SIR’s View with Equal Contour Boundary, πy = 1

3;
(b). SIR’s View with Equal Contour Boundary, πy = y

6 ;
(c). SIR Variates for the Population Version;
(d). SIR’s View with Equal Contour Boundary, (πy = 1

3 , ui − f (u) = 3u, u ∈ [0, 1])

The insertion of the matrix �−1
x in the construction of �I I is to assure the affine invariance

of the SIR-II procedure.
Compared with SIR, a condition stronger than (2.11) is required for SIR-II to find e.d.r.

directions: for any variable a′x,

cov(a′x, B ′x) = 0, implies that a′x is independent of B ′x. (5.2)

Thus the covariance of (B ′x, a′x) for each group Y = y takes a diagonal partition:
cov[(B ′x, a′x)|Y = y] = 0. The first diagonal cov(B ′x|Y = y) depends on y, but the
second one does not: cov(a′x|Y = y) = cov(a′x). This implies that �I I a = 0. The amust
be in the eigenspace with zero eigenvalue. Now it is clear that like SIR, SIR-II can find e.d.r.
directions.
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Theorem 5.1. Under dimension reduction framework, (2.10) (or (2.1)), if (5.2) holds, then
there are at most a nonzero eigenvalues in (5.1) and the corresponding eigenvectors are in
the e.d.r. space.

However, under the weaker condition (2.11), we can only conclude that some of the
eigenvectors with nonzero eigenvalues might be in the e.d.r. space. If none of them are in the
e.d.r. space, then the e.d.r. space must be contained in the eigenspace with zero eigenvalue.

Example 5.1 Spherical Distribution Problem
This example comes from Friedman (1977). There are two classes and ten variables with

the following distributions:
Group Y = 1: (1) x1, · · · , xd distributed uniformly within a d-dimensional spherical

slab centered at the origin, with inner radius r1 and outer radius r2; (2) xd+1, · · · , x10 are
independent N(0, 1).

Group Y = 2: (x1, · · · , x10) is a 10-dimensional multivariate normal centered at the
origin, with identity covariance matrix.

The last 10 − d variables are just noise. Because of the perfect symmetric pattern, SIR
fails to find the e.d.r. directions, but SIRII does a good job. For d = 2, r1 = 3.5, r2 = 4.0
and n1 = n2 = 200 cases, best view of x2 against x1 shows that the first class almost
completely surrounds the second; Figure 5.1(a). Figure 5.1(b) is the SIRII view of the first
two directions being found, which also illustrates the equal-contour line of the two densities
which can be used as the boundary classifier for classification of future observations. The
eigenvalues for this example are (0.613, 0.526, 0.063, 0.031, · · · ).
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Figure 5.1: Spherical Distribution Problem: (a)Best View; (b)SIRII’s View with Equal-
Contour Boundary.

14.5.2 Double slicing.

We begin with the binary case K =2. SIR-I can only find at most one e.d.r. direction. The rest
of them may have to rely on the 2nd moment based methods to recover. But as the following
example shows, this may not be enough.
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Example 5.2 Tai Chi. Consider Figure 5.2a, the well-known Tai Chi figure in the Asian
culture. The regions are in black and in white called Ying and Yang respectively. The
concepts of Yin and Yang and the Five Agents provide the intellectual framework for much of
ancient Chinese scientific development especially in fields like biology and medicine (Ebrey
1993). Illustrated by the Tai Chi figure, the exercise of Yin and Yang, which is originated
from Tai Chi, is the foundation of the entire universe. Yang, the element of light and life
(in white), and Yin, the element of darkness and death (in black), are the most natural and
original type of classes. Originated from each other, they represent all possible kinds of
opposite forces and creatures, yet Yin and Yang work with each other in proper harmony.
This makes the understanding and separation of them a difficult binary discriminant problem
in real life applications.

The basic structure of Tai Chi is formed by drawing one large circle, two medium half
circles and two small circles. The two small Yin and Yang circles located at the centers of
the Yang and Yin half circles which are tangent to each other and also to the large circle.

We set up the model as follows:
(1). x1 and x2 distributed uniformly from within the large circle. We then assign the

class label Y = 1 and Y = 2 to the points located in the Yin region and the Yang region
accordingly.

(2). x3, · · · , xp are independent N (0, 1).

(a) (b)
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Figure 5.2: Tai Chi Example:
(a). The Tai Chi Model with Yin and Yang Classed;
(b). Simulation of Tai Chi Model with 1000 Observations and the SIRI direction.

For this model, SIR-I can only find a single e.d.r. direction which pass through the
mass centers of Yin and Yang regions (Figure 5.2b). But SIR-II can not identify any e.d.r.
direction. This is because the Yin and the Yang regions are anti-symmetry to each other
implying that covariance matrix of (x1, x2) for Y =1 is the same as that for Y =2. One simple
way to find the second direction necessary for completing the e.d.r. space is to slice the joint
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space of the direction identified by SIR-I and the class label Y.
In general, suppose that an e.d.r. direction b0 is already obtained. We can take �η =

cov(E(x|b′0x, Y )) and conduct the eigenvalue decomposition (2.1). Under the same condi-
tion as SIR, the eigenvectors with nonzero eigenvalues can be shown to fall into the e.d.r.
space. This suggests a double slicing procedure:

-4 4-2 0 2

-4

4

-2

0

2

SIRI-1

SIRI-2

Figure 5.3: SIR’s View for the Tai Chi problem without Double Slicing.

Figure 5.4: Four possible combinations of double slicing for the Tai Chi example:
(a). Y as First Direction and SIRI-1 as Second Direction with Equal Number of Observations
(b). SIRI-1 as First Direction and Y as Second Direction with Equal Number of Observations
(c). Y as First Direction and SIRI-1 as Second Direction with Equal Length of Intervals
(d). SIRI-1 as First Direction and Y as Second Direction with Equal Length of Intervals

Example 5.2 (continued) For p = 6, we simulated 1000 i.i.d. cases of (x, Y ) using the
model specified. Result of SIR-I and SIR-II without double slicing is in Figure 5.3 and Table
5.1. Figure 5.4 shows four different possible combinations of double slicing using SIR-I and
the class label Y. In Figure 5.5 and Table 5.2, the double-sliced SIR-I and SIR-II clearly have
recovered the complete e.d.r space for the Tai Chi structure.
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Figure 5.5: SIR’s View for the Tai Chi problem with Double Slicing.

Table 5.1: Eigenvalues of SIRI and SIRII for the Tai Chi problem without Double Slicing.

SIRI (.607 .000 .000 .000 .000 .000)
SIRII (.016 .006 .002 .001 .000 .000)

Example 5.3 The Twist Problem. This example was first introduced as a clustering
problem by Koontz and Fukunaga (1972), see also Koontz et. al. (1975), and Fukunaga
(1990). There are two C-shaped trigonometric curves with random normal noise tangle with
each other in a two-dimensional space (Figure 5.6a). There are two classes, one for each
curve:

Group Y = 1 :
(1). x1 = 20 cos θ + z1,

x2 = 20 sin θ + z2,

where, z1, z2 are independent N(0, 1) and θ is N(π, (0.25π)2).
(2). x3, · · · , xp are independent N(0, 1).

Group Y = 2 :
(1). x1 = 20 cos θ + z1,

x2 = 20 sin θ − 20+ z2,

where, z1, z2 are independent N(0, 1) and θ is N(0, (0.25π)2).
(2). x3, · · · , xp are independent N(0, 1).

Since the first two variables are correlated through the structure of θ , SIR-I direction will
not pass through the mass centers of these two curves, see Figure 5.6a. It can be verified that
E(x1|Y = 1) = −14.6921 and E(x1|Y = 2) = 14.6921. It is easy to see that E(x2|Y =
1) = 0 and E(x2|Y = 2) = 20 . Can SIR-II help in identifying the second e.d.r. direction
necessary for obtaining the complete e.d.r. space?

For p = 10, we generate 300 cases from each class. Since the scale of the first two
variables are too large relative to the rest of the noise variables, we further standardize these
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Table 5.2: Eigenvalues and eigenvectors of SIRI (a) and SIRII (b) for the Tai Chi problem
with Double Slicing.

(a) SIRI

eigenvalues (.987 .027 .019 .013 .006 .001)
1st eigenvector (-2.299 3.269 -0.005 -0.011 -0.021 -0.034)
2nd eigenvector (3.088 2.260 0.039 0.123 0.024 0.312)

(a) SIRII

eigenvalues (.225 .133 .109 .081 .073 .001)
1st eigenvector (-3.360 -2.287 -0.009 0.038 0.033 0.060)
2nd eigenvector (0.200 -0.004 0.386 0.745 0.520 0.102)

two variables to have unit variance. The result for SIR-I and II with double slicing is in
Figure 5.6b and Table 5.3.

Table 5.3: Eigenvalues and eigenvectors of SIRI (a) and SIRII (b) for the Twist problem with
Double Slicing.

(a) SIRI

eigenvalues (.973 .129 .041 .018 .008 .001 .000 .000 .000 .000)
1st eigenvector (-0.861 0.200 0.034 -0.003 0.049 0.007 0.037 0.014 -0.038 0.023)
2nd eigenvector (0.158 0.089 0.630 0.115 0.379 0.113 0.480 0.055 -0.365 0.283)

(a) SIRII

eigenvalues (.694 .130 .118 .095 .089 .079 .071 .049 .041 .004)
1st eigenvector (-0.926 -1.219 -0.108 0.107 0.010 -0.013 -0.161 -0.001 -0.055 0.024)
2nd eigenvector (-0.051 -0.211 0.386 0.310 -0.300 0.209 0.630 0.170 -0.089 0.416)

Example 5.4 Sonar data.
This data set can be found in Gorman and Sejnowski (1988). Sonar signals bounced off

a metal cylinder (class 1) or off a roughly cylinder rock (class 2) are recorded in 60 channels.
The training set consists of 111 cases from class 1 and 97 cases from class 2. Each case is
viewed as a curve x(t), t = 1, · · · , 60. The direct application of LDA or any generalization to
60 predictors with a sample of only 208 training cases is questionable because of the instabil-
ity in estimating the covariance matrices (see Appendix C). An alternative is to approximate
each curve with a small number of basis functions. Four basis functions, φ1(t), · · · , φ4(t),
are selected according to a scheme which we describe in detail in Appendix. We reduce the
predictor dimension to 6. The first 5 predictors are the coefficients α, β1, · · · , β4, obtained
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Figure 5.6: Twist Problem: (a). Best View with SIRI direction; (b). SIR’s View Double
Slicing.

by least squares fitting:

x(t) = α + β1φ1(t)+ · · · + β4φ4(t)+ εt , t = 1, · · · , 60.

The sixth predictor is log(r2/(1−r2)), where r2 is the R-squared value from the least squares
fit.

SIR is then applied to this set of six predictor variables. The first direction found by
SIR and the class label Y are used as the directions for running double-sliced SIR (S I Rds).
Two directions are found by SIRDS, which we denote as SIRDS-11 and SIRDS-12 (Figure
5.7). The eigenvalues and first two eigenvectors for SIRDS are displayed in Table 5.4. We
observe that the correlation coefficients between r ∗ and SIRDS-11 with SIRDS-12 are -0.07
and 0.6826 respectively. Thus although SIR (or equivalently LDA) does not use r∗, the
information contained in r∗ is used in SIRDS.

After reducing to the two SIRDS variates, a k-nearest-neighbor classifier is applied. For
k=1,3, . . . ,15, the resubstitution error rates are (24.52%, 22.60%, 23.56%, 22.12%, 19.23%,
20.19%, 23.56%, 24.04%) respectively with a minimum resubstitution error-rate of 19.23%
at k=9.

14.6 Conclusion.

LDA is a popular method for classification. We re-investigate its theoretical property from
the dimension reduction point of view. The canonical variates are found to be the same as
the SIR variates except for the scaling. We examine in detail the assumption underlying SIR
and apply them to the classification problems. This helps justify the use of CRIMCOORDS
for informative graphical display of separation patterns between different classes. However
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the theory of SIR does not justify the use of linear rules. We illustrate that nonparametric
density estimation following dimension reduction can be more informative then LDA. As
in known, SIR may not be able to find “all” e.d.r. directions. We investigate two types of
generalizations for finding more e.d.r directions. One of them is the second moment based
method. This method explores differences between group covariance. Compared to SIR, one
drawback of this method is the uncertainty introduced by covariance estimation. Another
method, double-slicing, is less sensitive to covariance estimation. These methods extend the
power of LDA and can be used to reveal more complicated data pattern.
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Appendices: More on Sonar data.

A. Description of the procedure in choosing the basis functions.

The first two basis functions φ1(t), φ2(t) are taken as the average of all curves x(t) from
the first class and the second class, respectively (Figure A.1). Each curve is tentatively fitted
with these two basis functions. Then an LDA is conducted on the three predictors, α, β1, β2.
Figure A.2 of first CRIMCOORD shows a good portions of cases in the middle part cannot
be distinguished well. This portion is extracted out, which has 141 cases. Our third and
fourth basis functions φ3(t) and φ4(t) are just the average of all curves in this portion that
came from class 1 and class 2 respectively (Figure A.3).
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Figure A.1: First two basis functions, φ1( fi), and φ2( fi), i = 1, L , 60. The solid(red)
and dashed(blue) curves represent the mean signals of the two groups of metal(y = 1) and
rock(y = 2).
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Figure A.2: Fisher’s linear discriminant analysis for the three new predictors with 141 am-
biguous signals.
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Figure A.3: Additional Basis functions, φ3( fi), and φ4( fi), i = 1, L , 60. The solid(red)
and dashed(blue) curves represent the mean signals of the two groups of metal(y = 1) and
rock(y = 2) for the 141 ambiguous cases.

B. Stability.

To see how stable the proposed procedure is, we proceed with the following simulations.
Each time we split all 208 cases into a training set and a test set with probabilities equal

to 0.75 and 0.25 respectively. From a training set we first identify the 4 basis functions using
the procedure described in Appendix A. Then we find two SIRDS directions. Signals in the
test set are then projected to the obtained SIRDS directions. 1000 simulations with k=1,3,
. . . ,15 are carried out, the result, Figure B.1.c. The lowest average error rate of 22.68% for
test set is reached at k=15 with an average standard deviation of 0.056. For comparison, the
same simulation data is also used to carry out the LDA analysis and k-NN analysis for the
original 60 variables. The average error for test set for LDA is 26.63% (Figure B.1.a), much
higher than the k-NN results for the 6 base functions. The k-NN analysis for the original 60
variables are also consistently worse than that of the 6 base functions one, Figure B.1.b.

LDA with 60 predictors.

The resubstitution error rate of Fisher’s linear discriminant analysis with the original sonar
data is 9.615%, which corresponds to 20 misclassified signals (12 metal signals and 8 rock
signals each), Figure C.1. We suspect that this 9.615% resubstitution error rate is too low
to be true. Since there are only 208 subjects in total with 60 variables, the estimation of the
covariance matrix will be unstable with this configuration which may result in a problem of
overfitting in the training procedure. We carry out the following leave-one-out procedure to
justify this suspicion. Each time we use one of the 208 signals as a test signal and use the
other 207 signal to find the Fisher’s linear discriminant function for predicting the class label
of that selected test signal. Among all 208 runs, 51 signals are misclassified which corre-
sponds to a leave-one-out error rate of 24.52%. This leave-one-out error rate of 24.52% is
much higher than the resubstitution error rate of 9.615% by the single run linear discriminant
analysis for the full 208 cases as we expected.



14.6 Conclusion. 175

(a) (b) (c)

0

0.6

0.5

0.4

0.3

0.2

0.1

1 3 5 7 9 11 13 151 3 5 7 9 11 13 15

k k

Figure B.1: Box-Plots for Simulation Result with 1000 runs:
(a). LDA with 60 original variables;
(b). k-nearest-neighbor classifier with 60 original variables;
(c). k-nearest-neighbor classifier with 6 basis functions.
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Figure B.2: Fisher’s linear discriminant analysis for the full sonar data set with 20 misclas-
sified signals. The upper and lower histograms represent the distributions of observations
projected onto the Fisher’s linear discriminant function(LDF) of the original 60 variables
from the metal(y=1) and rock(y=2) groups respectively. The dashed line is the cutting point
for prediction from LDF. The black bars represent the cases that are misclassified by LDF.
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Chapter 15

Three-way subclassification with application
in handwritten digit recognition

This chapter is a minor modification of Li and Chen(1998). In the previous chapter, we
have encountered the problem of failing to find more e.d.r. directions when there are only
two classes. We shall now discuss the opposite situation: the case that number of classes
k is large. In this case, the significant SIR directions are likely to be too many to handle
simulteneous.

To handle this situation, we propose a strategy based on three-way subclassification.
The original k-class problem is first decomposed into k(k − 1)/2 smaller problems, each
involving a three-way classification between a pair of classes A and B, and a combined third
class which is just the union of all other classes. Then the results from each subclassification
will be synthesized under a conditional error rate analysis. Our formulation of three-way
subclassification is ideal for exploring the degree of unanimity among different decisions
made in subclassification. This advantage is illustrated well in the context of hand-written
digit recognition, using the data set of LeCun et al. (1989). A large portion of high quality
images in the test set can be easily filtered out by three-way subclassification - they are
predicted with an error rate less than 1%.

15.1 Introduction.

Discriminant analysis problems are also called classification problems. They are concerned
with the class membership prediction of an item from a population which is partitioned into
k classes. One well-known example is the iris data studied by R. A. Fisher. Three kinds of
iris are under consideration and the problem is how to distinguish them based on data from
four physical measurements. In search of a solution for this problem, Fisher introduced the
celebrated linear discriminant analysis (LDA), which we have given a more general justifi-
cation through SIR theory in the previous chapter. Another classification problem which has
recently received a great deal of attention is the recognition of handwritten digits such as
zip codes from envelopes. The number of classes in this problem is k = 10 and each class
represents one of the ten digits, 0, 1, · · · , 9. Other classification problems may come from
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different scientific areas such as speech recognition, medical diagnosis, remote sensing, and
so on. It is also called supervised machine learning in pattern recognition.

As expected, the task of classification becomes harder when the number of classes k
increases. This is in part due to the difficulty of finding main feature variables suitable for
all k classes. In generic terms, features are just any real-valued functions of the original
variables manufactured from the training data. They are often needed for reducing the data
dimensionality in complex applications. At this juncture, one may wonder why not apply
SIR or its generalization directly to the original variables. The reason is that the feature
attraction procedure typically involves special nonlinear transformation on the original input
variables. Such transformation, although subjective, does reflect expertise knowledge on the
subject matter. It is difficult to approximate such transformation by linear combinations as
we do in our general-purpose dimension reduction scheme.

Suppose that we can restrict attention to a given set of important feature variables. There
is another difficulty for large k. The significant SIR directions may already be too many.
It would be difficult to visualize joint distribution of the SIR variates directly. Under such
circumstances, further steps are needed to simply the result.

Since binary classification is easier, an attractive strategy to solve the k−group problem
is to consider each of the k(k − 1)/2 two-class subclassification problems separately first
(Friedman 1996). In this approach, only the items from the two classes in the learning
sample are used to construct a classification rule for each two-class problem. After that,
a final decision is made by combining results from each problem together. A simple way
to do so is to use the majority rule which assigns the class membership of a new item in a
way similar to a tournament with k players, each player representing one class. A two-class
classification can be thought of as a match between two players and the winner is the one
representing the class into which the new item is classified under the rule obtained from the
learning sample. The tournament champion, the player with the best winning record ( if
without ties), is then assigned to be the item’s final class membership. Another interesting
way of using two-class subclassification is proposed in Hastie and Tibshirani (1996).

In this chapter, a different approach is taken that also breaks the original k-class problems
into k(k− 1)/2 smaller problems. But instead of binary classification, each smaller problem
is formulated in terms of a three-way subclassification. The three classes are a pair of classes
A and B from the original k classes, together with a combined third class which is just the
union of all other classes. The combined class will be referred to as “Others” later on.

An advantage of 3-way subclassification over the binary subclassification is immediate.
We can take full advantage of the two-dimensional CRIMMCOORD plot.

Our formulation of three-way classification aims at the exploration about the degree of
agreement among the different decision rules constructed from the simplified subclassifi-
cation problems. In assigning the final membership of an item, this strategy allows us to
observe if the classification is reached by an unanimous decision or not. For a class to be an
unanimous winner, not only it must win in each subclassification problem where the class
actively participates as class A or class B, but also in all other problems where the class is
passively absorbed into the combined ”Others” , an “Others” decision must be obtained.

There is an important issue which is not much discussed in most discriminant analysis
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literature. Quite often due to economic reasons, the tolerable error rate in industrial appli-
cations can be very stringent. This rate might not be easy to achieve when applied to all
items to be tested. However, it can be expected that a good portion of them may be easier to
classify than others. Thus it is useful to find a simple tool that can help locate items in such
a higher-grade subpopulation. Intuitively, the group of items which are classified under an
unanimous decision should have a lower rate of prediction error. Thus they are the natural
candidates to be in the higher-grade subpopulation.

We shall use hand-written digit recognition as an example to illustrate the advantages of
our approach. The data base consists of digitized images of zip codes on envelopes passing
through Buffalo, NY. (LeCun et al., 1989). Using a conditional error rate analysis, we can
identify a large portion of sample images in the test set that can be classified under simple
linear classification rules at a misclassification rate less than 1%.

In section 2, we first give a brief account of the zip code data. A centre-of-mass based
method for feature extraction is introduced, to be followed by a preliminary analysis using
linear discriminant rules. Section 3 describes details of the three-way subclassification set-
tings and discuss how the results can be combined using conditional error analysis. Further
discussions are given in Section 4. Here we compare the three-way subclassification with
binary subclassification. We introduce another way of partitioning for extracting feature
variables from the zip code data. With this new feature space, we show how to combine
the two-way and the three-way methods together to get better results. Section 5 gives some
concluding remarks.

15.2 Data, features, and LDA.

In this section, we first describe the handwritten data set which will be used throughout this
article. Then we introduce a method for extracting features that reduce the dimensionality
to a level easier to manage. A preliminary analysis involving linear discriminant analysis
(LDA) is also reported.

15.2.1 The zip code data.

Our data base comes from handwritten zip codes that appeared on some envelopes of U.S.
mail passing through the Buffalo, NY post office. The digits were written by many different
people with a great variety of writing styles and instruments. Each digit is converted into a
16 by 16 pixel image after some preprocessing as described in LeCun et al. (1989). Figure
2.1 shows some of these normalized images.

The seminal work of LeCun et al. uses a neural network with three hidden layers- 768,
192, and 30 hidden units respectively for each layer. A misclassification rate of 0.14%
on the training data and 5.0% for the test set were reported. This remarkably low rate of
error cannot be achieved without clever ideas and deliberated efforts on setting up clever
connection architecture and contrains on weight constraints. For example, the same authors
also reported that a fully connected network with one hidden layer of 40 nodes yields 8.1%
error rate on the test data. It is also worth mentioning that since backpropagation is used, the
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Figure 2.1: Sample Hand-Written Digits

connection coefficients are updated sequentially as each image pattern in the training set is
presented. A total of m passes through the training set means 7291m pattern presentations,
and the coefficients are updated accordingly. The 5% rate for test set is obtained when the
number of passes is 23 (which means 23 times 7291 = 167,693 updates). Figure 2 of LeCun
et al. shows how this error rate depends on the number of passes. Although there is no clear
stopping rule, it is noticed that for a wide range, between 5 and 30, the error rates are falling
between 5% and 6% - reaching about 5.5% at m = 30.

This data set has since received a great deal of academic attention. Their error rates
have become the bench-marks for comparison. There are several attempts aiming directly at
improving the error rates for optical digit recognition. The best improvement reported in the
literature seems to be 2.5% by Simard, LeCun and Denker (1993) who use a transformation
based nearest neighbor method. The transformations intend to incorporate various kinds
of distortion due to factors such as shifting, scaling, rotating, and so on. Unfortunately, to
implement such a discriminant rule, it requires a heavy amount of computation.

This data set is also often used as an illustration for new all-purpose classification meth-
ods which may not be specially tailored for digit recognition. In such cases, the rates are
usually poorer than the 5% to 6% range. For example, using a penalized discriminant rule,
Hastie, Buja, and Tibshirani (1995), a rate of 8.2% is obtained, which is an improvement
over the rate of about 10% by the usual LDA.

15.2.2 Centre-of-mass-based partition.

Due to the spatial arrangement, the 256 variables representing the 16 by 16 image for each
sample character are highly correlated. Such redundancy among the input variables allows a
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certain degree of flexibility in designing strategies for feature extraction.
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Figure 2.2: Locations of mass Centers for Digit 3: (a). Orogonal Image; (b). Transformed
Digit; (c). Locations of mass Centers with Weights.

The method we use treats each character image as a piece of object with mass at each
pixel (i, j) equals to its grey level wi j . For each object, we first compute the centre of mass
(C01,C02)= (

∑
w∗i j i,

∑
w∗i j j) where w∗i j = wi j/

∑
wi j is the total mass of the object. This

mass center is then used to normalize the image by shifting (C01,C02) to the origin (0, 0).
The range of the two coordinate axes are scaled to take values within -1 and 1 , using grey
levels greater than a prespecified threshold value as a common denominator. Figure 2.2(b)
gives a transformed digit 3 whose original image is in Figure 2.2(a). The entire image is now
partitioned into four pieces, one piece from each quadrant.

The next step is to calculate the mass center for the image in each quadrant. This gen-
erates 4 pairs of locational variables. After that, each quadrant is again partitioned into four
quadrants, using the mass center calculated earlier as the origin. This yields a total of 16
rectangle regions and the mass center of the image in each rectangle is computed. The 20
locations of the mass centers for the digit 3 in Figure 2.2(b) are shown in Figure 2.2(c). Our
feature space consists of these 40 locational variables and the 16 weight variables for the
total mass in each of the final 16 rectangles. Thus the original 256 grey-level variables is
reduced to 56 feature variables.

Quadrants are certainly not the only choices we can use in our centre of mass based
partition. Later on a system of 8 radial lines as described in Section 4.2. will be used, which
leads to better results.

In LeCun et al. (1989), there are 7291 cases in the training set and 2007 cases in the
test set. We use only 7188 and 1991 respectively as our training and test sets - this will be
referred to as 7188/1991 data. Other cases are deleted for the moment because they have no
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mass in some of the final 16 rectangles. This problem can be corrected if we use the radial
partition system - details to be discussed later.

It is not clear how the original 2007 test cases were selected in LeCun et al.. Typically,
if the test set comes from the same population as the the training set. then it should exhibit
characteristics similar to any randomly selected subsample of equal size from the training
set. However, this is not the case here. Several authors have reported an unexpected increase
in error when applied to LeCun et al.’s test set. For comparison, these authors often generate
two randomly selected subsets of size 2000 each from the 7291 training set, one as the new
training set and the other as the new test set. They find that the error rates are smaller for the
new test set than the original size-2007 test set. We shall follow this practice and generate
a 2000/2000 data - 2000 cases for the training set and 2000 cases for the test, both being
randomly selected from the 7188 cases.

15.2.3 A preliminary analysis.

We first apply linear discriminant analysis (LDA) to the 2000/2000 data. The error rate is
5.75% for the training set and 8.3% for the test set. We then apply LDA to the 1991/7188
data. As expected, the result is even worse, 7.2% for the training set and 10.7% for the test
set.

We take a closer look at the training set of 2000/2000 data. The first three canonical
variates from LDA are shown in Figure 2.3. Noticeable clustering patterns can be found. For
example, a good portion of digit 0 visually separable from other digits is found in the lower
left corner of Figure 2.3(a). In the same figure, digit 1 appears to occupy in another corner.

We are led to the suggestion of isolating these two clusters from the rest of data because
they appear easier to classify than others. To do so, we can formulate a three-way classifi-
cation problem by considering ”0” as one class, ”1” as another class, and pooling all other
digits together as a third class called ”Others”. We first reduce the dimension of the feature
space from 56 to 2 using the canonical variates from LDA. Figure 2.4 shows the scatterplot
of the two canonical variates. The clustering pattern is more clear-cut than what is seen in
Figure 2.3. Since we are interested in isolating cases that can be predicted with higher preci-
sion, the boundaries of discriminant regions for each class are pushed a bit toward the centers
of 0 and 1 - this is done by setting the prior probability of 0 and 1 to be .0005 each. After we
isolate these two clusters with mostly 0 and 1, we proceed by considering another three-way
classification for the class ”Others”. This time we choose digits 6 and 7 as two classes and
pooling all other digits (including 0 and 1) together as ”Others”. We continue to partition the
left-over ”Others” till we obtain a three-way classification tree as shown in Figure 2.5.

From the tree we obtained and the scatterplots we generated along the analysis, we see
that a good portion of data forms distinctive clusters which can be isolated in an iterative
fashion. Out of the 2000 test cases, about a half of them can be classified with 1% of error.
What should we do with the left-over cases? One simple suggestion is to apply the linear
discriminant analysis. Another possibility is to repeat the same procedure again before linear
discriminant analysis is applied. The result is given in Figure 2.6.

One problem with this three-way tree approach is how to decide the ordering of partition.
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Figure 2.3: LDA Cannonical Variates: (a). LDA1 versus LDA2; (b). LDA1 versus LDA3;
(c). LDA2 versus LDA3.

Why 0 and 1 are chosen first? There are certainly many criteria that can be used. We simply
choose the pair which gives the smallest error rate for the training data. Another problem
is the choice of prior in determining how much the lines should be pushed away from the
center of the ”Others”. This is another optimization problem, which needs to be resolved.

While the above line of thoughts may be worth pursuing further, in this article we shall
alter our strategy a bit in order to bypass such difficult optimization decisions. There is no
need to generate three-way trees. Instead, we shall synthesize results from all three-way
classifications in a way to be discussed in the next section.

15.3 Three-way subclassification.

We begin with a general description of our three-way subclassification method. Suppose
there are in total k groups under consideration. For each pair of groups, i and j , we formulate
a three-group problem - group i , group j , and a third group which is the union of all other
groups. Suppose from the training data, a classifier denoted by Ti j , is obtained. For any
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Figure 2.4: LDA Cannonical Variates for Group 0, 1 and Others(-).
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Figure 2.5: Three-Way Classification Tree for the Hand-Written Digit Recognition Problem.

unit with feature x, the classifier assigns it a membership Ti j (x) = i, j or Others with
Others standing for the third group. Subclassification is carried out for all of the k(k−1)/2
three-group problems. At the end, for each x, we can have a total of k(k − 1)/2 values,
Ti j (x), 1 ≤ i < j ≤ k.

For the digit data, there are k = 10 classes, yielding a total of 45 subclassification prob-
lems. For each problem, we consider a linear partition rule with a simple tree structure
(Figure 3.1). The tree consists of two levels of partitions - the first one is to divide the train-
ing set into two nodes i/Others and j/Others along the projection that best separates class
i and class j . Node i/Others is expected to contain most members from digit i and a good
portion of members from digits other than i and j . This node is further divided into two
children nodes, i and Others again by a best linear partition rule. The other node j/Others
is similarly partitioned into two nodes, j and Others. There are certainly quite a few alter-
native partition rules worth trying. But since our main focus in this article is on the strategy
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Figure 2.6: Repeated Three-Way Classification Tree for the Hand-Written Digit Recognition
Problem.

of three-way partition itself, to avoid further distraction, we shall not make such attempts
here.

15.3.1 Majority rule.

To combine the results from each subclassification, we first count the frequency that each
class is assigned. For any fixed unit x, we obtain a k-dimensional vector (c1(x), · · · , ck(x))′

where for each l between 1 and k, cl(x) equals the total number of times that Ti j (x), 1 ≤
i < j ≤ k, equals l. We can think of each classifier Ti j as assigning the winner for a match
between players i and j , but with possibility for a tie in which Ti j (x) equals Others. The
vector (c1(x), · · · , ck(x))′ is just the score board showing the winning record for each player.
Then it should be clear that the largest value that cl(x) can take is k − 1 because that is the
total number of matches that class l has participated. We can rearrange the score board in a
non-increasing order, M1(x) ≥ M2(x) ≥ · · · ≥ Mk(x).

Consider the majority rule for the final class membership assignment- the class winning
the most is assigned. We may classify unit x into the class l achieving cl(x) = M1(x). To
keep the procedure simple, if necessary, randomization can be used as a tie-breaker.

We apply the majority rule to the 2000/2000 data and the 7188/1991 data. The results are
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i / Others j / Others

Othersj
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i j

Othersi

Figure 3.1: Tree-Structure for Three-Way Subclassification.

summarized by two misclassification matrices in each case - one for the training set and the
other for the test set; Tables 3.1(a)-(b) and 3.2(a)-(b). A cell in each matrix shows the number
of times a digit in the beginning of a row is misclassified as another digit on the top of the
corresponding column. For example, take a look at the row with the digit 2 in the training set
of 7188/1991 data. We see that 2 is misclassified as 0 two times, as 1 three times, and so on.
It is also unclassified 16 times as the last column ”Other” indicates. For the 2000/2000 data,
the overall error rate is 2.6% for the training and 4.85% for the test set; the unclassified rate
is 1.45% for the training and 1.65% for the test set. For the 7188/1991 data, we have error
rates 3.7% (training set) and 6.9% (test set) and unclassified rates 2.0% (training set) and
2.5% (test set). In general, these numbers are not impressive. However, there are better ways
of using three-way subclassification than the straightforward application of the majority rule.
This is to be explored next.

15.3.2 Conditional error analysis and unanimity.

The performance of a classification rule is usually evaluated in terms of two misclassification
rates, one for the training data and one for the test data. They are simply the proportion of
cases being incorrectly classified in the respective data set. We shall examine these rates
more closely.

Our conditional error analysis exploits the largest two values on the score board for each
unit x, M1(x) and M2(x).

The most interesting condition is when M1(x) = k − 1 and M2(x) = 0. Suppose there
is an ideal unit x from say class l, which is very easy to classify. Then for this unit the
maximum score M1(x) is very likely to be k − 1 and it is expected to be achieved by class
l, cl(x) = M1(x) = k − 1. This is because when class l competes with any other group (
k − 1 times in total) , the classifier should return l. On other hand, when the competition is
between any two classes i, j other than class l, the classifier should return Others because
class l is contained in “Others”. Thus (M1,M2) = (k−1, 0) represents the situation where an
unanimous decision is reached. We anticipate that the final classification to be most accurate
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Table 3.1: Misclassification Matrices for Three-way Subclassification Using Majority Rule
with the 55-Features-2000/2000 data: (a). Training Set; (b). Test Set.

(a)

y\ŷ 0 1 2 3 4 5 6 7 8 9 Other
0 0 0 0 1 0 0 2 0 0 1 6
1 0 0 2 0 0 0 0 0 0 1 6
2 0 1 0 1 1 1 3 0 2 1 2
3 0 0 3 0 0 0 0 0 0 1 4
4 0 1 0 0 0 0 1 0 0 11 0
5 2 0 0 1 0 0 0 0 1 0 0
6 3 1 0 0 0 1 0 0 0 0 2
7 0 0 1 0 0 0 0 0 0 3 0
8 2 0 0 0 0 0 0 0 0 1 4
9 0 0 0 0 0 1 0 1 1 0 5

(b)

y\ŷ 0 1 2 3 4 5 6 7 8 9 Other
0 0 0 0 1 0 0 0 0 0 0 5
1 0 0 0 0 0 0 0 0 0 1 7
2 1 0 0 2 1 0 0 2 1 2 2
3 4 0 4 0 0 0 0 0 0 1 4
4 0 1 1 1 0 0 8 1 0 8 0
5 6 0 3 6 0 0 2 0 1 2 3
6 1 0 1 0 5 3 0 0 0 0 2
7 0 0 0 0 0 0 0 0 0 6 1
8 1 0 0 0 1 1 1 0 0 1 8
9 1 2 0 0 1 0 1 11 0 0 1

under this condition.

For the 2000/2000 data, we find that there are 1604 cases in the training set with (M1,M2) =
(9, 0). From this subset, there are only 4 misclassification cases, representing an error rate
of 0.25% which is much smaller than the overall error rate 2.6% given earlier. In the test
set, there are 1460 cases with (M1,M2) = (9, 0), and 10 out of them are misclassified. This
amounts to 0.68% of conditional error, which are again much smaller than the overall error
4.85%. Substantial reduction in conditional error rate also occurs for the 7188/1991 data -
31 out of 5592 (= 0.55%) for the training set and 20 out of 1407 ( = 1.4%) for the test set, as
compared to the overall rates of 3.7% and 6.9% respectively.

For each fixed value of M1, we can also anticipate the quality of final classification to go
down as M2 increases because this reflects that the leader faces a stronger challenge from the
runner-up and the degree of unanimity goes down. Similarly, for a fixed M2, the classifica-
tion quality also degrades as M1 decreases. Such trends can be found from Tables 3.3(a)-(b)
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Table 3.2: Misclassification Matrices for Three-way Subclassification Using Majority Rule
with the 55-Features-7188/1991 data: (a). Training Set; (b). Test Set.

(a)

y\ŷ 0 1 2 3 4 5 6 7 8 9 Other
0 0 0 0 2 0 1 5 0 0 2 16
1 0 0 3 0 0 0 0 0 0 2 28
2 2 3 0 13 1 3 5 2 6 6 16
3 4 0 5 0 0 6 0 1 2 2 20
4 0 7 2 2 0 0 24 2 3 34 0
5 13 0 4 6 0 0 5 0 2 2 15
6 8 3 0 0 2 7 0 0 1 0 10
7 1 0 2 0 0 0 0 0 1 20 3
8 4 0 0 2 2 6 1 0 0 4 24
9 0 2 0 1 1 1 1 14 1 0 12

(b)

y\ŷ 0 1 2 3 4 5 6 7 8 9 Other
0 0 1 0 0 0 0 1 2 1 1 14
1 0 0 3 1 0 0 2 1 2 2 5
2 3 2 0 2 1 4 2 1 2 1 5
3 3 0 2 0 0 7 0 1 2 4 7
4 0 4 3 0 0 0 4 2 1 18 1
5 4 0 0 5 0 0 3 1 0 1 5
6 3 0 1 0 3 2 0 0 0 1 1
7 0 1 0 1 2 1 0 0 2 5 1
8 1 1 3 4 0 1 0 0 0 2 8
9 0 0 0 0 1 0 1 2 0 0 3

and 3.4(a)-(b). For example, in Table 3.3(a) and (b), combining numbers from 4 cells cor-
responding to M1 = 5, 6, 7, 8,M2 = 0 the error rates are 3/90 (training) and 8/87 (test)
which are lower than the corresponding error rates for M1 = 5, 6, 7, 8,M2 = 1- 5/20(train-
ing) and 8/ 36(test). For M1 = 9,M2 = 1, · · · , 5, the error rates are 1/124(training), 5/
199(test) which are lower than the corresponding error rates for M1 = 8,M2 = 1, · · · , 5 -
4/9(training) and 6/ 26 (test).

15.4 Further considerations.

In this section, we discuss possible ways of enhancing the three-way subclassification ap-
proach.
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Table 3.3: Conditional Error Matrices for Three-way Subclassification with the 55-Features-
2000/2000 data (Number of Misclassification Cases / Number of Total Cases): (a). Training
Set; (b). Test Set.

(a)

M1\M2 0 1 2 3 4 5 6 7 8
0 29/29
1 8/29 2/2
2 0/8 4/8 0/1
3 3/7 0/5 3/4 0/1
4 2/10 2/3 1/2 0/1 1/1
5 0/16 0/3 1/3 0/1 2/3 0/1
6 0/12 0/3 1/3 2/5 0/0 1/1 1/1
7 0/19 3/10 1/2 0/0 0/1 0/0 2/4 0/1
8 3/43 2/4 1/2 1/1 0/2 0/0 0/0 0/2 1/1
9 4/1604 0/64 0/20 1/15 0/13 0/12 0/6 0/8 0/3

(b)

M1\M2 0 1 2 3 4 5 6 7 8
0 33/33
1 14/32 6/7
2 3/19 4/5 1/1
3 1/14 3/6 4/6 0/1
4 1/9 1/3 0/2 1/2 1/2
5 3/19 1/4 1/3 1/1 2/2 0/0
6 2/21 1/9 1/2 2/3 0/1 2/3 0/0
7 1/18 4/11 1/2 0/2 4/6 2/3 1/2 1/2
8 2/29 2/12 1/6 0/1 3/7 0/3 0/2 1/4 0/2
9 10/1460 2/105 1/44 1/21 1/17 0/12 2/8 0/6 1/5

15.4.1 Conditional error analysis for binary classification.

Unlike three-way subclassification, binary subclassification does not have a straightforward
apparatus for unanimity assessment. One possibility is to follow a similar conditional anal-
ysis as in the three-way approach. Let M1(x) and M2(x) be the highest two scores again ,
but now obtained from the scoreboard by binary-subclassifications. The ideal condition for
most accurate prediction requires M1(x) to be as large as possible and M2(x) be as small
as possible. The larger the gap between them, the less competitive the runner up is, thus
reflecting certain degree of unanimity.

For the digital problem, since there are 10 classes, it is easy to argue that if M1 = 9,
then M2 cannot be smaller than 5. The condition M1 = 9,M2 = 5 represents the most
favorable situation for better classification. We shall anticipate the error rate to increase
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Table 3.4: Conditional Error Matrices for Three-way Subclassification with the 55-Features-
7188/1991 data (Number of Misclassification Cases / Number of Total Cases): (a). Training
Set; (b). Test Set.

(a)

M1\M2 0 1 2 3 4 5 6 7 8
0 144/144
1 23/93 9/16
2 15/72 14/28 2/2
3 8/52 6/15 3/10 3/9
4 6/63 5/13 1/3 1/4 1/1
5 6/53 4/10 4/7 2/3 2/3 1/2
6 9/63 2/9 2/10 2/3 2/6 3/6 2/3
7 6/67 7/15 2/7 3/5 7/13 3/3 2/4 4/5
8 10/114 12/29 2/12 5/12 4/4 2/4 3/8 8/10 3/4
9 31/5592 4/257 1/98 2/51 0/55 2/32 2/35 2/30 2/19

(b)

M1\M2 0 1 2 3 4 5 6 7 8
0 50/50
1 14/42 5/10
2 8/32 4/9 3/3
3 1/17 0/1 4/6 2/3
4 4/15 0/6 2/2 4/4 0/0
5 1/18 2/2 2/2 2/2 1/2 1/1
6 0/19 4/6 1/3 2/3 2/4 1/2 0/0
7 2/20 1/4 1/4 0/1 1/2 1/1 0/0 2/2
8 5/49 1/5 2/3 0/3 3/4 0/0 1/2 5/7 0/3
9 20/1407 5/100 5/33 2/19 1/11 1/19 2/10 3/8 4/10

as M2 increases. This is indeed what we can find from Tables 4.1(a)-(b) and 4.2(a)-(b).
For example, in the test set for 2000/2000 data, when fixing M1 at 9, the error rates are
seen to increase : - 0/3, 0/96, 15/506(=2.96%), 50/1337(=3.7%), respectively for M2 =
5, 6, 7, 8. However, an undesirable pattern is that the most favorable condition M2 = 5 is
only satisfied by three cases, while the least favorable condition M2 = 8 has 1337 cases.
Thus the conditional error analysis on binary classification does not lead to a useful way
of finding a large portion of cases which can be classified with very high precision. The
error rate has already reached 15/(3 + 96 + 506) = 2.5% when conditioning on M1 =
9, 5 ≤ M2 ≤ 7 as compared to 10/1460 = 0.68% for M1 = 9,M2 = 0 from three-way
subclassification reported earlier.

However, a positive note for binary classification is that it can be used to improve the
non-(9,0) group from three-way subclassification. The error rate is reduced from 120/540 =
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Table 4.1: Conditional Error Matrices for Binary Classification with the 55-Features-
2000/2000 data (Number of Misclassification Cases / Number of Total Cases): (a). Training
Set; (b). Test Set.

(a)

M1\M2 5 6 7 8
5 0/0
6 0/0 0/0
7 0/0 0/0 0/0
8 0/0 0/0 0/3 1/8
9 0/4 0/113 4/571 15/1301

(b)

M1\M2 5 6 7 8
5 0/0
6 0/0 0/0
7 0/0 1/1 4/5
8 0/0 1/1 12/18 21/33
9 0/3 0/96 15/506 50/1337

22.22% (among which 33/540 = 6.11% were unclassified) to 94/540 = 17.41%.

15.4.2 Radial partition.

Encouraged by the promising results from three-way analysis, we apply the same strategy
to another set of feature variables. This new feature space has 69 variables. Just like the
old feature space, they are also constructed using the centre of mass to guide the partition.
The difference comes from the geometric configuration of the partitioning lines. We use an
8-region radial partition system.

We begin with the centre of mass of the whole digit. Instead of quadrants, 8 regions
are obtained by further partitioning each quadrant diagonally into two equal pieces. The
location of the mass center for each of these 8 regions is computed. After that, the whole
digit is horizontally divided into two halves - one half is above the x-axis and the other half
is below the x-axis. For each half, we then compute the new centre of mass and apply the 8
region radial partition system to get another 8 locations of mass centers. Figure 4.1(a) shows
how the same digit 3 is partitioned. A total of 24 mass centers are located in Figure 4.1(b).
Our new feature space consists of these 48 locational variables and together with 21 weight
variables. Each weight variable represents the total mass from one of the 24 regions obtained
before. Note that due to colinearity among each of the three 8-region partitions, we cannot
use all 24 weight variables.

Using this new set of feature variables, the error rate from LDA is 5.8 % = 425 / 7291 for
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Table 4.2: Conditional Error Matrices for Binary Classification with the 55-Features-
7188/1991 data (Number of Misclassification Cases / Number of Total Cases): (a). Training
Set; (b). Test Set.

(a)

M1\M2 5 6 7 8
5 0/0
6 0/0 0/0
7 0/0 0/0 0/0
8 0/0 0/0 12/20 41/62
9 0/4 1/117 15/1456 119/5529

(b)

M1\M2 5 6 7 8
5 0/0
6 0/0 0/0
7 0/0 1/1 2/2
8 0/0 0/0 7/11 19/23
9 0/2 1/22 7/409 107/1521

the training set and 9.9%= 199 / 2007 for the test set. They are not much different from the
LDA results by 56 features. Can the three-way method help filter out a group of high quality
cases?

The result is shown in Table 4.3. Here we find that for the unanimous winners, M1 =
9,M2 = 0, the error rate in the test set is reduced to below 1% (13 out of 1535 cases).

15.4.3 A combined use of different feature spaces.

As pointed out before, three-way subclassification is especially effective in isolating high
quality cases- cases that are easier to predict their membership. This is achieved by a con-
ditional error analysis which exploits the degree of unanimity among different classification
decisions from subclassification. After locating the very high quality cases, we can then
focus on the rest of cases and try to find better classification, perhaps even with drastically
different classification methods. For example, consider the nearest neighbor classifier used
by LeCun et al.. As mentioned before, it has an error rate of 2.5% for the 2007 test cases,
but is computationally very demanding. If we can use it only for the non-(M1 = 9,M2 = 0)
cases, then the overall error rate would be still be at most around 3%. But in this way, we
have allocated the total computation time more effectively without sacrificing much of the
overall classification quality.

Perhaps an easier way of improvement is to combine the results from different feature
spaces. We try the following path.
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Figure 4.1: Radial Partition for Digit 3: (a). First Level Radial Partition; (b). Locations of
Mass Centers with Weights for three radial partitions.

Table 4.3: Misclassification Matrix for Three-way Subclassification Using Majority Rule
with the Feature69-7291/2007 data.

M1\M2 0 1 2 3 4 5 6 7 8
0 35/35
1 9/26 7/10
2 3/13 6/10 2/3
3 7/17 4/6 6/9 4/4
4 2/14 1/2 0/2 0/3 1/1
5 4/12 2/3 3/4 0/1 0/1 1/1
6 1/11 1/4 2/3 2/2 2/2 1/2 0/0
7 3/18 3/5 2/4 1/2 2/4 2/4 0/1 1/1
8 3/28 2/11 4/7 0/3 1/2 3/5 2/2 3/6 1/1
9 13/1535 5/69 1/22 1/15 1/15 0/12 1/10 3/12 4/12

(1). Apply three-way subclassification trained by 69-features to all test cases and locate
the M1 = 9,M2 = 0 group.

(2) Apply three-way subclassification trained by 56-features to the non-(9, 0) cases and
locate the M1 = 9,M2 = 0 cases.

(3) Apply binary classification trained by 69-features to all other left-over cases.

A breakdown of the error rate is given in Table 4.4. The overall error rate is now about
5.7%, which is compatible with the result (between 5% and 6%) by the neural network
approach. It is certainly a great improvement over the original LDA result which is about
10% for either feature. It is also significantly better than the 8.2% error rate obtained by
Hastie, Buja, and Tibshirani (1995).

It is interesting to observe that there are a good number of tied scores in binary subclassi-
fication. In order to keep the procedure simple, we resolve these ties essentially by a random
choice. Further investigation on how to handle these cases seems worthwhile.
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Table 4.4: Breakdown of Error Rate for Combining Use of Different Feature Spaces.

Group Cases Misclassified Cases Error Rate
(1). M1 = 9,M2 = 0/3-way/69-features 1535 13 0.85%
(2). M1 = 9,M2 = 0/3-way/55-features 160 15 9.38%

(3). Left-over/binary/69-features 312 87 27.88%
Total 2007 115 5.73%

15.5 Conclusion.

Discriminant analysis is relatively easier when the number of classes is small. In view of this
tendency, subclassification appears to be a promising strategy for alleviating the complexity
of many classes. In this article, we propose a three-way subclassification method and show
that it can be fruitfully applied to complement binary subclassification.

Three-way subclassification is designed to exploit the degree of unanimity among var-
ious decisions during subclassification. Thus, unlike the binary situation, the majority rule
by itself is not appropriate for the three-way subclassification. Instead, the information gath-
ered from the conditional error rate table in the training set is used for grading the discrim-
inant quality of an incoming unit x to be classified. If it falls into the highest grade group
(M1(x),M2(x)) = (k−1, 0), then we have the best confidence about the classification accu-
racy. On the contrary, if it falls into very low grade group with small M1(x) or large M2(x),
then we had better send it to other more powerful classifiers and hope for a better result.

In many industrial applications, tolerable error rates are usually set up by practical con-
cerns from the economic aspects. Thus it is important to identify sub-populations that are
easier to classify than others. Our method has the appeal of being able to identify such
higher-grade subpopulations. For the remaining lower-grade subpopulation, we can then
rely on more complicated methods to carry out the task. The ability to filter out cases that
are harder to classify is a very important consideration in quality management because this
helps engineers identify where the quality improvement should be focused on. Further in-
vestigation along this line of thoughts is worth pursuing.
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Chapter 16

Tree-structured Regression via PHD

This chapter is a minor modification of Li and Lue(1998).

We introduce a new approach to tree-structured regression. The distinctive feature is the
use of geometric shape information about the regression surface for guiding the choice of
splitting directions. The procedure begins with finding a direction along which the regression
surface bends the most. This direction is used for splitting the data into two regions. Then
within each region, another direction is found in the same manner and partitioning is carried
out recursively. The process continues until the entire regressor domain is decomposed into
smaller regions wherein the surface no longer bends significantly and linear regression fit
becomes appropriate. For implementing the direction search, PHD is applied. Several simu-
lation and empirical results are reported. Comparison with three methods CART, SUPPORT,
and MARS, is made. It highlights the benefit of using geometric information which is hard
to retrieve directly by other methods.

16.1 Introduction.

Tree-structured regression is a promising approach to high dimensional data analysis. It
estimates the regression function by recursively partitioning the entire data into several ho-
mogeneous regions. Since one can split the data in many possible ways, this leaves a great
deal of flexibility in model building. AID (Sonquist, 1970) and CART (Breiman, Friedman,
Olshen and Stone, 1984) are among the most popular methods in this area.

CART searches over all possible cut-points for a univariate split at each intermediate
node by optimizing a cost function. A large initial tree is generated. Then it uses a cross-
validation procedure to prune down the size of the tree. A simple average of the response
variable is computed in each terminal node, yielding a piece-wise constant prediction equa-
tion. Another tree-structured method, SUPPORT, is proposed in Chaudhuri, et. al. (1994).
SUPPORT also uses univariate splits. To avoid extensive searching in optimizing the cost
function, the cut-point/variable selection is determined via significance testing procedures
for some two-sample problems. It then uses a looking-ahead cross-validation procedure to
control the tree size. Multiple linear regression is applied in each terminal node for predic-
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tion. Alexander and Grimshaw (1996) proposed yet another splitting strategy by a different
kind of cost consideration. Simple linear regression is used.

Despite of their differences in the splitting rule selection, tree construction has always
been driven by the concern of cost optimization. This is because one of the primary goals
in regression is to find rules that have as small prediction errors as possible and cost opti-
mization appears to be a direct way to meet this need. Indeed, such a rationale also extends
to other nonparametric regression methods. See the reference in Friedman(1991) and its
discussion for a long list of smoothing techniques. In our study, we shall only include Fried-
man’s MARS for comparison. MARS is not a partition-based procedure. It uses splines to
fit the data. The selection of spline basis function is guided by a variant of generalized cross
validation.

In this article, we shall introduce a new method of constructing regression trees, which
is based on a totally different rationale. Instead of being overwhelmed by cost considera-
tion, our primary concern is how to explore the geometric information about the regression
surface. Intuitively, such information could be best utilized if we can physically “see” the
surface. For example, if the response surface appears like a plane, then splitting is unnec-
essary. The regression function can be well approximated by the standard multiple linear
regression method. On the other hand, if the surface appears to bend in some global direc-
tion, then it is advantageous to split the data along that projection. We can anticipate that
after recursive splitting, the surface in each node should become flatter and flatter. In the
end, this could allow us to fit the data linearly.

The weakest link in this geometrically-motivated splitting strategy is how to detect the
bending directions in the regression surface without having to estimate the surface in the first
place. For this purpose, we use the dimension reduction tool, PHD. We have early discussed
the ability of PHD to find curvature in Chapter 7. More discussion on our splitting direction
and cut-point selection is given in Section 2. Section 3 summarizes the theoretical foundation
of PHD. In Section 4, some examples are given to illustrate the merits of our method. First,
two simulation studies are given in section 4.1, highlighting how our method can outperform
the three methods included for comparison - CART, SUPPORT and MARS. Then in Section
4.2, our method is used to analyze three real data sets which have been studied before by
others using CART, SUPPORT and MARS. In each case, we found that our method yields a
simpler tree-structure without compromising the quality of fit.

Our method has the advantage of utilizing the graphical power to explore nonlinear data
structure. At each node of a tree, we can focus on the data points in the node and project them
along the directions found by PHD. This provides an invaluable opportunity for finding more
subtle data patterns. For example, in the Baseball Hitters’ Salary Data, a few outliers become
visible from our graphical output produced by PHD. As we shall demonstrate, these points
also seriously affect the performance of all three methods we have included for comparison.
Outliers in high dimensional data are not easy to be ”seen”. Unlike our graphics-oriented
procedure, CART, SUPPORT and MARS do not provide outputs that could be effectively
used for outlier detection.

In the literature of smoothing, comparison of different methods has placed a good deal
of emphasis on the issue of accuracy in prediction. But the fact is that in complex situations,
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no single method can dominate others in each application in this regard. Simulation studies
are useful in promoting new techniques because they at least provide examples where the
old methods can be outperformed. The simple simulation settings of Section 4.1 serves this
purpose. However, if the intent were to imply the overall superiority of a new method over
its rivals, then the simulation should be conducted in a more comprehensive way to avoid
the criticism of being “unfair” to some methods. This kind of universal superiority is not
what we can demonstrate for our method. Besides, it is certainly not an easy task to decide
which set of examples to use in order to achieve a genuine sense of fairness. Nevertheless,
the cross-examination strategy taken in Section 5 can be viewed as an attempt in conducting
a more extensive simulation study.

Cross-examination is based on the anticipation that a good method should perform better
than others for the data simulated according to a model constructed from the method itself.
To implement this idea, we first take a real data set and apply method A to build a model.
After that, we simulate a new data set from this model and then fit it with both method A and
method B to see which method provides better prediction. Of course, we anticipate method
A to predict better than method B. But if this turns out not the case, the adequacy of applying
method A to the original real data should become doubtful. We call this kind of comparison
“a credibility check”. This strategy can be generalized easily to comparison for more than
two methods. Our findings on cross-examination are reported in Section 5. For the Ozone
example, as expected, each method manages to outperform others for data simulated from
its own model. But for the Hitters’ Salary example, there is a somewhat unexpected finding
in favor of PHDRT - even for data simulated from the SUPPORT model, PHDRT has a slim
edge over SUPPORT.

We have written a package called PHDRT using Xlisp-Stat (Tierney 1990), a user-
friendly object-oriented environment. Users can have very easy access to summary infor-
mation (both numerical and graphical) contained in each node of the tree by pointing to the
computer screen. PHDRT offers a rich framework for visualizing, learning, and modeling
high dimensional regression data. Further discussion and some concluding remarks are given
in Section 6.

16.2 Shape of regression surface and a basic splitting strategy.

The shape of a nonlinear multi-dimensional regression surface is usually hard to describe.
This complexity comes mainly from the variation in the gradient vectors for the regression
surface at various locations. If all the gradient vectors are the same, then the surface is
a hyperplane. This is the case in which multiple linear regression is applicable. For the
nonlinear case, gradient vectors do vary and the surface begins to bend or twist. Plotting is
a common way to learn about the shape of a two-dimensional surface. But this is obviously
hard to do when the dimension gets larger.

Our domain splitting method offers a way to gradually simplify the shape of the surface.
The main idea is to find a projection direction where the surface bends the most first and then
use this projection to split the data. It is hoped that after recursive splitting, the gradient vec-
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tors within each region will become similar so that the regression surface can be adequately
approximated by linear regression.

It is not easy to implement this idea in a straightforward manner. The main difficulties
come from the estimation of high dimensional gradient vectors. To overcome this problem,
we use the method of PHD which does not rely on direct gradient estimation. PHD offers a
simple way to find projection directions with bending patterns.

16.2.1 An Example.

Consider a simple case where the regression function consists of two hyperplanes continu-
ously joined together:

y = x5, if x1 + x2 + x3 + x4 ≥ .5,
= x5 − x1 − x2 − x3 − x4 + .5, if x1 + x2 + x3 + x4 < .5

where x1, · · · , x5 are i.i.d. standard normal random variables. For the sake of illustration,
the random error term is purposively ignored. A sample of size 400 is generated. There
are only two distinct gradient vectors in this case, (0, 0, 0, 0, 1)′ and (−1,−1,−1,−1, 1)′.
Let β = (1, 1, 1, 1, 0)′ and denote (x1, · · · , x5)

′ by x. The best way to describe the re-
gression surface is to project it onto the plane spanned by the axis of β ′x and the axis of
x5; see Figure 1(a). It looks like a hinge and β is the direction of bending. We apply
the r-based PHD method described in Section 3. The first PHD direction is found to be
b̂1 = (.51, .50, .48, .49, .04)′ which is almost in the same direction as β. Figure 1(b) is a
graphical output of PHD which reveals the bending pattern very well. The first PHD variate,
denoted by b̂′1x, is in the horizontal axis phd1. The vertical axis displays the residuals after
the global linear trend obtained from multiple linear regression is removed. We could use y
for the vertical axis and in fact this produces a pattern almost identical to Figure 1(a). How-
ever, bending patterns are usually better revealed by plotting the residuals. This observation
is consistent with a recent study by Cook(1998). PHD can work well for modest sample
sizes. For this example, a sample of size 100 is large enough to see a clear bending pattern.

Figure 1(b) strongly suggests that the data be split into two groups at the point where the
two line segments meet. The cut-point is estimated to be ĉ = .248. All points with b̂′1x ≥ ĉ
fall into the first group and all other points go to the second group. Since b̂1 is about a half of
β, this splitting is quite consistent with what the inequality in the true model would suggest.
After splitting, we then apply linear regression in each group. As expected, the fit is very
good.

16.2.2 Binary Regression Tree.

Due to its simplicity, binary splitting will be our primary choice in generating a regression
tree and this is what we shall describe in this section. But our approach is flexible enough to
allow multiple splitting if necessary and we shall encounter such applications later.



16.2 Shape of regression surface and a basic splitting strategy. 203

(a) (b)

phd1

residuals

phd2

y

β'Χ
x5

Figure 1: For the simulated data in section 2.1, the 3-D plot (a) shows two planes joined
together like a hinge; PHD plot (b) finds the hinge direction.

16.2.3 Splitting.

A binary split of a node s takes the form b′x ≥ c, or < c. Two distinct steps are needed:
(a) Split direction selection. An ideal split direction b is one that clearly reveals a bending

surface pattern. We shall use the first r-based PHD direction b̂1 (see (3.1) in section 3) which
is obtained by applying PHD to the data contained in the current node. The output PHD plot
should reveal some pattern of bending; otherwise splitting will not be fruitful (see stopping
rule (s.2) below).

(b) Cut-point. Our procedure seeks for a place in the PHD plot to break the bending
pattern so that after splitting, each part in the plot will become more linear. Details of our
procedure for selecting the cut-point c are described in Appendix A.

16.2.4 Stopping.

Node s is declared to be a terminal node if one of the following conditions is satisfied:
(s.1) The sample size in s is less than a user-specified value.
(s.2) The PHD direction is insignificant: the first eigenvalue (or the corresponding p-value)
is smaller (larger) than a user-specified value.

16.2.5 Prediction.

After successive splitting, the change in the gradient of the regression function within each
node is gradually reduced. We shall fit a multiple linear regression in each terminal node.

Suppose the region has been broken into several terminal nodes Rt , t = 0, · · · , T . Let
Bt(x) = I(x ∈ Rt ) be the indicator function for node Rt . We represent the final prediction
function as

ĝ(x) =
T∑

t=0

(ât + b̂′t x)Bt(x)
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where ât and b̂t are the least squares linear regression estimates for node Rt ; i.e.

min
at ,bt

∑
xi∈Rt

(yi − (at + b′t xi))
2.

16.3 3. Variable selection.

In the literature of tree-structured regression and classification, opinion has been divided
regarding the relative merits of univariate split against the linear combination split; see the
Breiman and Friedman’s discussion of FACT by Loh and Vanichsetakul (1988) and the au-
thors’ Rejoinder. From our observation, what is missing from either side’s argument is the
role of geometry. Since our tree construction is geometrically motivated, splitting directions
must be p-dimensional vectors in order to allow enough flexibility in viewing the regression
surface from various angles. But a realistic concern is that for large p, these vectors may
not be easy to interpret. To address this issue, we use a variable selection strategy similar
to the one discussed in Chapter 3 for SIR. For a given PHD direction b̂ obtained when all
regressor variables are used, we want to find a smaller subset of regressor variables that have
a high R-squared value when regressed against b̂′x. Our default is to use the forward variable
selection method. We stop recruiting more variables when the R-squared value first reaches
90% or more. After variable selection, we rerun PHD on the selected variables. Since the
new split direction now involves fewer regressors, it is easier to interpret. Our program also
checks the correlation between the old and the new split variables to make sure that they are
nearly the same.

16.4 Examples.

We apply our PHD based splitting method for generating regression trees (abbreviated by
PHDRT) to several simulations and real data sets. The performance is then compared with
CART, SUPPORT, and MARS. These results illustrate that our method often produces a
much simpler tree while maintaining compatible (if not better) predictive accuracy. All work
was done on the SUN (SPARC) workstation in the Xlisp-Stat environment (Tierney, 1990).
More examples and other details not reported here can be found in the thesis of Lue (1994).

16.4.1 Simulations.

In our simulation study, we shall generate data from models of the form y = g(x) + ε. To
measure the predictive accuracy, we can compute the true average squared error of the fit
defined by

ASE = 1

n

n∑
i=1

(g(xi)− ĝ(xi))
2

where ĝ denotes any fit of g. The average of squared residuals is denoted by σ̂ 2 = 1
n

∑
(yi −

ĝ(xi))
2. These examples are constructed in order to illustrate situations where PHDRT can



16.4 Examples. 205

dramatically outperform other established methods. It is intended to highlight the value of
studying the shape of surface - which is the fundamental difference between the PHDRT
method and others. It is not intended for supporting any claim about the total domination of
one method over another.

Simulation I.

The regression surface in this example consists of the three sides of a triangle pyramid. The
model is

y = −β ′1x−
√

3β ′2x+ 1+ .5ε, if β ′2x ≥ 0, and
√

3β ′1x+ β ′2x ≥ 0

= −β ′1x+
√

3β ′2x+ 1+ .5ε, if β ′2x < 0, and
√

3β ′1x− β ′2x ≥ 0

= 2β ′1x+ 1+ .5ε, if
√

3β ′1x+ β ′2x < 0, and
√

3β ′1x− β ′2x < 0

where x = (x1, · · · , x10)
′, all ten coordinates of x and ε are i.i.d. standard normal ran-

dom variables, β1 = (1, 1, 1, 1, 1, 0, · · · , 0)′, β2 = (0, · · · , 0, 1, 1, 1, 1, 1)′. Apparently, the
multiple linear regression does not fit the data well. The lack of fit can be seen from the
scatterplot of the linear residuals against the first two components found by PHD, given in
Figure 2.

Figure 2: Simulation I. Linear residuals are plotted against the first two PHD component.

A summary of PHDRT analysis is given in Table 1. Reading from the top, this table
is divided into several sections. The first section, “linear”, gives the results of the linear
regression applied to the entire data set. The R-squared value is only .03 and residual stan-
dard deviation is large, σ̂ = 2.617. The application of PHD to the root node (the entire
data set, which has 400 cases) leads to the next section, “root 400”. Both the p-value se-
quence, 0, 2e-15, .69,· · ·, and the eigenvalue sequence, 2.3, 2.1, .63, · · · , indicate that two
directions are significant. Here the chi-squared test given in Li (1992) is used. The first PHD
direction b̂1 should be a vector of 10 dimensions, but to save space, only the coordinates
for the 5 selected variables, x9, x10, x6, x8, x7 are given there. Other coordinates are quite
small and are omitted. By default, PHDRT uses the first PHD direction b̂1 and the cut-point
ĉ = −.01 to split the data into two subnodes of size 207 and 193 respectively. The cases
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with b̂′1x = .48x9 + .48x10 + .50x6 + .42x8 + .37x7 ≥ ĉ = −.01 are assigned to the first
subnode. All other cases go to the second subnode.

The application of PHD to the first subnode leads to the third section, “subnode 207”.
Both p-values (6e-9, .91,· · ·) and eigenvalues (2, .39,· · ·) indicate that only one direction
is significant. The coordinates of the first PHD direction b̂1 with the 5 selected variables
are given there. Using this direction and the cut-point ĉ = −.57, this subnode is further
split into two children nodes of size 150 and 57 respectively. Again PHD is applied to each
of these two nodes. But this time, no more split is recommended because no significant
PHD directions are found. Therefore they become terminal nodes and are called “T150” and
“T57” respectively. The linear models are used to fit the data in each terminal node. The
R-squared values are .91 and .94 respectively, and the residual standard deviations are about
.84 and .65 respectively. These are recorded in sections “T150” and “T57”.

The PHD analysis for the second subnode (with 193 cases), is quite similar. The results
are given under the section “subnode 193”. This node is split into two children nodes, “T124”
and “T69” and then the process is terminated. The R-squared value and the residual standard
deviation for fitting a linear model in each terminal node are also given there. The last
section, “Overall”, gives (1) the residual standard deviation for the entire data set using
PHDRT, and (2) the performance measure ASE as defined in the beginning of this section.

We also apply CART, SUPPORT, and MARS to see how well they perform. The trees
generated by CART, SUPPORT and PHDRT are shown in Figure 3. The main findings are:

1. CART doesn’t make any split. The ASE obtained by CART is 6.528.

2. SUPPORT chooses five variables, x1, x4, x6, x7 and x9, and makes seven splits; that
is, after first splitting by x1 at .478e-1, then one subnode is split by x7 at .132 and
the other subnode is split by x4 at .23e-1, etc.. Note that in applying SUPPORT, we
have followed the guidance of Chaudhuri et al (1994) and select the user-specified
parameters by trying several values. The best choice is found at f = .1, η = .2,
MinDat = 40, V = 10. The ASE obtained by SUPPORT is 3.492, which represents an
85% (= 6.528/3.492 − 1) improvement over CART.

3. MARS needs twelve basis functions to fit the surface. To save space, the results are
omitted. We note however that the ASE obtained by MARS is 4.359 which is between
CART and SUPPORT.

4. As described earlier, PHDRT finds four terminal nodes. The ASE obtained by PHDRT
is only .371. The improvement over SUPPORT is 840%(=3.492/.371 -1).

Simulation II.

Our second simulation uses the following model:

y = |β ′1x| + .5(|β ′2x| − µ) · sign(β ′1x)+ .5ε
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Table 1: A summary output of PHDRT for simulation I. The root node is split into two
subnodes of size 207 and 193 respectively. The node with 207 cases is further split into two
terminal nodes, T150 and T57, while the node with 193 cases is split into terminal nodes,
T124 and T69.

linear R-squared .03 σ̂ 2.617
root p-values (0, 2e-15, .69,· · ·) eigenvalues (2.3, 2.1, .63,· · ·)

b̂1 (.48, .48, .50, .42, .37) ĉ -.01
400 variables x9, x10, x6, x8, x7 subnode sizes (207, 193)

subnode p-values (6e-9, .91,· · ·) eigenvalues (2, .39,· · ·)
b̂1 (.51, .48, .42, .36, .31) ĉ -.57

207 variables x1, x4, x3, x5, x2 subnode sizes (150, 57)
subnode p-values (5e-10, .68, · · ·) eigenvalues (2, .44,· · ·)

b̂1 (.56, .52, .46, .46, .33) ĉ -.28
193 variables x3, x2, x5, x4, x1 subnode sizes (124, 69)

T150 R-squared .91 σ̂ .8406
T57 R-squared .94 σ̂ .6497
T124 R-squared .95 σ̂ .5736
T69 R-squared .82 σ̂ 1.266

Overall σ̂ .8389 ASE .371

where β1 = (1, 1, 0, · · · , 0)′, β2 = (0, 0, 1, · · · , 1)′, µ = E|β ′2x| and x = (x1, · · · , x10)
′, all

ten coordinates of x and ε are i.i.d. standard normal random variables; sign(z) = 1 if z ≥ 0,
otherwise -1. The plot of the linear residuals against the first two components found by PHD
is given in Figure 4. Again, a bending pattern is found. Table 2 summarizes the PHDRT
analysis. As in Table 1, it is divided into several sections, each representing results from one
node. It is interesting to observe that although this model involves two directions, the PHD
analysis on the root node only gives one significant direction. However, the other direction
is recovered after splitting.

The results of trees generated by CART, SUPPORT, and PHDRT are shown in Figure 5.
MARS is also applied. Here is a summary of the relative performance.
1. CART chooses x1 and makes six consecutive splits; that is, after first splitting by x1 at
1.120, one subnode is split again by x2 at -1.232, etc. The ASE found by CART is 1.011.
2. SUPPORT chooses four variables, x1, x2, x3 and x6, and makes six splits; that is, after
first splitting by x1 at .683e-1, one subnode is split by x2 at .69e-2 and the other subnode is
split by x2 at -.651e-1, etc. (Here again after several passes, we take f = .1, η = .1, MinDat
= 40, V = 10 as the user-specified values). The ASE obtained by SUPPORT is .681, which
is about 50% better than CART.
3. MARS uses 12 basis functions. The ASE is .727, which is about the same as SUPPORT.
4. Four terminal nodes are found by PHDRT. The ASE obtained by PHDRT is only .098,
which is about 600% better than SUPPORT or MARS.

Again for this example, the surface has a nice geometric shape. The dramatic improve-
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Figure 3: CART(upperleft), SUPPORT(lower) and PHDRT trees for simulation I, the value
of SAE are 6.528, 3.492 and 3.71, respectively. The number in each node is the sample size,
and sum of squared error loss is given in italics under each terminal node.

ment of PHDRT over other methods is simply because PHDRT is the only one that uses
geometric information.

16.4.2 Real Data.

We apply CART, SUPPORT, MARS and our method to three popular data sets. The first data
set comes from a study on the atmospheric ozone concentration in the Los Angeles basin; see
Breiman and Friedman (1985). The second one concerns the salary of 263 baseball hitters;
it is originally given in 1988 ASA Graphics Poster Session (c.f. Chaudhuri et al., 1994). The
last one studies the fuel efficiency for automobiles; it comes from the ASA Data Exposition
data set (1983) collected by Ernesto Ramos and David Donoho. The names of the variables
involved are given in Tables 3, 4, 5. The numbers of regressors are 8, 16, and 6 respectively.

The Ozone data.

For the ozone data, PHDRT makes only one split with the splitting variable .004x3+.0005x2+
.03x6, and the cut-point is at 3.46. The fitted equation in each node is given in Table 6. The
standard errors of the regression coefficients are also given. It is interesting to observe that
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Figure 4: Simulation II. Plot of linear residuals against the first two PHD components.

Table 2: PHDRT’s results for simulation II.

linear R-squared .04 σ̂ 1.329
root p-values (2e-15, .74, .91, · · ·) eigenvalues (1.1, .34, .27, · · ·)

b̂1 (.73, .76) ĉ .05
400 variables x1, x2 subnode sizes (205, 195)

subnode p-values (2e-11, .23, · · ·) eigenvalues (1.2, .45, · · ·)
b̂1 (.38, .44, .33, .42, .38, .33, .21) ĉ .09

205 variables x5, x9, x6, x4, x7, x3, x10 sizes (88, 117)
subnode p-values (1e-6, .80,· · ·) eigenvalues (1.1, .32,· · ·)

b̂1 (.45, .29, .37, .48, .35, .28, .21) ĉ .06
195 variables x3, x8, x9, x10, x7, x4, x6 subnode sizes (97, 98)
T88 R-squared .81 σ̂ .6182
T117 R-squared .79 σ̂ .6505
T97 R-squared .87 σ̂ .4773
T98 R-squared .86 σ̂ .5596

Overall σ̂ .5829 ASE .098

the regression coefficient for x6 (humidity) is positive in one node but changes to a negative
value in the other node.

To see how PHDRT explores the nonlinearity of regression surface, Figure 6 provides
the view of log ozone from the split direction found by PHDRT. We see that the data points
form a clear pattern of bending. The data points on the right of the cut-point belong to the
first node, the node with 114 cases. The rest of the data points go to the second node, the
node with 216 cases. After splitting, no more bending patterns are seen and each node is
fitted adequately with a linear model. The overall standard deviation for the residuals σ̂ is
about .37.

For a comparison, we run CART, SUPPORT and MARS. It turns out that CART chooses
four variables, x1, x2, x4 and x3, to make four splits, and yields an overall standard deviation
σ̂ = .43. The first split is made by x1 at 65.5; then one subnode is split by x2 at 3669, and so
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Table 3: Variables for Ozone data

y Logarithm of daily maximum one-hour-average ozone reading at Upland, CA.
x1 Temperature (degrees F) measured at Sandburg, CA.
x2 Inversion base height (feet) at LAX
x3 Pressure gradient (mm Hg) from LAX to Daggett, CA.
x4 Visibility (miles) measured at LAX
x5 500 millibar pressure height (m) measured at Vandenberg AFB
x6 Humidity (%) at LAX
x7 Inversion base temperature (degrees F) at LAX
x8 Wind speed (mph) at Los Angeles International Airport (LAX)

Table 4: Hitters’ salary data in 1986. The variables with the symbol * refer to the entire
career up to 1986. Those variables without * refer to the year of 1986 only.

y the logarithm of 1987 annual salary ($1000)
hline x1 # of times at bat x9 # of hits *

x2 # of hits x10 # of home runs *
x3 # of home runs x11 # of runs *
x4 # of runs x12 # of runs batted in *
x5 # of runs batted in x13 # of walks *
x6 # of walks x14 # of put outs
x7 # of years in major leagues x15 # of assists
x8 # of times at bat * x16 # of errors

on. SUPPORT chooses two variables, Pressure (x3) and Humidity (x6), to make two splits
and yields an overall standard deviation σ̂ = .38. After the first split by Pressure at 17.2, one
subnode is split by Humidity at 46.9. The user-specified parameters are optimally set at f =
.2, η = .4, MinDat = 30, V = 10. MARS uses 10 basis functions and produces a σ̂ of .35.
The trees obtained by CART, SUPPORT and PHDRT are given in Figure 7.

It appears that from the value of σ̂ , there is not much difference between the fits produced
by MARS, SUPPORT, and PHDRT. But PHDRT is the only one which provides us with the
additional geometric insight about the nonlinear data pattern.

Remark 4.1 Variable selection as discussed in Remark 3.1 has been used in all three real
data examples. For the ozone data, the three variables x3, x2 and x6 used in defining the
splitting variable have an R-square value of about 92% when regressed against the first PHD
component obtained from the initial run of PHDRT on all 8 variables.
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Table 5: Regressors description for Cars data

y miles per gallon
x1 number of cylinders x4 vehicle weight
x2 engine displacement x5 acceleration
x3 horsepower x6 model year

Table 6: Piecewise linear fit for Ozone data. PHDRT makes one split, generating two
terminal nodes. This table gives the fitted equation for each node, along with the standard
errors of the regression coefficients, the residual standard deviation, and the R-squared value.

Node sizes Fitted equations Standard errors σ̂ R-squared
114 2.42+ .032x1 − .00026x2 − .019x6 .44, .0037, .000049, .0034 .378 .73
216 −.17+ .027x1 + .015x6 .12 , .0021, .0014 .373 .72

Hitters’ salary data.

Real data often contain outliers that could affect model building and any related statistical
inference activities. Earlier study on the Hitters’ salary data (Chaudhuri et al. 1994) paid
no attention to this problem. This is in part due to the fact that outliers are hard to detect
in large dimension problems. Unlike CART, SUPPORT, and MARS, outlier detection is a
natural byproduct of the graphical feature of PHDRT. This is what we shall demonstrate in
this example.

We take the logarithm of the salary as the y variable, as recommended by Chaudhuri et
al. (1994). We first run PHDRT on the entire data set. Seven outliers are clearly seen from
various angles of the 3-D PHD plot; Figure 8 (a)-(c). We remove these points and then run
PHDRT again on the remaining 256 cases. A clear bending pattern is now revealed in the
PHD plot; Figure 8 (d).

Table 7: Piecewise linear fit for Hitters data

Node sizes Fitted equations Standard errors σ̂ R-squared
144 3.95 + .00540x6+ .080, .0015 .318 .838

.0860x7 + .000877x8 .019, .000057
112 6.23 + .0104x6− .17 , .0019 .397 .53

.104x7 + .000225x8 .019, .000037

The final output of PHDRT is summarized in Table 7. Only one split is made. The node
with .121x7 + .00081x9 < 1.29 has 144 cases. According to Table 4, x7 is the number of
years in major leagues, and x9 is the total number of hits accumulated in the entire career( up
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Figure 6: View of log ozone from the split direction. The cut-point is at 3.46. The data form
an obvious bending pattern which is the key geometric information explored by PHDRT.

to year 1986). Thus players in this group are either relatively junior or are not hitting well.
The other node, .121x7+ .00081x9 ≥ 1.29 has 112 cases. Veteran players with better hitting
record should fall into this node. The predictor variables in the final fitted equations for both
nodes happen to be the same −x7, x8 (the total number of times at bat during the career) and
x6 (the number of walks in 1986). An interesting finding related to ”aging effect” can be
observed in the second node. The negative sign in the coefficient of x7 is highly significant.
For this group(senior/better hitters), x7 is working against players’ salary. But for the other
group(junior/poor hitters), x7 is a positive factor. Figure 9 (a) gives the plot of log salary (y)
against the split variable. The two groups are seen to be markedly different. Those points
on the left of the cut point have a sharper linear trend. This is consistent with the R-squared
values reported in the rightmost column of Table 7. The R-squared value for the first node is
about 84% and it goes down to about 53% for the second node.

Some further analysis details are described in Remark 4.2. We also apply CART, SUP-
PORT, and MARS to the entire data set. The trees generated by CART, SUPPORT and
PHDRT are given in Figure 10. In summary, CART chooses four variables, x8, x9, x2 and
x12, to make five splits, and yields the overall standard deviation for σ̂ = .422. The first split
is made by x8 at the value 1452, then one subnode is split by x9 at 182 and so on. SUPPORT
chooses two variables, x7 and x1, to make two splits, and yields the overall standard devia-
tion for σ̂ = .440. The first split is made by x7 at 7.31, then one subnode is split by x1 at
406. Here the user specified parameters are optimally set at f = .1, η = .4, MinDat = 40, V
= 10 after several passes. MARS uses 13 basis functions and yields a σ̂ of .33.

By comparing the residual standard deviation σ̂ , it appears that MARS is doing better
than CART and SUPPORT. It also beats PHDRT slightly( σ̂ for PHDRT is .35). This is
done even without having to pay attention to the 7 outliers detected by PHDRT. Of course, a
smaller σ̂ does not necessarily guarantee the superiority in prediction. However, this raises
the question of whether PHDRT does find real outliers or not. It is certainly possible that
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Figure 7: CART(upper), SUPPORT(lower left) and PHDRT trees for atmospheric Ozone
concertration in the Los Angeles basin data, the values of the overall residual standard devi-
ation are .434, .378 and .375, respectively. The number in each node is the sample size.

these points may have no effects on procedures other than the PHDRT itself.
To investigate this issue, we leave the 7 cases aside for the moment and randomly parti-

tion the remaining 256 cases into two groups − a training group of 200 cases and a testing
group of 56 cases. Then we apply each of the four methods to the training group in order to
produce the prediction rules. After obtaining the prediction rules, we then use each of them
to make prediction for cases in the testing group and the 7 cases considered to be outliers
by PHDRT. To evaluate the performance in prediction, the average of the squared prediction
errors (ASPE) is computed for the testing group and separately for the 7-outlier group. If
there were nothing special about the 7-outlier group, then we expect the two ASPE values to
be about the same.

We repeat this random partition and prediction process 10 times and a summary is given
in Table 8. Cross the board, the ASPE for the outlier group is one magnitude bigger than
the ASPE for the testing group for all methods considered here. This indicates well that the
outliers found by PHDRT also affect the behavior of MARS, CART, and SUPPORT. This
table also shows that once the outliers are deleted, the prediction errors are about the same
for PHDRT and MARS. This is rather interesting because the fitted equation for MARS takes
a complicated expression which in no way resembles the simplicity of the fit by PHDRT.
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Figure 8: Baseball salary data. Seven outliers are clearly seen from various angles of the
3-D PHD plot (a)-(c). A clear bending pattern is revealed in the PHD plot (d) once they are
removed.

Another point worth mentioning is that for these ten different runs, PHDRT always leads
to the same tree structure - only one split is needed. On the other hand, the basis functions
yielded by MARS vary substantially from run to run. For example, the first run yields a fitted
equation:

ŷ = 7.00 − .00501(245 − x11)+ − .127(x7 − 7)+ − .121(7− x7)+
+ .000000798(x11 − 245)+(x14)+ + .00257(7 − x7)+(x12 − 274)+
+ .00000354(x11 − 245)+(x10 − 43)+ − .000324(245 − x11)+(x10 − 45)+
+.00529(x6 − 3)+ − .000513(1906 − x9)+ (4.1)

while for the second run, the fit is

ŷ = 4.73+ .00207(x9 − 489)+ − .00331(489 − x9)+ − .0885(x7 − 6)+ − .173(6− x7)+
+ .0126(x6 − 3)+ − .209(489 − x9)+(x10 − 45)+ − .0263(489 − x9)+(45− x10)+
+ .0194(x10 − 221)+ − .000583(x8 − 5347)+ + .000416(5347 − x8)+
−.000236(x6 − 3)+(x10 − 221)+ − .0000323(x6 − 3)+(x10 − 221)+
+.00904(6 − x7)+(x10 − 49)+. (4.2)

The output of MARS also provides a relative variable importance index (RVII). For the first
run, the most important variable is X7 (RVII=100), followed by x11(RVII= 79), x10(RVII=41),
and so on. But in the second run, the most important variable is x9(RVII=100), followed by
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Figure 9: (a) The plot of log salary against the split variable shows a bending pattern. The
cut-point is at 1.29. (b). The corresponding PHD plot-the horizontal azis is the same as in
(a).

x7(RVII=90), x6(RVII=64), and so on. This kind of variation adds further difficulties in
interpreting the MARS output.

Remark 4.2. Variable selection as described in Remark 3.1 is repeated twice in simpli-
fying the splitting direction. At first time, seven out of the 16 regressors can explain more
than 92% of the variation in b̂′1x. We use the seven regressors found as the new regressors
to rerun PHDRT. Then variable selection is applied again to the new splitting variable. This
time we need only two regressors, x7 (# of years in major leagues) and x9 (# of hits during
his career), could explain more than 94% of the variation. The final round of PHD analysis
is based using only x7 and x9. This gives the split direction of the PHD tree. The PHD plot
is given in Figure 9 (b), which exhibits the bending pattern very well.

Cars.

The default of PHDRT is to use a binary split. However, other possibilities can sometimes
be more effective. This example illustrates how the graphical output of PHD can be used for
this purpose.

There are 392 cars used in the analysis. The scatter plot of linear residuals against the
first two components found by PHD (with x3, x6, x4 and x1 as regressors), shown in Figure
11, reveals three clusters. This pattern can be attributed to the factor x1 (the number of
cylinders). We split the data accordingly. The first group consists of cases with x1 = 3, 4, 5,
the second group with x1 = 6, and the third group with x1 = 8. After splitting, linear models
fit reasonably well for each group.

A comparison with other methods is outlined here.
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Figure 10: CART(upper), SUPPORT(lower left) and PHDRT trees for Baseball Player Salary
data, the values of the overall residual standard deviation are .422, .440 and .375, respec-
tively. The number in each node is the sample size.

1. CART chooses four variables, x2, x3, x6 and x4, and makes six splits, yielding an
overall standard deviation σ̂ = 3.24. After the first split by x2 at 190.5, one subnode
is split by x3 at 70.5, and subsequently one of the daughter nodes is again split by x3

at 127, etc.

2. SUPPORT chooses four variables, x4, x1, x6 and x5, and makes five splits, yielding an
overall standard deviation σ̂ = 2.64. After the first split by x4 at .298e4, one subnode
is split by x1 at 4.21. The one of the daughter nodes is split again by x6 at 77, etc.
(User specified values: f = .2, η = .4, MinDat = 20, V = 10)

3. The σ̂ obtained by MARS is 2.47 with twelve basis functions.

16.5 Cross-Examination.

The purpose of cross-examination is to see how one method performs when the data are
simulated from models constructed by other methods.
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Table 8: Prediction errors for Hitters data. Setting aside the 7 outliers found by PHDRT,
the rest of cases are randomly partitioned into a training set (200 cases) and a testing set (56
cases). The ASPE for the testing group is compared to the outlier group. The results of 10
random partitions are given here.

Procedure - ASPE for 10 runs Mean of ASPE SD of ASPE
CART test(56) .212 .219 .265 .205 .235 .2197 .0361

.255 .260 .219 .162 .165
outliers(7) 2.42 2.19 2.31 2.46 2.51 2.414 .129

2.57 2.59 2.45 2.29 2.35
SUPPORT test(56) .162 .128 .236 .112 .145 .1618 .0355

.154 .149 .170 .160 .202
outliers(7) 4.46 4.21 4.70 4.23 4.14 4.489 .364

4.48 4.09 4.59 5.31 4.68
MARS test(56) .106 .127 .191 .085 .141 .1344 .0306

.134 .106 .156 .139 .159
outliers(7) 4.53 4.33 3.86 5.97 4.78 4.709 .364

4.26 4.90 5.07 5.43 3.96
PHDRT test(56) .137 .120 .188 .093 .143 .1452 .0319

.150 .119 .198 .139 .165
outliers(7) 4.32 3.96 4.40 4.36 4.42 4.406 .380

4.14 3.96 4.80 5.22 4.48

We take the ozone data to begin with. In Section 4.2.1, we have fitted this data set
with four methods, CART, SUPPORT, MARS, and PHDRT. Denote the fitted function by
ĝ j (x), j = 1, · · · , 4, respectively. We use each of these functions to generate a data set.
More precisely, the j th data set is generated according to

y∗i = ĝ j (xi)+ ε j i, i = 1, · · · , 330.

The noise ε j i is generated from a normal distribution. For the MARS model ( j = 3), errors
are assumed homogeneous with the common standard deviation equal to .35 (this is the noise
level as obtained by MARS in Section 4.2.1). For the tree-based methods, j = 1, 2, 4, the
variance of ε j i is set to the residual variance found from each terminal node of the constructed
tree. After these data sets are simulated, we then apply CART, SUPPORT, MARS, and
PHDRT to see how well the fit is. As in Section 4.1, the average of squared differences
between the fitted values and the true values (ASE) is computed for each method. The
results are given in Table 10. As expected, each method has smallest ASE for the data set
generated under its own model. No method is completely dominant.

We repeat the same cross-examination process for the hitters data (256 cases). The result
is given in Table 11. This time we are a bit surprised to find that PHDRT outperforms
SUPPORT for the data set generated by SUPPORT’s model. To see if this finding is purely
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Figure 11: The Sactterplot of linear residuals against the first two PHD components shows
three groups for the CARS data.

Table 9: Piecewise linear fit for Cars data

Node sizes Fitted equations Standard errors residuals R-squared
206 −37.4+ 5.18x1 − .0457x2 7.7, 1.4, .018 3.18 .70

−.071x3 − .00568x4 + .903x6 .022, .0011, .064
83 −8.11− .00577x4 + .613x6 7.6, .0009, .094 2.78 .49
103 −4.67+ .0182x2 − .0361x3 6.0, .006, .011 1.77 .62

−.0028x4 + .414x6 .00046, .071

accidental, we rerun this part of simulation 9 more times. The results are given in Table 12.
PHDRT still has an edge. It is also significantly better than MARS. A lengthier account of
our findings can be found in Lue (1994).

16.6 Concluding remarks and further study.

There are several approaches to regression surface fitting without parametric model assump-
tions. Compared to other smoothing techniques, tree-based regression produces surfaces
which are only piece-wise continuous (constant, or linear). In fact, the lack of continuity
between neighboring nodes has become a major criticism against such methods in applica-
tions where some prediction is to be made near the node boundary. Some remedy can be
pursued if we are willing to sacrifice the simplicity of the functional structure. One such
method recommended in Chaudhuri et al. (1994) is to suitably average out the estimates
from neighboring nodes in a way similar to kernel regression.

Despite this criticism, the most distinctive feature for tree-structured analysis is that it
offers a map with guided paths to visit various regions in the multi-dimensional regressor
space. To enhance the merit of this feature, our approach places greater emphasis on the
geometric shape of the regression surface. We choose a direction for splitting only when
data projected along that direction reveals a bending nonlinear pattern. The method of PHD
is used to find such directions.
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Table 10: Cross-examination for Ozone example. Each row gives the ASE for each of the
four methods applied to the data set which is simulated according to the indicated model.

CART SUPPORT MARS PHDRT
CART’s model

.005 .062 .056 .084
SUPPORT’s model

.078 .018 .024 .027
MARS’s model

.078 .034 .014 .024
PHDRT’s model

.070 .021 .019 .010

Table 11: Cross-examination for Hitters example (256 cases). Each row gives the ASE for
each of the four methods applied to the data set which is simulated according to the indicated
model.

SUPPORT MARS PHDRT
SUPPORT’s model

.042 .039 .036
MARS’s model

.048 .024 .024
PHDRT’s model

.035 .033 .017

No cross-validation rules are used yet in PHDRT. But as a trade-off, we take full ad-
vantage of modern graphical facilities and rely on the inspection of PHD plots and other
graphs for diagnostic purposes. Like standard regression, the goal of tree-structured analysis
should not be limited to prediction only. By combining the merits of dimension reduction,
data visualization, and guided partition, PHDRT has enhanced the utility of tree-structured
regression.

We have not yet addressed the issue of how to handle discrete regressors. In our view,
discrete variables are geometrically rather different from continuous ones. The visualiza-
tion issue of high dimensional discrete variables is often pursued via the approach of multi-
dimensional scaling and correspondence analysis. In general, the idea is to find good scoring
methods that can reasonably convert the discrete variables into continuous ones. Once this is
done, then PHDRT may be applied. There are other possibilities. For example, Filliben and
Li (1997) has analyzed a data set with 10 binary regressors using a tree-structured method
which is also guided by PHD. We shall discuss this paper in the next chapter.

In addition to analyzing the real data, PHDRT can be used in other ways. For example,
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Table 12: Cross-examination for Hitters example (256 cases) generating by SUPPORT’s
model.

Procedure ASE for 10 runs Mean of ASE SD of ASE
SUPPORT .040 .023 .031 .042 .030 .0330 .0074

.035 .026 .040 .040 .023
MARS .035 .044 .048 .046 .040 .0423 .0042

.039 .048 .041 .042 .040
PHDRT .028 .022 .032 .036 .028 .0309 .0048

.037 .026 .035 .033 .032

it can be used to help visualize the geometric structure of the complicated MARS fit. This
is easily done by treating the MARS-fitted values ŷ as the outcome variable y, and then
applying PHDRT. In Section 4.2.2, we have seen major differences between the two MARS
fits, (4.1) and (4.2). It is perplexing that such apparent substantial structural difference does
not seem to affect the final prediction too much when applying to the testing group (see Table
8). To seek for a possible explanation, we turn to geometry. It is likely that the algebraic
difference in the formula might not produce major difference in the shape of the surface.

A follow-up study has been conducted to compare the difference between the above two
MARS fits given by (4.1) and (4.2). We run PHDRT twice, one run for each MARS fit. We
find that the fit of PHDRT is very good in both runs. The overall R-squared value is 96.7%
for the first run and 94.7% for the second run. The outputs of PHDRT are very similar. In
each case, only one split is needed and the plot of the MARS fit against the splitting variable
(found by PHDRT) shows a similar bending pattern. The splitting variable in each case can
be explained by a single variable x7 with a very high R-squared value, 99.5% and 97.7%
respectively. This kind of study reassures the value of exploring the geometric aspect of
high dimensional data. The same structure can be approximated well by drastically different
algebraic formulae.

Appendices

A. Cut-point selection.

(1). The goal is to find a place in the PHD plot (residual r̂ against b̂′phdx ) to break the

bending pattern. Let z = b̂′phd x and denote the mean of z by µ.

(2). Tentatively set c=µ and separate the whole data points, denoted by S, on the PHD plot
into two parts: Sp = {(z, r̂) : z ≥ µ} and Sm = {(z, r̂) : z < µ}. Now in each part, fit
a regression line li of r̂ against z separately and let the residual standard deviation be
denoted by σ̂i , i = p,m. There are two cases to consider:
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I) The case σ̂p ≥ σ̂m indicates that a better cut point may be found on the right hand side of
the current c. Now follow these steps:

(a) Denote µp as mean of {z : z ≥ µ}, let S+p = {(z, r̂) : z ≥ µp}. Fitted a regression
line l+p of r̂ against z for (z, r̂) ∈ S+p . Located the intersection c+p of the two lines
lm and l+p .

(b) Reset c = c+p as the split knot and split S into two parts, Sp, Sm, according to z ≥
or < c+p . Fit a simple linear regression separately to each part and evaluate σ̂ p

and σ̂m . Also find the weighted standard deviation σ̂w from σ̂p and σ̂m , weighted
by the number of cases in each part.

(c) If the σ̂w ≥ ε (a user-specified small value for terminating the iteration), replace
µ with c+p , go to the beginning of (2), and iterate. Otherwise c+p is declared to be
the final split knot c.

II) The case σ̂p < σ̂m is just the opposite of case I), indicating that a better point should can
be found on the left side of the current c. The following steps are analogous:

(a) Denote µm as mean of {z : z < µ}, let S−m = {(z, r̂) : z ≤ µm}. Fitted a regression
line l−m of r̂ against z for (z, r̂) ∈ S−m . Located the intersection c−m of the two lines
l p and l−m .

(b) Reset c = c−m as the split knot and split S into two parts according to z ≥ or < c−m .
Compute σ̂p and σ̂m for the simple linear fit for each parts, then evaluate σ̂w.

(c) If the σ̂w ≥ ε, replace µ with c−m , go to the beginning of Step (2) and iterate.
Otherwise c−m is declared to be the final split knot c.

C. Program Description.

This section gives some details about how to use the software we developed for “PHDRT”
(principal Hessian directions regression tree). Our object-oriented programming package is
modified from a SIR-based classification tree package (Chen 1993, Chen and Li 1994). To
conduct a “PHDRT” analysis, we first type (load "phdrt-init") in Xlispstat. On the
screen, we find one menu bar which includes two menus, pHdrt and Plot-tools. For selecting
a data file you want to analyze, you first highlight Open Data item from the pull-down menu
pHdrt. A dialog box appears. You simply choose the item you want and click OK.
c.1 Initial Data Analysis: The main goal is to visually inspect data patterns before we make
further analysis. There are five plotting options for viewing. You highlight IDA-options item
from the pull-down menu pHdrt to find a dialog box which includes scatterplot-matrix, grand
tour, principal component analysis (pca), histogram and Principal Hessian Directions (PHD)
analysis. To see all plots, just click OK.
c.2 Tree-structured Analysis: Highlight Regression-Tree item from the pull-down menu
pHdrt. This creates a dialog box which includes two items, Automatic and Interactive mode,
for constructing a tree. You can choose either mode.
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(a) Automatic mode: In this mode, the software package will analyze and construct a tree
automatically. All you have to do is to type a fractional reduction α (initialized at .1),
which should be between 0 and 1. The value of α will be used to see if there is a
substantial reduction in σ̂ after splitting.

(b) Interactive mode: This mode allows you to perform variable selection and simplify the
PHD estimates. A dialog box is given to assist your decision. After that, highlight
Continue item from the pull-down menu pHdrt, another dialog box appears which
allows you to determine if a node is a terminal node or not. At this moment you can
view the PHD plot, check the error reduction rate α, or the F-test for homogeneity of
a node. The software will carry out the analysis, and continue until a satisfactory tree
is found.

After constructing the tree, a new menu is displayed for retrieving information about the
tree-structured regression analysis we just performed:

1. Show Tree item: Display the tree on the computer screen.

2. Basic Information item: Show the total numbers of nodes, intermediate nodes and
terminal nodes.

3. Node Information item: Show a spin-plot of residuals against the first two components
of PHD’s and the pHdrt results. This option can also be executed by clicking any node
on the tree displayed on the screen.

4. Weighted Error item: Provide σ̂ for the whole tree, and for each terminal node.

5. Modify Tree item: Click it when you would like to rebuild a particular node.
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Chapter 17

Multivariate outcome data.

This chapter is a minor modification of Li, Aragon and Thomas-Agnan (1996).
So far the response variable Y is assumed to be one-dimensional. In this chapter, we

shall show how to extend our approach to the analysis of multivariate outcome data. As a
conjugate to the theory of SIR, a nonlinear theory of Hotelling’s most predictable variates
is developed. The interplay between both theories leads to a new approach for addressing
multivariate issues on visualization, model parsimony, and the escalated complexity due to
the increasing dimensionality. In the second half of this chapter, special attention is given to
cases where outcomes are curves measured at fixed points.

17.1 Introduction.

Denote the outcome variable by Y = (Y1, · · · , Yq)
′. We shall denote the regressor by the

capital letter X = (X1, · · · , X p)
′ in this Chapter. The multivariate version of the dimension

reduction model (1.1) can still be used. The function g now takes values in Rq . At first sight,
an extension of SIR to multivariate Y appears Straightforward and the theoretical develop-
ment as described in Chapters 2 and 3 carries over formally. This is practically all right for
q = 2 or 3. But as we shall soon see, several practical problems arise as we increase the
dimension of Y.

As used before, the term variate will be used to denote either any linear combination of
the regressors or that of the outcome variables in appropriate contexts. For example, an e.d.r.
variate means a variable b′X formed with an e.d.r. direction b. Similarly, we shall encounter
SIR-variates, M.P. variates later on.

Prediction is a central goal in regression analysis. This is usually done componentwise
by finding E(Y j |X) separately for j = 1, · · · , q. This is not a multivariate issue. A genuine
multivariate issue in prediction was raised by Hotelling(1935, 1936), concerning the most
predictable variates: which linear combinations of Y are better predicted from x than others?
Hotelling’s theory uses linear predictors, leading to canonical correlation analysis. We shall
revisit this issue in Section 3, but with one crucial difference: non-linear predictors are
allowed. It turns out that the most predictable variates (M.P. variates hereafter) can be
found from an eigenvalue decomposition which takes the same form as SIR except for the
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exchanged roles of X and Y. This result is based on an observation in Li(1991) which
explains the descriptive nature of SIR without relying on the dimension reduction model
(1.1).

In Section 4, we apply the nonlinear M.P. theory to the issues of data visualization and
parsimonious modeling. A general discussion is given in Section 4.1 first. Then in Section
4.2, we focus on the case where the multivariate Y consists of q measurements of a curve
at specified points, a situation often encountered in the longitudinal studies. Since different
sample curves are likely to display different patterns, a central question here is how to ex-
plain the differences by the associated regressors. The nonlinear M.P. theory suggests a new
analysis strategy for such data.

The discussion up to now assumes that the slicing step in the SIR ( or M.P.) algorithm
is easy to implement. This is fine if Y (or X ) is low-dimensional. But if the dimensions
of X and Y are both large, then we may not have enough points to make a meaningful
simultaneous partition on the entire Y (or X )space. To discuss this most difficult situation, a
mathematical formulation is developed in Section 5. Here we study the feasibility of slicing
a low dimensional projection of Y (or X). But among different projections, some may be
more informative than others. To sort out the relationship between the SIR variates (or M.P.
variates) found by slicing various projections of Y (or X), anotion of partial ordering is used.
Interesting duality between SIR variates and M.P. variates is observed.

In Section 6, we consider an alternating strategy. The idea is to begin with any initial
projection of Y. Slicing is applied and a preliminary set of e.d.r. directions is found. Then
they are in turn used to find the associated M.P. variates. Now replace the initial Y projection
with these M.P. variates for slicing and iterate. For successfully carrying out this idea, a good
initial projection is needed. It turns out that Hotelling’s canonical variates serve this purpose
well. In the population version, we show that the convergence takes place within no more
than K steps, where K is the dimension of the e.d.r. space in (1.1). Examples are given to
illustrate this alternating SIR procedure.

Section 7 concludes our discussion by summarizing the main findings. All technical
proofs are given in Appendix.

17.2 A brief review of SIR.

Recall that the population version of SIR explores the p-dimensional inverse regression
curve

η(Y) = E(X|Y)
It consists of a slicing step, which estimates η(Y) by step functions, and an eigenvalue de-
composition step:

�η = cov(η(Y))

�ηbi = λi�Xbi , i = 1, · · · , p (2.1)

λ1 ≥ · · · ≥ λp
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The second step acts as the principal component analysis (with respect to the metric deter-
mined by �X) in finding the main directions of the inverse regression curve. The first few
eigenvectors are used to estimate the e.d.r. directions.

Formally, it does not make much difference whether Y is univariate or not in defining the
inverse regression η(Y). It is quite easy to see that the main justification of SIR, Theorem
2.1 still holds for the multivariate case.

However, the slicing step for estimating η(Y) requires simultaneous partition on all coor-
dinates of Y. This can cause an implementation problem if the dimension of Y is also large.
We will come back to this issue later in Sections 5 and 6.

17.3 Most predictable variates.

Some variates of Y can be predicted from X better than others. The study of finding those
with the best predictability is pioneered by Hotelling(1935). This is a genuine multivariate
issue. Under the normality assumption, the best prediction rules are the linear ones. This
reduces the problem to maximizing the correlation:

max
θ,b

ρ(θ ′Y, b′X) (3.1)

The solution is the first pair of canonical variates, (θ ′C1Y, b′C1X). Subject to being uncorre-
lated to the predecessors, other pairs of canonical variates (θ ′C2Y, b′C2X), · · ·, are similarly
defined.

A natural generalization of Hotelling’s theory is to allow for nonlinear predictors. For
any linear combination θ ′Y of Y, given X = x, the best nonlinear prediction under the
squared-error loss is E(θ ′Y|X = x) and the associated prediction mean squared-error is
equal to var(θ ′Y|X = x). The most predictable variate (M.P. variate) θ ′1Y is the one that
minimizes the ratio

E[var(θ ′Y|X)]
var(θ ′Y)

Due to the ANOVA identity

var(θ ′Y) = var [E(θ ′Y|X)]+ E[var(θ ′Y|X)] (3.2)

we may equivalently find the first M.P. variate θ ′1Y by maximizing the proportion of variance
in θ ′Y explained by the variation in the regression E(θ ′Y|X) :

max
θ

var [E(θ ′Y|X)]
var(θ ′Y)

(3.3)

Similarly we can find the second M.P. variate θ ′2Y from variates uncorrelated to θ ′1Y.
Other M.P. variates are defined accordingly.

Let

ζ(X) = E(Y|X)
�ζ = cov[ζ(X)]

�Y = cov(Y)
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and write (3.3) as

max
θ

θ ′�ζθ
θ ′�Yθ

Thus the M.P. variates can be found by conducting the eigenvalue decomposition:

�ζθ j = ρ j�Yθ j (3.4)

ρ1 ≥ · · · ≥ ρq

Remarkably, (3.4) is indeed the same as (2.1) except for the exchanged roles of X and
Y. Thus the same SIR program can be used for estimating the M.P. directions. This twin
relationship between SIR variates and M.P. variates underlies the main development in this
article.

Remark 3.1. There are other ways of generalizing canonical correlation. For example,
we may consider

min
θ,b,h(·)

E(θ ′Y− h(b′X))2

var(θ ′Y)
(3.5)

Another possibility is

min
θ,b,h1(·),h2(·)

E(h2(θ
′Y)− h1(b′X))2

var{h2(θ ′Y)}
There are no closed-form solutions for these minimization problems, however.

17.4 Plots and models.

Graphical display is another issue where special considerations are required for multivariate
outcomes. In univariate regression, the vertical axis is usually reserved for the outcome
variable to plot against the regressors. Conceptually this is also the usual way to imagine
a regression surface. But for multivariate outcomes, it is hard to add or imagine more than
one vertical axis for Y. An alternative is to construct two sets of plots, one for X−variates
and another for Y−variates. These plots interact with each other under linking, a popular
feature in dynamic graphics. When browsing through various sections in the X plot, the
corresponding portions of the data points in the Y plot are highlighted for attention.

Section 4.1. discusses the model parsimony aspect related to graphical display. This
leads to a general strategy for model building. In Section 4.2, we consider the special case
where the outcome variable Y is a curve evaluated at q fixed points. Such data are often found
in longitudinal studies for biomedical, economical or industrial applications; see, for exam-
ple, Pottoff and Roy(1964), Liang and Zeger(1986), Rao(1987), Kneip and Gasser(1992),
Segal(1992), etc..

17.4.1 Model parsimony.

To motivate the idea, we begin with the univariate X -versus-bivariate case. Suppose that
conditional on the univariate X, the bivariate outcome Y = (Y1, Y2) has a bivariate normal
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distribution with covariance matrix �ε :

Y1 = µ1(X)+ ε1

Y2 = µ2(X)+ ε2 (4.1)

Now browse through X and observe the change in the scatterplot of Y1 and Y2. The center of
the browsed data points roughly falls on the trajectory of the mean response curve, E(Y|X =
x) = (µ1(x), µ2(x))′ as x varies.

We are interested in the special case when the center moves closely along some straight
line with the direction, say, (c∗1, c∗2)

′. If this is the case, then µ1(X) and µ2(X) are colinear.
The projection of Y on the perpendicular direction, the variate c∗1Y2− c∗2Y1, does not depend
on X. It is redundant in modeling. Thus instead of two regression curves, only one Y variate
is needed in regressing against X . Which variate to use? One suggestion may be the variate
c∗1Y1 + c∗2Y2, which represents the motion of Y as seen from the line of slice centers. But a
disadvantage of using this variate is that the error part c∗1ε1 + c∗2ε2 would be correlated with
the redundant variate c∗1Y2 − c∗2Y1. This means that we need an extra parameter to describe
the correlation between the two.

The above discussion indicates the importance of locating the smallest affine space that
contains the surface generated by η(x) = E(Y|X = x) as x varies. In general, when the
error in model (1.1) is additive:

Y = g(β ′1X, · · · , β ′K X)+ ε (4.3)

parsimony can be achieved by first identifying the redundant variates. Then we may build
a model using only the variates whose error components are uncorrelated to the redundant
ones. This leads to the following expression:

M ′
1Y = g1(β

′
1X, · · · , β ′K X)+ ε1

M ′
2Y = µ2 + ε2 (4.4)

where (M1,M2) form a q by q invertible matrix and cov(ε1, ε2) = 0. Based on the nonlinear
M.P. theory of Section 3, such a decomposition is easy to find.

Lemma 4.1.The eigenvectors from the eigenvalue decomposition (3.4) can be used to form
M ′

1Y and M ′
2Y in (4.4):

M ′
1Y = (θ ′1Y, · · · , θ ′l Y )′,M ′

2Y = (θ ′l+1Y, · · · , θ ′qY)′

where l is the number of non-zero eigenvalues. With this decomposition, the covariance
matrix of the error component (ε′1, ε

′
2)
′ in (4.4) becomes diagonal.

The verification of this lemma is straightforward; see Appendix A.1. It suggests the fol-
lowing three major steps for analyzing multivariate outcome data: (1). Reduce the dimension
of X by finding the e.d.r. space. (2). Use the estimated e.d.r. variates to find the M.P. vari-
ates. (3). Apply any low-dimensional regression/smoothing technique for each M.P. variate
against the e.d.r. variates.
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Note that the first step is often necessary for high dimensional X because it would be
difficult to partition the X space directly for finding M.P. variates. The following simulation
study illustrates the recommended procedure.

Example 4.1. We generate 100 i.i.d. cases of Y = (Y1, Y2)
′,X = (X1, · · · , X5)

′ from
model (4.1) with

µ1(X) = sin(X1 + X2)

µ2(X) = 2µ1(X)

cov(ε) =
{

2 −1
−1 1

}
The scatterplot of Y1 and Y2, Figure 4.1(a), indicates a negative association. Note that

Figure 4.1: (a) is the scatterplot of Y1 and Y2. (b) shows a sine curve and (c) shows a flat
curve for the first and the second M.P. variate respectively. (d) displays a normal uncorrelated
pattern between the residuals.

without proper guidance, it is hard to browse the 5 dimensional X space for revealing the
line of centers (with a positive slope ) hidden in the scatterplot of Y1 against Y2.

We first conduct a SIR analysis to reduce the dimension of X. This is carried out by
slicing on Y1 and Y2 with 6 slices in each variate, yielding a total of 36 slices. See Remark
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4.1 for implementation details about the multiple slicing method and Remark 4.2 for mod-
ification of eigenvalues. From the SIR output, the eigenvalues (modified) are found to be
(0.53, 0.06, 0, 0, 0). The leading direction

b̂1 = (−0.66,−0.72,−0.03, 0.00,−0.02)′ ≈ (−.66,−.72, 0, 0, 0)′

stands out clearly.
The SIR variate b̂′1X is used to find the M.P. variates. This is implemented by applying

the same SIR program with b̂′1X as the output variable and (Y1, Y2) as the regressor. The
M.P. directions are found to be

θ̂1 = (−0.32,−0.50)′; θ̂2 = (−0.56, 0.24)′

with eigenvalues (0.82, 0.01). The small second eigenvalue suggests that we may ignore the
second M.P. direction. This leads to a tentative model:

−.32Y1 − .50Y2 = g1(−.66X1 − .72X2)+ ε1 (4.5)

−.56Y1 + .24Y2 = µ2 + ε2

We still need to estimate g1(·). This is a one-dimensional curve smoothing problem and
there are many procedures available. For simplicity, we only apply the LOWESS provided
in XLISP.STAT. A sine pattern is clear from Figure 4.1(b) which gives the scatterplot of
θ̂ ′1Y against b̂′1X together with the LOWESS curve. For comparison, the same smoothing
procedure is carried out for the redundant variate θ̂ ′2Y against b̂′1X; see Figure 4.1(c). As
expected, the LOWESS curve is flat , suggesting a constant function as the fitted curve. The
scatterplot of residuals, ε̂2 versus ε̂1, is given in Figure 4.1(d). No dependence or nonlinearity
pattern is found.

After estimating g1(·), we can now invert (4.5) back to the original Y variates:

Y1 = −.67ĝ1(−.66x1 − .72x2)+ ε∗1
Y2 = −1.55ĝ1(−.66x1 − .72x2)+ ε∗2

The mean part now forms a line with slope 1.55/.67 ≈ 2.3, very close to the theoretical
value 2.

Remark 4.1. The program for multiple slicing in all examples is based on the ordering of
the variables to be sliced. The partition is first made according to the first variable, yielding
h1 slices. Then each slice is further partitioned into h2 slices according to the second variable,
and so on. This produces a total of h1 × h2 × · · · slices.

Remark 4.2. When the number of cases per slice is small, the sample slice means have
sizable variances, which cause the inflation of the output eigenvalues. Li(1993) proposes a
simple modification based on the second moment consideration of SIR as in the Rejoinder
of Li(1991). The i th modified eigenvalue is max{(nλ̂i − H )/(n − H ), 0}, where H is the
total number of slices.
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17.4.2 Curves.

Suppose the output variable Y = (Y1, · · · , Yq)
′ is a time-dependent characteristic Y (t) mea-

sured at t = t1 < t2 < · · · < tq , yielding Y j = Y (t j ), j = 1 · · · , q. A natural way to display
such data is the time plot which connects points (t j , Y j) by line segments. In the regression
setting, each sample curve is further associated with one realization of X. Different X values
may lead to different curve patterns.

Parametrization is one way to sort out the differences between these individual curves.
Let µ(t) = EY (t) be the curve averaged over the entire population. Typically, a set of basis
functions f1(t), · · · , fL(t) is specified first. Then we may express the difference between
each individual curve and the mean curve as a linear combination of the basis functions.
With additive errors, this suggests the following model to begin with:

Y (t) = µ(t)+ c1(x) f1(t)+ · · · + cL(x) fL(t)+ ε(t) (4.6)

where the coefficients cl(x), l = 1, · · · , L , depend on the value x of the regressor X.
However, unlike the traditional parametric analysis we introduce nonparametric com-

ponents to this formulation by allowing both the coefficient functions cl(·) and the basis
functions fl(t) to be determined from the data. From our viewpoint, the role of basis func-
tions is to help summarize the observed curve patterns parsimoniously. If this strategy is
to work well, the total number L of the basis functions must be as small as possible. This
requires a good choice of the basis functions. Instead of specifying the basis functions fl(·)
prior to the analysis, it is best to turn to the data themselves for suggestion.

The following lemma shows that a parsimonious set of basis functions can be found by
applying the nonlinear M.P. theory.

Lemma 4.2.Suppose that the basis functions in (4.6) are linearly independent and the covari-
ance matrix for (c1(X), · · · , cL(X))′ is of full rank. Then the number of nonzero eigenvalues
in (3.4) is equal to L. Moreover, the vectors

φl = �Y θl, l = 1, · · · , L

span the same space as the one generated from the L basis vectors ( fl(t1), · · · , fl(tq))′,
l = 1, · · · , L.

The proof of this lemma is given in Appendix A.2. Now suppose n individual curves
Y1(t), · · · , Yn(t), t = t1, · · · , tq , with covariate X1, · · · ,Xn, are available. The key steps in
our curve analysis are given in the following:

(1). Ignore the time factor for the moment and treat the data as in a standard multivariate
outcome setting. Apply the nonlinear M.P. techniques in Section 3 to find the M.P.
directions.

(2). From each estimated M.P. direction θ̂l , compute the basis vector φ̂l = �̂Y θ̂l . Put
φ̂l = (φ̂1(t1), · · · , φ̂l(tq))′ and construct the time plot for the estimated basis function
φ̂l(t).
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(3). Compute the mean curve µ̂(t j ) = n−1∑
i Yi(t j ).

(4). Use the basis functions obtained from (2) and fit a linear model separately to the
difference between each individual curve and the mean curve: for i = 1, · · · , n

Yi(t j )− µ̂(t j) = ĉ1i φ̂1(t j)+ · · · + ĉLi φ̂L(t j)+ ε j i , j = 1 · · · , q

(5). Find out how the estimated coefficients depend on X. For each l = 1, · · · , L, study
the plot of coefficient ĉli against Xi and apply a curve fitting technique to estimate the
coefficient function cl(·). Dimension reduction techniques may be applied to improve
the estimate here if X is high dimensional.

(6). The final model takes the form: for i = 1, · · · , n,

Yi(t j ) = µ̂(t j )+
L∑

l=1

ĉl(Xi)φ̂l(t j)+ residual , j = 1 · · · , q

Example 4.2. This is a simulation study for illustrating our curve analysis procedure.
Consider (4.6), let µ(t) = 0, and take two basis functions, f1(t) = sin(2π t), f2(t) =
cos(2π t), with t ranging from 0 to 1 at the increment of .1. Suppose X follows a bivariate
standard normal distribution and the coefficient functions are

c1(X) = (X1 − X2)/2, c2(X) = sin(X1 + X2)

Errors are independent normal random variables with standard deviations S D(ε(t j)) = t j .
A sample of n = 100 curves are generated together with their regressors. Some sample

Figure 4.2: (a) some sample aurves for Example 4.2.

curves are shown in Figure 4.2(a). It is hard to see the common curve patterns by eyes. To
find M.P. directions, we use a 5 by 5 partition on (X1, X2). The modified eigenvalues are
.91, .86, .33, .18, 0.07, 0, · · ·. The first two values are much larger than others, indicating
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Figure 4.2: (b), (c) are the first and the second estimated basis functions, appearing like sine
and cosine curves. (d) and (e) are the corresponding coefficients plotted against x1 and x2,
rotated to reveal linear and sine surves.

two significant directions. From the first two M.P. directions, two basis functions, φ̂1, φ̂2 are
then obtained and plotted in Figures 4.2(b),(c), revealing sine and cosine curves. Next, we
compute the mean curve and find it close to zero as anticipated. Moving to Step (4), we
use φ̂1, φ̂2 as the basis functions and find the coefficients ĉ1i , ĉ2i , i = 1, · · · , n. Now for
Step (5), we first plot the estimated coefficients ĉi1 against (X1i , X2i). By rotating the plot
to the direction of the variate X1 − X2, we find a clear linear pattern, Figure 4.2 (e). This
is consistent with the pattern of the true function c1(X). Similarly, the estimated regression
coefficients for the second basis function are plotted in Figure 4.2(f), which reveals a pat-
tern consistent with the shape of c2(X). If desired, we can further apply low-dimensional
smoothing techniques for obtaining ĉ1(X) and ĉ2(X).

Our modeling process can be easily customized. For example, at Step (2), it is highly
recommended to inspect the obtained basis curves carefully for detecting recognizable forms.
We often find that the constant function is approximated well by some linear combination of
these curves. In addition, at steps (1) and (5), various dimension reduction techniques can be
applied. We shall come back to this later.

The next example illustrates some further practical concerns when dealing with small
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samples.

Example 4.3. Blood Pressure data. A small data set on blood pressures for 26 French
girls with hypertension is available from an ongoing medical study by Drs. Barthe, Ph. and
S. Cassadou who are interested in a medical issue related to blood pressure adjustment. A
current medical practice is to adjust the raw blood pressure readings by the patient’s height
according to some published tables. To challenge this practice, our doctors want to know
first if there is any evidence in the data suggesting that height (or other body measurement
variables and age factors, not included here) is associated with the raw readings. Figure

Figure 4.3: (a) raw reading curves for each girl. (b). Average against height. (c). (d) First
two basis curves found.

4.3(a), gives the raw readings for each girl measured every hour from 10 a.m to 5 p.m..
Since the recommended adjustment is to add( or subtract) a fixed number (depending on the
height) to (from) the reading regardless of the time of the day, we first compute the average
reading for each girl and plot it against her height; Figure 4.3(b). No clear dependence
relationship between the two is found. The correlation coefficient is about 0.1.

Do these curves appear purely random? Or are there any special patterns among them
that might be associated with height? To address such questions, we apply our method to
find suitable basis functions first. Following Steps (1) and (2), five slices on X are used in
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(e) (f)

Figure 4.3: (e) simpified basis curve. (f). regression coefficient of the basis curve in (e)
against height

finding the M.P. variates. The modified eigenvalues are .55, .18, 0, 0, 0, 0, 0, 0. The first two
basis functions φ̂1(·), φ̂2(·) are plotted in Figures 4.3(c), (d).

Since our sample size is quite small, a qualitative statement about the basis functions
is more relevant at this stage of analysis. We seek ways to simplify the estimated basis
functions. The constant function turns out quite close to some linear combination of the two
basis functions. The vector of ones has an angle of cos−1(.99) with the plane spanned by
the vectors φ̂1 and φ̂2. This suggests the constant function φ̃1(t) = 1 as one of the basis
functions. To find the other basis, we subtract the constant term from each individual curve
to get

Ỹi = (Ỹi(t1), · · · , Ỹi(tq))
′ = (Yi(t1)− Ȳi , · · · , Yi(tq)− Ȳi)

′

where Ȳi is the average of Yi(t j)’s. Now apply the same basis searching method to Ỹi’s as
in Steps (1) and (2) again. The modified eigenvalues become .52, 0, 0, 0, 0. As expected,
only the first one is significant. The obtained basis function, the shape of the thinner curve in
Figure 4.3(e), appears almost the same as the curve found earlier in Figure 4.3(c). We further
qualitatively approximate this function with a simple spline function,φ̃2(t) = min{t−13, 2},
the truncated line shown in Figure 4.3(e). We shall use φ̃1(·) and φ̃2(·) are our basis functions
to proceed the analysis.

For Step (3), we find that the mean curve is nearly a constant and decide to ignore it
in the analysis. At step (4), we fit each individual curve Yi(t) with the two selected basis
functions. Figure 4.3(f) shows the estimated regression coefficients for φ̂2(·), plotted against
heights. The descending trend, which starts from high values and then gradually flattens out,
is interesting. This together with the pattern of the corresponding basis function suggests
that for very short girls in this group, the blood pressures are likely to increase from 10 a.m.
to 3 p.m..Taller girls on the other hand are not sensitive to this trend. We also carry out the
same analysis with the unsmoothed basis function and find essentially the same pattern.
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Remark 4.3. Model (4.6) can be extended in several ways. One of them is to allow for
randomness in coefficients; namely, ci(x) is replaced by ci(x, εi). If the covariance matrix for
(E[c1(X, ε1)|X], · · · , E[cL(X, εL)|X])′ does not degenerate, then our method still finds the
basis functions. The plots constructed at Step (5) may be used to suggest forms for modeling
randomness in coefficients. Another generalization of (4.6) is to allow �ε to depend on X.
Again in principle, this does not affect our basis searching procedure although the additional
complexity should not be taken lightly. Such issues deserve more attention in the future.

17.5 Duality between SIR variates and M.P. variates.

All examples we have shown up to now are the cases where either X or Y must have a small
dimension so that slicing can be implemented reasonably. As argued in Li(1991), for low-
dimensional Y, SIR still works even with small slices. This is mainly because at the same
time the number of slice means becomes larger so that the random fluctuations in estimating
the conditional expectations can be filtered out at the principal component analysis step.
Hsing and Carroll(1992) established the root n consistency for slices with only two cases
each. But it does not solve the dimensionality problem. For moderate sample sizes, even
the nearest neighbors in a high dimensional space are usually still too far apart to form
meaningful pairs.

To rationalize the slicing step, one must reduce the dimensionality of Y first; c.f. Remark
5.1. Many multivariate techniques can be brought up for consideration. For example, we
may conduct a principal component analysis on Y and then take the first few significant
components for slicing. Other choices may include various low dimensional projections
from different exploratory projection pursuit criteria and algorithms.

But slicing a lower dimensional projection of Y may not recover as many e.d.r. directions
as slicing the entire Y. For example, in the context of section 4.1, slicing the redundant Y
variates is certainly useless. Can these directions be avoided as much as possible? This
section sets up the needed mathematical formulation for discussing such issues.

To proceed, suppose slicing is based on a projection M ′Y for some matrix M . Replace
the term η(Y) defined in Section 2 with E(X|M ′Y) and apply the eigenvalue decomposition
(2.1). Let κ(M) be the number of nonzero eigenvalues and denote the eigenvectors by bi(M).
Put the SIR directions into a p by κ(M) matrix S(M) = (b1(M), · · · , bκ(M)(M)).

Now reverse the roles of X and Y and consider a projection N ′X for some matrix
N . Replace the term ζ(X) in Section 3 with E(Y|N ′X). Let τ (N) be the number of
nonzero eigenvalues in (3.3) and put the first τ (N) eigenvectors θ j (N) in a matrix P(N) =
(θ1(N), · · · , θτ(N)(N)).

Partial ordering notations will be used. When the column space of M1 is contained in
the column space of M2, we may put M1  M2 ( or M2 ! M1) and write M ′

1Y  M ′
2Y ( or

M ′
2Y ! M ′

1Y). The following lemma is obvious.

Lemma 5.1. If M ′
1Y  M ′

2Y, then S(M1)  S(M2). Similarly, if N ′
1X  N ′

2X, then
P(N1)  P(N2).

Now suppose that we start with a projection M ′Y for slicing and then use the obtained
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SIR-variates in S(M)′X for prediction. What can be said about the relationship between
the M.P. variates in P(S(M))′Y and the original variates in M ′Y? We may anticipate the
relationship

P(S(M))′Y ! M ′Y (5.1)

But this usually is not the case. There is no partial relationship between the two in general.
Sometimes, we might even find the opposite relationship ≺ to hold. This creates a major
problem for the alternating SIR strategy to be proposed in the next section.

The rest of this section digresses to the discussion on the duality property :

S(M) = N, P(N) = M (5.2)

(5.2) implies P(S(M)) = M . Can we find pairs of (M, N) to satisfy (5.2)? The following
Theorem shows the existence and uniqueness of the largest dual pair (M∗, N∗) in the sense
that M∗ ! M, N∗ ! N for any other dual pair (M, N).

Theorem 5.1. The maximum dual pair exists and is unique.
Remark 5.1. Dimension reduction needs not be restricted to linear projections on Y.

In the study of French city income distributions (Aragon, Li and Thomas-Agnan 1993),
Theil index and other income inequality measures have been considered to transform Y
nonlinearly.

Remark 5.2. Consider the minimization problem (3.5). Once a direction b is fixed, then
the optimal solution for θ is simply P(b). But conversely, given a θ direction, the optimal
solution for b does not have a closed-form. In general, it can only be found by extensive
searching as in projection pursuit regression. Nevertheless, S(θ) should be a good initial
value for starting the search.

17.6 Alternating SIR.

The model parsimony consideration of Section 4.1 offers some guidance on what to ( or not
to ) slice. For example, with the decomposition (4.4), slicing the redundant part M ′

2Y is
useless. On the other hand, by Lemma 4.1, slicing the M.P. variates in M ′

1Y can recover as
many e.d.r. directions as slicing the entire Y. The problem is of course that the M.P. variates
are still not found yet. Such considerations lead to an alternating strategy:

(0). Start with a M ′
0Y. Let i = 0.

(1). Use M ′
i Y for slicing and apply SIR to find S(Mi).

(2). Use the SIR variates S(Mi)
′X to find the M.P. variates P(S(Mi))

′Y.

(3). Set Mi+1 = P(S(Mi)) and return to Step (1).

(4). Iterate between (1) and (2).
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Recall that step (2) also uses the same algorithm as SIR, We shall refer to this strategy as
alternating SIR.

Now, will alternating SIR converge? Because of the complexity about partial ordering as
we have mentioned earlier in Section 5, this cannot always be the case in general. However,
as the following theorem shows, an initial projection which guarantees convergence can be
found.

Theorem 6.1.Suppose the alternating SIR starts from

M0 = (θC1, · · · , θCτ(C))

where θCj ’s are the canonical directions found from (3.1) and τ (C) is the number of non-zero
canonical coefficients. Then the sequence S(Mi), i = 0, 1, · · ·, converges in a finite number
of steps. Furthermore, under the dimension reduction model (1.1) and condition (2.2), the
convergence takes place in no more than K steps.

A proof of this theorem is given in the Appendix. The sample convergence properties
are harder to study. This may raise some concerns if we were to specify the stopping rule by
differences between consecutive iterations. However, encouraged by the finite step conver-
gence result of Theorem 6.1, an interactive programming approach is to be recommended.
Such a program will stop momentarily after each iteration to ask questions about how many
significant variates and how many slices to use for partitioning. The users can answer the
questions based on the displayed information about the current eigenvalues and eigenvec-
tors. The users are also given two options to change the pace of iteration: (1) quit now;
(2) continue for a specified number of times without pausing for answers. If the second op-
tion is taken, then the computer assumes that the same answers from the latest iteration will
carry over. To implement this interactive strategy, an object-oriented package like Xlisp.stat
(Tierney 1990) offers an ideal environment. The following two examples illustrate how this
strategy works.

Example 6.1. Consider the curve outcome Example 4.2 again. The basis functions
and error structures are kept the same as before. But we take a six dimensional regressor
X = (X1, · · · , X6)

′ and set the coefficient functions to be

c1(X) = X1, c2(X) = (X2 + 3)(cos(X1)− 0.6)

Now generate n = 200 sample curves. The first five curves are shown in Figure 6.1(a).
Again, no clear pattern is visible. Since the dimension of X is too big for simultaneous
slicing, we want to apply the alternating SIR program to reduce the dimensionality before
searching the basis functions.

By default the canonical correlation analysis is performed first and the output eigenvec-
tors and squared eigenvalues are displayed. A choose-item-dialogue window soon pops out,
asking how many canonical variates to be used as the initial projection of Y. Judging from
the squared canonical correlation coefficients, .98, .14, .07, .03, .02, .00, we decide to use
only the first variate. After answering this question, another window appears, asking how
many slices to be used. We input a number 10 to continue. The computer now performs the
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SIR analysis and a summary is displayed on the screen. After that, the computer asks if we
want to continue. After answering ”Yes”, we enter the iteration mode. Since the eigenvalues
from the first SIR analysis are .95, .03, .00, ..., we use only one SIR variate for finding M.P.
variates. With 10 slices, the computer then searches for the M.P. variates. From the output
eigenvalues, .92, .67, 0.15, .10, .06, .03, 0, ..., the first two M.P. variates are found signifi-
cant. Then we make a total of 30 slices ( 6 slices on the first M.P. variate and 5 slices on the
second) to run SIR. This gives a list of eigenvalues : .97, .22, .035, 0, 0, 0, and the first two
SIR directions are

(−1.00, 0.00,−0.00, 0.01, 0.01,−0.02), and, (0.12,−0.95,−0.15,−0.09, 0.19,−0.09)

To continue the iteration, these two SIR variates are used to make 30 slices. We find
again two significant M.P. variates. They are in turn used to make 30 slices for running SIR.
The new eigenvalues become .98, .34, .07, 0, 0, 0. Compared to the last iteration, the SIR
dimension does not increase and the new eigenvectors

(−1.00,−0.00,−0.012, 0.02, 0.02,−0.01) and (0.10,−0.96,−0.05, 0.06, 0.05, 0.09)

are close to the previous ones. This is a good place to terminate the iteration. Out of curiosity,
we also let the computer perform a couple more iterations. Small fluctuations in the output
are noticeable. This is somewhat expected because slicing is not a continuous operation.
Nevertheless, we find all answers remarkably close to the true e.d.r. space.

After reducing the dimensionality of X to just two, we now apply the basis searching
algorithm as described in Section 4.2. The two obtained basis functions reveal clear sine and
cosine patterns; Figure 6.1 (b), (c).

Example 6.2. In addition to the two basis functions as in Example 6.1, we add a third
one, a constant function, f3(t) = 1. The coefficient functions are

c1(X) = (X2 + 3)(cos X1 − 0.6), c2(X) = X1(|X2| − 0.8), c3(X) = X1

Again we generate n = 200 curves and apply alternating SIR for reducing the dimensional-
ity. Tables 6.1 gives the dimensions of the significant directions found during the iteration.
Starting from the top row, the canonical correlation analysis finds one component signifi-
cant. The first canonical Y variate is used as the initial projection for slicing. The second
row from the table shows that the number of significant variate found by the SIR (with 10
slices) analysis is 1; see the number in the column of X variates. This SIR-variate is used to
find M.P. variates. The next row reports that two significant M.P. variates are found; see the
number in the column of Y variates. And so on. Overall, we see that the dimension of SIR
directions increases from one to two , while the number of M.P. directions goes up to three.
The number of slices used in each step is given in the parentheses following the method’s
name. The eigenvalues are also recorded in the last column of Table 6.1. Table 6.2 gives the
SIR directions found in each iteration.

Using the two estimated e.d.r. directions from the last iteration, we proceed with basis
searching. The eigenvalues are found to be .92, .71, .53, .16, .11, .04, 0, ..., The first three
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Figure 6.1: The first 5 curves from the sample in Example 6.1 are shown in (a). (b) and (c)
are the results of basis searching after using alternating SIR to reduce the dimensionality of
X.

significant basis functions are shown in Figures 6.2.(a)-(c). Figure 6.2 (d) shows that the
constant function is in fact hidden in the linear combination:

1 ≈ −.98φ̂1(t)− .28φ̂2(t)− .08φ̂3(t).

Remark 6.1. Limitation of alternating SIR. Denote the limit of convergence in Theo-
rem 6.1 by (M̃, Ñ). Since this must be a dual pair, by Theorem 5.1, we see that M̃  M∗

and Ñ  N∗. Thus alternating SIR may not recover as many e.d.r. directions as from slic-
ing the entire Y. Systematic ways of exploring slicing directions beyond M̃ are not available
yet. One possibility for extension is to consider the second-moment based methods like pHd,
SAVE, SIR-II. Work along this direction is worth pursuing further.

17.7 Conclusion.

This paper concerns multivariate analysis on the relationship between two groups of vari-
ables without knowing the form of the regression function. We develop strategies for re-
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Table 6.1: A dimension chart of alternating SIR for Example 6.2. *For canonical correlation
analysis, the squared correlation coefficients are reported in the eigenvalue column.

Method X variates Y variates eigenvalues
Canon. Corr. 1 1 (.99, .09, .06, .03, .02, .01)∗

S I R(10) 1 - (0.96, 0.07, 0.03, 0.03, 0.01, 0.01)
M.P.(10) - 2 (0.96, 0.75, 0.09, 0.03, 0.00, · · ·)

SIR (6× 6) 2 - (0.97, 0.36, 0.07, 0, 0, 0)
M.P. (6× 6) - 3 (0.93, 0.76, 0.68, 0.10, 0.04, 0.01, 0, · · ·)

SIR(5× 4× 3) 2 - (0.96, 0.21, 0.07, 0, 0, 0)

Table 6.2: SIR directions found from each iteration in Example 6.2.

Iteration SIR directions
SIR(10) (−1.00, 0.02, 0.02,−0.00,−0.01, 0.01)

SIR (6× 6) (−1.00,−0.00,−0.01, 0.01,−0.00, 0.01)
· · · (0.00,−0.96,−0.03,−0.16, 0.02, 0.01)

SIR (5× 4× 3) (−1.0,−0.01,−0.03, 0.01,−0.01, 0.02)
· · · (0.04,−0.81,−0.06,−0.28,−0.26, 0.27)

vealing the underlying regression structures by systematically reducing the dimensionality
in each group. Our ideas are stimulated mainly by the discovery of a twin relationship be-
tween sliced inverse regression and a proposed nonlinear generalization of Hotelling’s most
predictable variates. We have developed an interactive program for carrying out our alter-
nating SIR analysis. Issues of visualization and parsimonious model building are treated
simultaneously under the general framework of Li(1991).

One major application of our methodology is in analyzing data sets with curves as the
outcome variable. There are at least two goals in this area: (1) fitting/predicting each indi-
vidual curve; (2) explaining the curve patterns by the regressors associated with each curve.
Our method offers a parsimonious and data-adaptive set of basis functions for accomplishing
the dual tasks of curve fitting and pattern explanation.

There are surely many unresolved issues and some of them are mentioned in this arti-
cle. Much research in this complex area of high dimensional data analysis still awaits our
exploration.

APPENDIX

A.1 Proof of Lemma 4.1.

First, the eigenvalue decomposition of (3.4) implies that



17.7 Conclusion. 243

Figure 6.2: Output of Example 6.2. A nearly constant function (d) is hidden behind some
linear combinations of the three obtained basis functions (a), (b), (c).

�ζ M2 = 0 (A.1)

M ′
1�Y M2 = 0 (A.2)

Now, (A.1) means that cov[M ′
2ζ(X)] = 0, or equivalently, M ′

2 E(Y |X) = 0. Thus M ′
2Y

consists only of the error part ε2 = M ′
2ε. It remains to show that cov(M ′

1ε,M ′
2ε) = 0. But

this follows from (3.2) ( which implies cov ε = �Y −�ζ ), and (A.1)-(A.2).

A.2. Proof of Lemma 4.2.

From (3.4), it follows that φl = �Yθl = ρ−1
l �ζθl . Clearly we have

�ζ = cov(
∑

l

cl(X) fl) =
∑
l,l′

cov(cl(X), c′l(X)) fl f ′l

Thus φl can be expressed as a linear combination of fl’s. The rank of �ζ must be L be-
cause of linear independence and the non-degeneracy of cov(c1(X), · · · , cL(X). The proof
is complete.
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A.3 Proof of Theorem 5.1

Construct the sequence No = I ( the p by p identity matrix), N1 = S(P(No)), N2 =
S(P(N1)), · · ·. This sequence is non-increasing. To establish this property, we start from
N1  No, which is of course obvious. We apply Lemma 5.1 twice to get P(N1)  P(No)

first and then S(P(N1))  S(P(No)). This shows N2  N1. We can apply the same
argument recursively to obtain the monotonicity for the entire sequence. Since our spaces
have finite dimensions, this sequence must converge. Denote the limit of this sequence by
N∗. The pair (M = P(N∗), N = N∗) must satisfy the duality condition (5.2). To show
that this pair is maximum, suppose (M, N) is another dual pair. Starting from N  No, we
can again apply Lemma 5.1 twice to get N = S(P(N))  S(P(No)) = N1. Then the same
argument leads to N  S(P(N1) = N2, etc.. Take the limit to obtain N  N ∗. Apply
Lemma 5.1 once more and we get M = S(N)  S(N∗) = M∗, as desired.

Remark. We may also find the maximum pair by starting from Mo = I ( the q by
q identity matrix ) and construct the non-increasing sequence M1 = P(S(Mo)),M2 =
P(S(M1)), · · ·. Denote the limit by M∗∗. Since (M∗∗, S(M∗∗)) must also be a maximum
dual pair, the uniqueness result implies that (M∗∗, S(M∗∗)) = (P(N∗), N∗). In fact, this
sequence and the previously constructed one can be mixed together to get two monotone
sequences: Mo ! P(No) ! M1 ! P(N1) ! M2 ! · · · and No ! S(Mo) ! N1 ! S(M1) !
N2 ! · · ·.

A.4. Proof of Theorem 6.1

We need only to show that M1 ! Mo. By applying Lemma 5.1 repetitively as in the proof of
Theorem 5.1, we can establish the partial ordering for the entire sequence.

Now denote No = (bC1, · · · , bCτ(C)) and recall that M1 = P(S(Mo)) . If we can show
that

S(Mo) ! No and P(No) ! Mo (A.1)

then by Lemma 5.1, we have P(S(Mo)) ! P(No) ! Mo, establishing the partial ordering
M1 ! Mo.

To show (A.1), without loss of generality we may assume that covX and covY are both
identity matrices because of affine invariance. The canonical directions have the relationship

bCl = E(XY′θCl ) = E(Y′θCl · E(X|M ′
oY))

Since each column of E(X|M ′
oY)must be in the column space of S(Mo), bCl also belongs to

the column space of S(Mo). Hence we have shown S(Mo) ! No. The second part of (A.1)
can be shown in the same way after reserving the roles of X and Y. This completes the proof
of Theorem 6.1.

Remark. The intuitive reason behind (A.1) is because nonlinear predictors are more
flexible than linear ones. Since the canonical Y variates M ′

oY are linearly predictable from
N ′

oX, they must also be predictable from N ′
oX nonlinearly. This shows M ′

oY  P(No)
′Y,
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establising the second part of (A.1). The first part of (A.1) follows the same argument with
X and Y exchanged.
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