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JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS
September 1977

SIMPLE RULES FOR OQPTIMAL PORTFOLIO SELECTION:
THE MULTI GROUE CASE

Edwin J. Elton, Martin J. Gruber, and Manfred W. Padberg¥*

The inception of modern portfolio theory dates from Markowitz's piloneering
article [7] and subsequent boak [8]. Yet despite the early development of a
full theory of portfolic management, this theory has rarely been implemented.
One problem arises from the difficulty in generating inputs to the general
portfolio model. Index models and simple structures for correlation relation-
ships, which go a long way towards solving this problem, have heen developed.
Yet the time and cost of solving actual portfolio problems (involving the solu-
tion of a quadratic programming problem) and more importantly the difficulty of
educating portfolio managers to relate to risk return trade-offs in terms of
covariances has virtually brought the application of portfolio theory ta a halt.

In an earlier paper [3] we showed that if one is willing to accept the
existence of a risk-free asset and is willing to either:

1) assume that the single index model adequately describes the
variance-covariange structure; or

2) assume that a single number is a good estimate of all pair-wise
correlation coefficients

then a simple decision rule {which does not involve an iterative algorithm)
can be derived for the selection of optimal portfolios. Furthermore, this
simple decision rule does not involve covariances or correlations and is for-
mulated in terms to which the portfolio manager should be able to relate.

The purpase of this paper is to extend the development of simple decision
rules to cases where more complex models are used to represent the correlation
structure between stocks. Two cases will be examined. One is a malti-group
model, which assumes that the correlation coefficients between any firm in one
group and all other firms are identical for members of the game group. This

was gelected since we have shown in an earlier study that this technique

w
New York University.

L , s . .
Far evidence on the ability of a single number to represent correlation
structures, see Elton and Gruber [4].
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provided useful forecasts of future correlation structures. These forecasts
were judged useful in two ways. They led to more accurate estimates of actual
future correlation coefficients than the single index model, multiple index
models, the use of an overall average correlation coefficient, and historic pair-
wise correlations. Second, they led to the gelection of portfelios which

proved more efficient {in future periods) than the above mentioned techniques.
Hence decision rules for portfolio selection when the multi-group model is used
will be examined in this paper.

The second case that will be explored is one in which a particular multi-
index model is used to represent the correlation structure hetween securities,
Multi-index models have gained attention because of their ability to account
for more of the covariance structure than single index models. While there are
many forms of multi-~index models, the one we have chosen to explore is the
diagonal form first presented in Cohen and Pogue [1].

This paper is divided into two sections according to the two models of es-

timating the covariance structure between securities described above.

I. mMultiple Group Models

In [4] the authors presented a simplified structure for the correlation
matrix which did an excellent job of forecasting future correlation matrices
and led to the selection of efficient portfolios. The structure rested on the
assumption that the correlation matrix could bhe partitioned into submatrices
where all correlation coefficients within a submatrix are the same but the
value of the correlation coefficient might differ hetween the submatrices. For
example, if there were two industries in our sample--chemicals and steels-~-then
this assumption implies that the correlation coefficient between all steels is
the same constant (pSS); that the correlation coefficient between all chemicals
is the same (pcc} but potentially different from the correlation coefficient
for steels; and that the correlation coefficient between a steel firm and a
chewical firm is still a third constant (pcs).2 This is illustrated in Figqure
1. In this section, we will derive simple decision rules for the construction
of optimal portfolios when the correlation structure bhetween securities is
described by this multi-group model. Once again we will separate the case where

shoxrt selling is allowed from the case where short selling is farbidden.

2Grouping was performed in two ways: along traditional industry lines
and by using a varimax rotation of factor loadings of historic rate of return
data. See Elton and Gruber [4] for a more detailed discussion of the methodology
and results.
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A. Short Selling Allowed

Let us define:

1. pkk = the correlation coefficient hetween members of group k
2. pkt = the correlation coefficient between members of group k and t
3. a, = the standard deviation of security i

4. Gij = the covariance between security i and security j

L E& = the expected return on security i

6. Rf = the risk-free rate of interest

7. Eb = the expected rate of return on the optimal portfolio
a. Gp = the standard deviation of the optimal portfolic

9. Nk = the number of gecurities in group k

10. Xk = the set of stocks in group k

11. B = the number of groups

12. M. = the fraction of funds invested in security i

If we allow short sales and assume the existence of a riskless asset,

then the appreopriate ohjective function is to maximize § the excess return on
e .3 .

the portfolic divided by the standard deviation of the portfolio. The first

order conditions necessary for a maximum are presented by Lintner [6].4 They

are
2 N -
{1 Z,6.+ I Z2.0., =R, -R 1=1,...,8
i1 . 1 1] 1 f
=1
il

3We are fellowing Lintner's (6] suggestion in treating short sales. That
is, the short seller pays any dividends which accrue to the person who lends
him the stock and gets a capital gain {or loss} which is the negative of any
price appreciation. In addition the short seller is assumed to receive interast
at the riskless rate on bath the money loaned to the owner of the borrowed
stock and the money placed in escrow when the short sale is made. See Lintner
[6] for a full discussion of these assumptions.

4See Lintner [&] for a proof that this is the correct ohjective function.
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For a security i, which is a member of group k, equation {1l) c¢an be written as

B
2 —
(2) 2, 9, (l—okk} t o, b pkg ¢q = Ri - R,
g=1
where we have set ¢ = I g, Z,. Solving for Zi vields
jeX
)
R, - R p
1 i £
(3) zZ, = - L p ¢
oo e 9y g=1 K99

The above would be a solution if we can express the quantities ¢g in terms of

the other variables in equation (3). This can be accomplished by multiplying

each equation {3) (one of each wvalue of g} by Gi and sumtning over all members

of a particular group. Rearranging the resulting expressions yields one equa-

tion for each group as follows:

p Ej—Rf
(4) {(1-p, . ) ¢+ N, I np é = I
kk k k g=1 kg g jex Gj
k
where the index k assumes all values 1, 2,....,p. After dividing each equaticn
{4) by the factor (l—pkk), this system of equations ¢an he written in matrix
notation as A ¢ = ¢ where A 15 a matrix of size p x p with elements
,
- if
. - Nk pkg/ (1 pkk) ifk#g
kg .
- £ =
1+ 0,/ (1-0,,) if k=g

and where ¢ 1s the vector with p components ¢g g=1l,...,p, and C is the vector
Y

with p components L (E:—Rf)/[cj(l—pqq)] for g=1,...,p. The solution to the
& X
J g
system of equations {(4) can thus be found by inverting the p x p matrix A. And
using egquation (3) we can thus determine the gsolution in terms of the variables

Zi.s Mote that equation (3) is of the form

Mote that no matter how many securities are considered the matrix to he
inverted depends only on the number p of different groups considered. Since
the number p will typically be small compared with the total number of securi-
ties involved, the computation is significantly simplified. Note alsoc that
the matrix need only be inverted once to solve for all cases involving a speci-
fic number of groups. For example, a specific solution to the matrix inversion
can he performed for the four group case and this solution used on any problem
involwing four groups.
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1 i £
{5) Z, = -
i oi (l—pkk) Gi k

where the constant Wk has the same value for all members of group k. The value
of Wk is determined solely by the characteristics of the population of stocks

under consideration. Since it does not depend on the composition of the opti-
mal portfolio, its wvalue can be computed before the analysis of the optimal

portfolio is begun. Then it is a trivial task to calculate Zi for all securi-

tieg. In fact it can easily be done with pencil and paper in a few minutes.6
Note how easy it is to determine if any stock should be held long or sold short.
If the excess return to standard deviation for any security is larger than its
group constant, it should bhe bought; if it is smaller, it should be sold short.

L]
The optimum amount to invest in each security Mi can be found quite easily

by scaling the Zi's so that the sum of their absolute values adds to ane

This completes our discussion of multiple group selection with short sales.

It remains to examine the case of no short sales.

B. Short Sales Not Allowed

If short sales are not allowed, we have to make use of the Kuhn-Tuckex
conditions. In (3) we prove that they are hoth necessary and sufficient. The

Kuhn-Tucker conditions for the problem of maximizing & can he written as follows:

N

- 2
{6} (R, - R_} - Z,0, - E Z.g.,+u, =20
i £ i1 . i9 1

i=1

i#i
{7} Z, >0 u, > 0

1 — 1 —
(8) Zu, =0
ii

6It is interesting to note that the implementation of the multi-group case
is no more difficult than the implementation of the single group case when
short selling is allowed. See Elton, Gruber and Padberg [3] for a discussion
of the single group case.

334



]
In this section we will use Xk to denote the total set of securities in

group K {formerly denoted by Xk)' Xk will then refer to the subset of group

Xk which is in the optimal portfolio. As will become clear shortly, this change

in notation allows us toc use the equations of Section A for the case of no

short sales. Solving for zi for members of group k yields

{9) 7. = f_Ei:EE___ Y g Pkg # ,__Ei____
i 2 a, T 1-p g o, {l-p, )
o, {1 pkk) i g=1 kk i kk
where we have again abbreviated ¢ = I | o, Z. for g=1l,...,p. First note
jex q g

that zi = 0 for any security that is not in the optimal portfolica. Consequent-—

ly, ¢4 = I g, Z2, for g=1,...,p, i.e., the summaticns can he taken over all
jexq

[}
members of the suhset Xg rather than over the set ¥ g’ Secondly, from the

conplementarity conditions (8), ui is zero for all securities in the optimal

portfolio. These two observations together imply that the system of equations

{4} can again be used to sclwve for the quantities ¢g' for g=1,...,p. Substi-

tuting the solutions into equation (2) yields equation (5) with the additional

vy 1 R;=Rg !
ternp —m——m— or Z2, = - ¥ + — .
Gi(l—pkk) i ci(l—pkk) a, k ci(l—pkk)

1

The term containing the u, can only increage zi. Hence if zi is positive
with u, equal to zéro, a positive u, cannot make Zi = 0. Thus any security
with positive Zi when u, = 0 must be included. Correspondingly, any security
with negative Zi when u, = 0 must be excluded. It thus follows from the Kuhn-

Tucker conditions, that within each group k the following properties hold: If

a security with a particular value (Ei-Rf}/oi has a positive zi, then all

securities with a higher excess-return-to-standard-deviation ratio alsc produce

a positive Zi. Similarly, if a stock produces a negative Zi' all lower ranking
stocks will also have a negative Zi. Consequently, within sach group of se-

curities there is a group-specific security i such that all securities having

a larger ratioc (ﬁ}—RfJ/oj will be in the apkimal portfalic, whereas all securi-

tias having a lower ratio will not be in the optimal portfolio. In order to
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determine an optimal portfolio, all that remains to be done is to find the cut-
off rate in each group. The following seems to us to be an efficient method,
since the number of different groups considered will typically he small.

1. Rank all stacks in each group by decreasing excess return to standard
deviation. Go to 2.

2. Determine an optimal portfolio for stocks from group 1 only and mark group 1

as being checked. Compute the quantities Wk for k=1,...,p. Go to 3.

3. If for the top ranking securities in the unchecked groups the term in the
brackets in eguation (5) i= zero or negative or if there are no more un-
checked groups, stop. Otherwise, pick any one of the unchecked groups, for
which the expression (5) is positiwve, say group q, and go to 4.

4. Determine an optimal portfolio among the stocks from the groups already
checked and the current group g in such a fashion that whenever a new stock
from group g is included, optimality for the checked groups is reestahlished
immediately. (This can be accomplished by a modification of any "back-
tracking" scheme.) Once an optimal sclution for all checked groups is at-
tained including group 1, mark group q as being checked and go to 3.

The procedure determines the cut-off rates and the wvalues for Zi. The
optimal amount to invest in each security is determined by dividing each Zi by
the sum of the zi's. The crucial step in the procedure is, of course, the re-

optimization called for in step 4 whenever one considers a new stock in the
current group ¢ for inclusion in the "current" aoptimal portfolia. The back-
tracking procedure must make use of the fact that all of the currently consid-
ered stocks in group ¢ remain in the portfolio while adjustments (addition/
deletions) are made only in groups already checked. 1In Appendix A we state
formulas for adding/dropping securities in a particular group and we will illus-

trate the procedure next by means of a numerical example.

Example l: Suppose that we have two different groups with eight and seven
securities, respectively. The excess returns to standard deviation for each
security in each group are given by the data in Table 1. Furthermore, let

= 1/2, = 1/3, and Po, = 2/9, Starting with group 1, we find that se-

P11 P12
curities 1, 2, and 3 constitute an optimal portfolio if one considers group 1

only. Using formula {(A-1l) of Appendix A, we find that ?l = & and WZ = 4,

TABLE 1

Group 1 10 7 7 6 4 3 3 2

Group 2 8 4.5 4 4 3 2 1 X

Furthermore, the auxiliary quantities for the recalculation of the Wq are given

by (A-2}) and we obtain a, = /8, a =1/12, and a

12 5 = 7/30. We proceed now

2
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with grecup 2 and find that security 1 of group 2 must be included since

= 4 16/25.

1

8 -4 > 0. Computing the new ?g by {(A-1) we find ¥ = 6 8/35 and ?2

Thus the optimum portfolio consists of the first three securities in group 1

and the first security of group 2.

IT. The Diagonal Form of the Multi-Index Model

Cohen and Pogue [l] have presented a multi-index model that leads to a
diagonal form for the covariance structure between securities. The assumptions
underlying the model are that each stock is linearly related to one group index
and that each group index is linearly related to a market index. This model

¢an be represented as

=
]

g, + B.J. + £,
i i"j i

] ] m ]
I =a+4d
n
E(e,e ) =0 i=1,...,0 k=1,...,N i#k
E(C.Cﬁ) =0 =1, PoR=l, ..., P jFR
.CLYy = i= . =1,...,P
E(EJ. ]) o] i=1, N ] ' i
E(Eid) =0 i=l,...N
E(de) =0 j=l,...,P
where
L. Ri = the return on security i which is in group j (a random variable)
2, Jj = the return on the index for group j
3. Im = the market index
4. Bi = a measure of the responsiveness of security i to changes in the
group index Jj
9. o, = the reiurn on security i that is independent of the group index
. . , 2 .
6. €, = a variable with mean of zero and variance GE which measures the
i
variance of gecurity i not associated with changes in the group
(or market) index
7. b, = a measure of the responsiveness of index j to changes in the
] market index
8. Yj = the return on index j that is independent of the market index
2
8. €, = a variable with a mean of zero and a variance of g, which measures
] the variance of group j not associated with changes in the market
index
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2

10. Gm = the variance of the market index
L1. = the mean return of the market

s . s 2
12, d = a variable with a mean of zero and variance equal to a.
13, P = the number of group {(indices) which are appropriate

These egquations make clear the approximations of the diagonal form of the
malti-index model to the variance covariance structure. While each stock is
linearly related to one group index and all group indices are linearly related
te the market, the residuals from any of these relationships are assumed to be
uncorrelated.

In this section we shall develop simple decision rules for portfolio com-
position when this diagonal form of the multi-index model is assumed to be a
reasonable way to forecast future correlation ccefficients. We shall separate

the cage where short selling is permitted from the case where it is not allowed.

2. Short Selling Allowed

If short selling is allowed, and the existence of a riskless asset is
agsumed, then the portfolico manager's task is to find the portfolio that has
the largest excess return to risk. We can employ the general equation (1)
originally presented by Lintner to solve this problem.

For a security i which is affected by group index k, equation {1} can be

written as

B
2 —_
(10) Z. a9 +f, L 4 4 =R, =R
i Ei i g=1 gk'y i f
where
2
1. 4 =
gk bk bq cm for g # k
2 2 2
. d = —
2 Kk bk cm + Uk for g k
3 i = I B, Z.
g jeX 1 1]
q
Solving for Zi yields
3] R. - R 8]
i i f
(11} 2, = - d ]
N 02 81 g=1 gk g

The above would be a solution if we can express the quantities ¢q in terms

of known parameters. This can be accomplished by multiplying each equation (11)
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by Bj and summing over all memhers of the group. Performing this summation and
rearranging yvields the following equation for each group:

B. p (R. - R.)A.
(12) ¢k + I A 5 a I I S |

s
!
-
oy
b

ieX g
. €

This system can be written in matrix hotation A& ¢ = € where & is a p x p matrix

with elements 2 ~
.
) T]dk if k # g
jEX 0€ el
9%
akq = ,
By
1+ & ~3—-dkk if k=g
]EXk Gej

and where ¢ is the vector with p components ¢g g=l,...,p and C is a wvector of
1"

(R, - R
p components I J
jeX o
4] €

£) Bj for g = 1,...,p. Once again, the solution to

3
. . . . o
this system is found by inverting the matrix.

Note that equation (11) has the form

a. R, - R
B S I S
(13) Z; =3 8. Yy

wherea wk has the same value for all members of group k. This produces a set

of arguments about selection and which securities are sold long or short, ana-
logous to those presented in Section I except that the conclusions and argu-

ments are reversed when £ is negative.

B. Short Sales Not Allowed

If short sales are not allowed, we have to make use of the Kuhn-Tucker
conditions. The general form of the Kuhn-Tucker conditions necessary to maxi-
mize § have already been presented in equations (6}, {(7), and (8). We shall

now apply them to the diagonal form of the multiple index model when there are

7This can be done in general notation rather than being problem specific.
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P groups. Onece again a change in notation allows us to utilize the equations

1
derived in the previous section. Let Xk denote the securities in set k and
let Xk denote the set of included securities in set k. This change in notation

allows us to use the equations for the case of no short sales presented in Sec-

tion ITA. Solving for Zi for memhers of group k yields

&, R, - R B u,
1 i £ 1
{14) 2, = —_— - I 4.4 +
2
t 02 Bi g=1 gk’g o
£, £,
i i

where the dgk are defined as before and

gq :
eX
] g

Note that Zi = 0 for any portfolic which is not in the optimal portfolio. Hence,

¢ = L , 8,2, = L B. 2.; the summation c¢an he taken over all members of
E jeX 13 jex
g g
the set Xg rather than over the set Xg' Also note that from the complementary
conditions, ui = {0 for all securities in the optimal portfolia. From these two

conditions the system of equations (10) can again be used to solve for the quan-

tities ¢g' g=l,...,p. Substituting the solutions into (l4) yields equation

u,
(13) with the additional term —Ei or
43
E.
1
Bi ﬁi - Rf v
{15} Zi = '*'5-‘ T‘-‘- - ‘-Pk + 5 -
[4] 1 a
£, £,
1 1

The term containing ui can anly increase Zi. As pointed out in Section I,
since ui » Q0 when zi = ¢ and ui = 0 when Zi > 0, any security with positive zi
when u, = 0 must be included and any security with negative Zi when u, = 0

must be excluded. Hence equation (1) describkes the aptimal portfolio in the

following manner: any security which has a positive value of Zi should be in-
cluded in the optimal portfolio; any security which has a negative value of Zi

should bhe excluded.
It follows from the above discussion and from the discussion in Section IB

that within each group of securities there is a specific cut-off point such
340



that

R, - R
c . L i
1. all securities with a positive Si and a value of ~—-E*~£ greater than the
cut-off point are included N
El—Rf
2. all securities with a positive Bi and a valua of ——E———— less than the
cut—0ff point are excluded _ .
Ri - Rf
3. all securities with a negative Ei and a value of R less than the
cut-off point are included . +
Ri ~ Re
4, all securities with a negative ﬂi and a value of ——E—Fﬁ— greater than the

cut-off point are excluded. ,
To define an optimal portfolioc all that remains is to £ind the cut-off
point for each group. A procedure directly analogous to that outlined in Sec-
tion IB can bhe used, remembering that it is necessary to check bhoth positive
and negative Beta stocks for inclusion or exclusion at all steps.
Once the search procedure has been completed and all securities with posi-

tive zi's are found, the fraction of funds to place in each security is

Z.
=t o
i P 2
jexlftftfxp

Once again the problem of considering a new security for inclusion in the
optimal portfolio becomes rather simple. The above procedure will lead to a

set of cut-off points for (Ei—Rf)/si for both positive and negative B securi-

ties for each group. These cut-off points allow us to determine gquickly the
effect on the optimal portfolio of a new security. For example if a new se-
curity for group k with a positive A is considered, then

1. if its (Ei—Rf)/ﬁi ig less than Wk, it can safely be discarded, or

2. if its (Ei—Rf)/ﬁi is more than Wk, then it must be included and the
optimum recalculated.
Evenr if new calculations are needed, the amount of computation needed is

very small.

III. Conclusion

In this paper we have developed decision rules that allow one to reach
optimum solutions to portfolio problems without resorting to any complicated
nonlinear programming algorithms. Furthermore, the characteristics of a stock
that make it desirahle are readily understood and calculated. Since the assump-
tions necessary to apply the simplified computaticonal procedure digcussed in
this paper have been shown elsewhere (4] to be the preferred method of obtaining
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inputs to portfolic problems, the procedure discussed in this paper should

find extensive application in the future.

[2]

(3]

f4]

[5]

(71

{8l

{9l

[10]
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Appendix A
In this appendix we state the formulas that are necessary to update the

uantities ¥ for k=1,...,p of Section I when additions/deletions of securities
9 x

from a particular group k of stocks are considered. To derive the formulas,
the reader should note that one has to invert the matrix equation A § = C of

L")
Section T. However, this can be done explicitly for the number of groups being

considered or implicitly if the procedure discussed earlier is followed. EIf

the procedure discussed earlier is followed, Y  1is updated continuously. Speci-

k

fically, let us suppose that we wish to determine the new quantities wk of equa-

tion {5) when a subset A ¢ X of securities in group k is added. Denote by

k k

wﬁew the resulting gquantities for k=1,...,p whereas wk denote the "current"
values [the initial conditions are wg =0 for g=1l,...,pl. Then

new new

¢g = wg * A (e, b /ag
(a-1) 97 = {((1-p, ) ¥ +a_ £ (R-RJ)/g }/[l-p , *m a

k k' Yt %kk RuFe! % e T "k Zkk

hed
k

where n, = |ﬂk| denotes the number of securities added in group k and the agk

are defined recursively as follows: Initially, let agj = pgj for all g=1,...,p

and j=1,...,p. After the subset &k g_xk of nk securities in group k has been

added, the new quantities agj' denoted by agif are computed as follows:
new

(A=-2 a. =a ., - [n a a, .
) g1 g1 (ry gk "kJ

1/ tlmpyy + my 3y, ]
where indices g and j assume {independently) all values L,2,....,p, whereas the

index k, of course, designates the group in which we have added the securities.

Note that the initial agj are symmetric since pgj = qu and that by the trans-

formation (R-2) symmetry is preserved, which implies that only the upper dia-
gonal part must be calculated.

Suppose next that we want to drop a subset &k g_xk of securities from a

portfolio. Again, let nk = |ﬂk| dencte the number of such securities. The new

guantities wg and agj are computed as follows:
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new new _
=yt ag T - /ey

hew _ _ s _ _ _
- o) by akkhiﬂ (R “Rp)/oyb/ (1o, = npa, ]
k

(B-3) ¥

and the new quantities agj' denoted agiw , are computed as follows:

(B-4) A - a  + (n

a3 g7 k 2gk®ki’ PPk T By Al

In order to rederive formulas (A-1) through {(A-4), the reader should note that
the matrix A to be inverted when a subset of securities ﬂk E_Xk ig added or

dropped changes as follows: Anew = A + u - v here u is a column vector satis-

fying ui=0 for i + k, i=1,....,p uk =+ uk/(l—pkk) and v is a row vector with
elaments vi = pki for 1=1,...,p. The inverse of Anew can be calculated by the

formula:

a+u-vitoat s psara el Tty o h.

Observing that in the matrix equation of section I A4 = C the right-hand vector
y
C changes in its kth component by + E (§£ - Rf) / dh, all the formulas of

heak

this appendix follow.

344



Appendix B
In this appendix, we state the formulas that are necessary to update the

quantities wk for k = 1,...,p in Section II, when additions/deletions of se-

curities from a particular group k of stocks are considered., They are derived
in the same fashion as in Appendix A and can be stated as follows: Initially,

2 for g # k and

let ¢k = 0 for k=1,...,p and let aqk = bg bk Gm
a,. = 02 + b2 02 for k = 1 When a subset A, < xl f riti in a
ke ~ Tk k “m °© = leeeesPe en 2ubse ) S % of securities in

particular group k is added, the new quantities wg are obtained by

new rew

B-1 = -
(B-1) Vg T gt (e /A )T <)
2
W2 =y + a £ B (R -R)/a2 ML+ I Eﬂ-19—3. ]
k x " %k n By T Rel/og ' 3 Pkl
hed h hed, o
k k "&
h
The auxiliary quantities aqj are updated as follows:
2 2
B B8
new h 2]
{B-2] a. =a .- [(I -] a a .1/l + (£ — a1
91 9 hed 02 gk K] heh 02 Kk
k eh k eh

where the indices g and j assume all wvalues 1, 2,...,p. Note that again, due
to symmetry, one needs to compute only the upper diagonal part of the coeffi-
t

cients. Similarly, if a subset of securities A j_xk of group k is dropped,

k

the gquantities wg must be recalculated as follows:

new new

{(B-3) ¢g = ¢g + (agk/akk)(wk - wkl
2
¢ =ty -a £ @ (R-R)/a>}/{L+ I —E-}La]
S n FpRe) /9, 7 %k
hed h hed o
k k &
h
The auxiliary gquantities agj are recalculated as follows:
2 2
(B-4) a™Y a4 (s BL) a a1/l + T ﬂ—h—) a1
93 kR hed 02 gk k] hed, @ Kk
: k eh k eh
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