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SIMPLE CRITERIA FOR OPTIMAL PORTFOLIQ SELECTION
Ebpwin J. ELTON, MARTIN 1. GRURER AND MANFRED W. PADBERG*

MODERN PORTFOLIG THEQRY DATES from Markowitz’s [9, 10] pioneering article
published in 1952 and subsequent book. Markowitz’s suggestions were intended to
he practical and implementable. It is ironic that the primary outgrowth has been
normative and theoretical and that modern portfolio theory has rarely been
implemented.

There are three major reasons why portfolic theory has not been implemented.
These are:

1. the difficulty in estimating the type of input data necessary (particularly
correlation matrices);

2. the time and cost necessary to generate efficient pertfolios (solve a quadratic
programming problem); and

3. the difficulty of educating portfolio managers to relate to risk return tradeoffs
expressed in terms of covariances as well as returns and standard deviations.

There have been two approaches in the literature to solving the first of these
problems. One has heen to use a single index model to pgenerate variance-
covariance structures. The second is to assume a simple structure for the variance-
covariance matrix. In particular the assumption that all pairwise correlations are
the same has been shown to do an excellent job of forecasting future correlation
structures.! In this paper we shall employ these two approaches, which were
formulated to solve the first problem, in a manner which should go a leng way
towards eliminating the second and third prehlem.

Specifically, we will show that if one is willing to accept the existence of a risk
free asset and is willing to either (1) assume that the single index model adequately
describes the variance-covariance structure or {2) assume that a good estimate of
all pairwise correlation coefficients is a single number, then a simple decision
criterion (which does not invelve mathematical programming) can be used to reach
an. optimal solution to the porifolio problem. Furthermore, this simple decision
criterion has an intuitive interpretation and its basis is easily understood. This
simple method not only allows one to determine which securities are included in an
optimal portfolio but also how much to invest in each. Furthermore, the technique
allows the definition of a cut-off rate defined solely in terms of the characteristics
of the individual security, such that the impact on the optimal portfolio of the
introduction of any new security into the manager’s decision set ean quickly and
easily be seen. Finally, the technique makes clear to the manager what characteris-
tics of a security are desirable.”

*All of New York University Graduate School of Business Administration.
1. See Elton and Gruber [1].
2. The results contained in this paper have been announced previously (without proofs) in {3].
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This paper 1s divided into two sections corresponding to the two approximations
to the variance-covariance structure. In the first section we assume that the only
source of joint movement of two securities comes about because of a common
response to market movements. In the second section we will derive a simple
numerical solution technique when the correlation coefficient between all pairs of
securities can be assumed to be the same. Throughout, we will assume the existence
of a riskless asset. This implies that the separation thecrem holds and that the
investor should maximize the ratio of excess return on a portfolio divided by the
standard deviation of the portfolio. Also, throughout the paper we will make the
blanket assumption that there is at least one security in the set of all investment
opportunities whose expected return is strictly greater than the return on the
riskless asset. In each section we will consider both the case where short sales are
allowed and the case where they are forbidden.

I. TuE SINGLE INDEX MODEL AND THE CONSTRUCTION OF QPTIMAL
PORTFOLIOS

In this section we shall assume that the standard single index model is an accurate
description of reality. That 1s

1. Ri=a;+ B +¢

2 I=Ap, Fens

3. E(ey, €)=0, i=1,..,N

4 B(e)=0,  i=1,..,Nij=1,. ., N;i#)

where R,=the return on security ¢ (a random variable)
I=2a market index (a random variable)
fA;=a measure of the responsiveness of security / to changes in the market
index .
a;=the return on security { that is independent of changes in the market
index
¢, =a variable with a mean of zero and variance ai
ol =the variance of the market index

The last two equations characterize the approximation of the standard single
index model to the variance-covariance structure. The assumption implied by these
equations is that the only joint movement between securities comes about hecause
of a2 common response to a market index.

We shall show that under these assumptions one can solve for optimal portfolios
with simple decision criteria without resorting to mathematical programming. The
methods we shall derive for finding optimal portfolios are more accurate than the
linear programming approximations which have been put forth and in fact reach
the same solution to the portfolio problem as the exact quadratic programming
method.® In addition they are so simple that once the 8 for each stock has been
derived the optimal portfolio can be found, without the use of a computer, in a few
minuies time.

3. Sharpe {11] presents a linear programming approximation to the quadratic programming problem.
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We shall study two cases involving different degrees of complexity. In the first
case we shall assume that short selling is allowed while in the second case we shall
not allow short selling. In both these cases lending and borrowing can take place at
the riskless rate of interest.

1. Optimum Portfolios with Short Selling

In this section we shall derive the expression for that portfolio which has the
highest excess return to standard deviation (#) when short selling is allowed.

We shall first find an unconstrained vector of the relative weights for each
security so that the 8 for the portfolio is maximized. Then we shall scale these
weights to insure that we are fully invested,

In addition to the symbols already defined
Let R,=the riskless lending-borrowing rate

X, =the relative weights we place on each security (X,>>0 for a long position,
X;< 0 for a short position)
R, =return on the portfolio (a random variable)

a, = the standard deviation of the return on the portfolio

Then the problem is given the assumption of the single index model to find a set
of X/s to maximize

g=—"-— (1)

where the bar over a variable denotes its expected value.
Now*

and

N Ny
o;=E( > XR—- 3 X,‘R,.)

i=1 i=1

Employing the single index assumptions outlined above?

1/2
N N N N
— 142 .2 2 1.2
Gp - .2 Xi i Um+ E Z XIXJ!GHGJ' am+ 2 XJ' aq
i=1 i=1 j=1 i=1
jei

4. X, can be negative for short sales. We are following Lintner's [6] suggestion in treating short sales.
That is the short seller pays any dividends which accrue to the person who lends him the stock and gets
a capital gain (or loss) which is the negative of any price appreciation. In addition the short seller is
assumed to receive interest at the riskless rate on both the money loaned to the owner of the borrowed
stock and the money placed in escrow when the short sale is made. See Lintner [6] for a full discussion
of these assumptions.

5. The expected return is unchanged when the single index maodel is employed.
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Then

L/2
N N N N
102 1 2 2.2
2 Xi iam+ 2 E er;ﬁnB; CII'm+ 2 X{' af,

i=1 i=1 j=1 i=|
. FEX:
Note that 4 i1s homogeneous of degree zero. Thus maximizing 8 without the
constraint on the sum of the X's yields the same optimum as maximizing § with the
constraint.
To find that set of X's which maximize § we take the derivative of # with respect
to each X, and set it equal to zero.®

M
ZX'-(R‘-—RJ,) .
4 _(R— =t 2.2 2 2|
d_Xl._(R" R)) o2 XiBiant B, _Elk}ﬁj o+ Xel =0
4 il
i
fori=1,2,...,N

Defining Z,=(R, ~ R,;/0,)X, and solving this expression for any Z, yields’

N

= O 2 ZB,

R — R, =
P S @

7, 9

6. Since the denominator appearing in # is defined with respect to a positive-definite quadratic form,
# is continuously differentiable everywhere except for the point X with all coordinates X;=0 for
i=1,...,N. ktis not difficult, however, to verify that # is bounded by zero. For X # 0, it follows from
the Cauchy-Schwariz inequality that 4 is bounded from above and that the maximum is unique up to a
multiplicative factor. Consequently, the calculation cutlined above produces a maximum. See Appendix
C and Lintner [6]. Note furthermare, that the maximum value of & and thus the transformation of X to
Z below nvolves a positive factor. This follows since the standard deviation and excess return of the
optimal portfelio are both positive since otherwise the investor holds the riskless asset.

7. A complication could occcur if residual risk is zero. If only one security (7) has a zero residual risk
then equation (2) is

N
% 3 8= (R R/,

If more than one security has zero residual risk then a riskless portfolio can he found since ol

=(X2810 + X1 P30k + 2X X, 8,8702) = (X8, + X 18,52 This equals zera if X8, = — X, B,. This riskless
portfolio is an alternative to the riskless asset. The analysis proceeds after any adjusiments in R, In
practice one would not expect zero residual risk.
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Multiplying both sides of the equation by 5,

M
— ?'opzn 2 Zﬂﬁj
R 2

o
-~

Adding together the N equations of this form yields

N N R}—R! N N )8}?
2 ZB= 2 7 B~ 2 Z3; 2 pE)
i=1 i=1 g, i=t =1 %
or
¥ | R—R
f
S| =58
N i=1 O:
.E ZﬁSj: N '81 (3)
= 2 i
{+a, 2 -
/=t 9
Substituting equation (3) into equation (2) yields
[ N
Rf Rf
_ 217578
- aJ
Rf-_ Rf ) i=1 < B!.
Zi= - Gm )
o g |
2
1 + Cl'm E ?
i=1 "4

Note that the term in brackets depends only on the population of the stocks
being considered and is independent of the composition of the optimal portfelio.
This term can be calculated before the search for the optimal portfolio begins. Let
us call this term C,. Then

R,— B, B{R-R
Cf“ th i

The value of Z, for all stocks can easily be calculated. Having done so we must
scale the Z, so that we have invested 100% of our funds.® That is we must insure

that

N
S 1z)=1.

j=1

8. We take the absolute values because of the possibility of short sales as explained abave. Short sales
invalve an outlay equal to the price of the stocks involved.
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Thus the fraction of our portfolio which we should invest in any stock (X% is equal
to®

(R—R)—CoB,

2
o

X0= - (4)
i (RJ'_RI) G ‘Gf

= ad
=1 &

The advantage of a formula like (4) is that it can easily be calculated and an
optimal portfolio arrived at for any population of stocks.

Let us illustrate this with an example. Consider the four securities whose
characteristics are shown in Table 1. Further assume that R,=2 and ol =1. Then

S D oh a3 (R R)a/e=[(10/50/(20/ )+ 8/

+(6/8)V8 +(4/2)(1/2)(¥8 )| =22/ .

Thus we have

_10 20 {223\ _10-11_ 1
vs0 V8 50\ 5y8 50 50
S8 28 ( 2\ _40-44_ 1
73 32 \s5% 32-5 40
7. 6_¥8 {22\ _30-22_1
g 8 85 5

5¢8
V&

4
24_5 4 (5\/8—

22 \_40-22 _ 9
20 10

4.
> 124 =229/200

i=}

Thus
XP=-4/229 xP=-5/229 x{=40/229  X]}=180/229

9. Treynor and Black [14] have canstructed a maodel for the first of the four cases dealt with in this
paper, namely the single index representation of the variance-covariance matrix under the short sales
case. However, our results for this case differ from theirs. The differences arise because Treynor and
Btack [14] assume both that the single index model holds and that a market security exists which while
defined as the weighted sum of individual securities has zero residual risk. Fama {4] has shown that
these two assumptions are inconsistent and can’t be made simultaneously.
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TABLE |
Security No. Mean Return Beta Residual Risk Stan. Dev.
1 12 20718 50 10
2 jo 28 32 8
3 8 V8 8 4
4 e 1 2

2. Optimal Portfolios When Short Sales Are Not Allowed

If we restrict management prerogatives by disallowing short sales we must
modify the solution presented in the last section. In particular, if short selling is
disallowed then we must introduce the constraints that all X,>0. This requires
employing the Kuhn-Tucker conditions. Since the varnance-caovariance matrix is
positive definite the Kuhn-Tucker conditions are both necessary and sufficient for
an optimum. (See Appendix C.) The equivalent of equation (2) using the Kuhn-
Tucker conditions is '

R-R, g . »
Z‘,-z‘—"'—‘i““—‘———'i“ﬂm 2 szj+f-‘f (5)
O, a9, =1

where
Z20, 1,20, and pZ,=0 for all ..
Now let us assume for a moment that we can find all stocks which would be in an

optimal portfolio (call the set of such stocks k) and arrange these stocks as
i=1,2,..., k. For the sub-population of stocks that make up the optimal portfolio

A
Z=—7"——0l 2 ZB and p=0
., g,  i=1

Multiplying both sides by £, summing over all stocks in & and rearranging yields

LI R—R
2|4
& j=1 g
= 5 )
[+ T 2 —
J=1 Cf5

10. A corplication could oceur if residual risk were zero. In this case 3%, ,8,Z, equals the maximum

(E;—Rf)/,ﬁ!— with zero residual risk. The rest of the analysis follows. It should be noted that the
Kuhn-Tucker multipliers p; appearing in (5) as well as elsewhere in this paper are the usual multipliers
up to multiplication by the constant a, for the optimal portfolio.
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Notice since the set k contains all stocks with positive Z's

N k
z 2= 2 Zg (7)
i=1 j=1
and let
k R—R
f
2 : 2 ‘Bj
, A7t %
ot ®
l+o:i 2 —;
=19

Using (8) we obtain after substitution and rearranging from equation (5) the
following expression for Z:

+u, %)

2=
g

B;

Since y, 70, including p, can only increase the value of Z. Thus if Z, is positive
with =0, the inclusion of p; can never make it zero. Hence if Z, is positive when
;=0 the security should be included. If Z, <0 when g, =0 positive values of g, can
increase Z. However, since the product of 1, and Z, must equal zero, positive
values of g, imply Z =0. Hence any security with Z <0 when p,=0 must be
rejected.

In order to determine if a security should be included it is necessary to deal with
three types of securities; thase with positive 8, those with negative g, and those
with ,=0. Let us start by assuming that all securities have positive f§'s.

Then we show in Appendix A that if a security with a particular (R,— R /B, is
included in the optimal portfolio all securities with higher values of (R~ RJ,)/B
must be included in the optimal portfolio. This holds because with 8, >0 the sign of
Z, depends on the sign of the term in the brackets. The term in the brackets is
(E—R!)/B,. minus a constant. Thus if a stock with a particular (E;—Rf)/ﬁ.- has a
positive Z, all stocks with higher excess return to S ratios will also have a positive
Z. Thus all we have to do to find the securities included in the optimal portfolio 18
rank from 1 to N all securities by (E.—Rf)/ﬂf. Then compute a value for equation
(8) as if the set & only contained the first security. This will always he positive.
Next we calculate equation (8) setting i=2 and leting the set & contain the first
two securities. We proceed for /=3,4, ... until Z, computed from equation (9) with

=( turns negative. If it turns negative for the j+ lst security then the set %
contains the first § securities {{=/). Appendix B presents a procf that once Z, from
equation (9) turns negative it can never be made positive for any security not in the
set & by adding more securities to the portfolio. Hence we have found a simple and
fast way to define all securities in the set k. Once these securities are found the Z,
value for all securities in the set can be found simply by caleulating the Z, for each
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security from equation (9) recognizing that the p, for each of these securities equals
ZEr0.

The fraction of our funds which should be placed in each security can be found
by recogmzing that the sum of the fractions must equal 1 or by dividing the Z,
found for each security in the set k by the sum of the Z, for the set k. Once again, a
simple and very quick procedure has been found for designing an optimal
portfolio.

Let us illustrate this with an example. Consider the numbers shown 1n Table 1.
Ranking by excess return to 8 shows that the securities in decreasing order of
desirability are 4,3,2, [. The term in the brackets for security 4 is'!

v _(4.?8_)(&12/2) >0

The term in the brackets for security 3 when the portfolio consists of 3 and 418

R

3 2 8 \1+2

The term in the brackets for security 2 when the portfolio consists of 2, 3 and 4 is

g (438 68 828 |/ |
L\’S__( 2 s T m )(1+3)

>0

<0

Thus the optimum pertfolio consists of a portfolio of security 3 and 4 with the
weights of'*
Xs=2s 8{‘,8_(8)3 6

e S - (6)]

We have not as yet dealt with the case of securities with negative #'s. If all
securities had negative s an argument and set of proofs analogous to that
described above would hold except that stocks would be ranked in ascending order
by (R~ R)/B.

If stocks with both negative and positive #'s are present then one should follow
the procedure outlined above to see which of the positive 8 stocks should be
included in the portfelio. When no more positive £ stocks are included, stocks with
negative s should be tried (starting with the one with the smallest (ﬁj—Rf)/,G,

11..Inspection shows that the first security is always included. Thus this step is not necessary.
12. By chance the Z, add to one.



1350 The Journal of Finance

until ne more enter. If any negative A stocks enter, it must decrease the size of the
term in brackets in (8) and so the highest excess return to positive fi stocks
previously rejected should be checked to see if it now enters. If more positive 3
stacks enter, then the negative # stock list should be checked and the procedure
repeated iteratively until no more stocks enter. In actual practice this iterative
procedure will converge almost instantaneously hecause of the very small number
of stocks with negative s,

The last problem left to deal with 1s the problem of stocks with zero f. From
equation (9) if any stocks exist with zera 8 then they should be included in the
optimal portfolio if their expected return exceeds the riskless rate of interest. Hence
when the first positive stocks (and all other stocks) are checked to see if they
belong in the optimal portfolio, all zero 8 stocks with an expected return ahove the
riskless rate should be included in the portfolio since they do not alter the value of
¢, given by (8).

Before leaving this section, it is worthwhile considering the implications of our
model for the revision of portfolios when a new stock is introduced into the
population of stocks under consideration. The present framework drastically
simplifies the revision problem.

Let us take the case of a new stock with a positive 8. If the excess return to f8
ratia for the new stock is below the excess return to S ratio of the highest
numbered stock excluded from the portfolio {that is the excluded stock with the
highest excess return to 8 ratio), then the new stock will not enter our aptimum
portfolio. If the new stock has an excess return to 8 ratio above the stock with the
lowest excess return to f ratio which was previously included in the portfolie, it
will enter. Furthermore, stocks previously in the portfolio with low excess return to
A ratios will have to be rechecked using equations (8) and (9) to see if they remain.
Finally, if the stock has an excess return to A ratio between the lowest in the
portfolic and the highest not in the portfolio, equation (9) will have to be used to
see if it enters or not. If it enters, all stocks which were previously in the portfolio
remain in the portfolio. Negative 3 stocks can be handled in an analogous manner.

II CoNSTANT CORRELATION COEFEICIENTS AND THE CONSTRUCTION OF
OpTIMAL PORTFOLIOS

In this section, we will assume that all pairwise correlation coefficients are equal.
While this probably does not represent the true pattern one finds in the economy, it
is very difficult to obtain a better estimate. Elsewhere [1] we have shown that this
assumption produces better estimates of future correlation coefficients than do
historical correlation coefficients or those produced from the single index
approximation discussed in section one. In fact, the assumption of a constant
correlation coefficient produced forecasts which were about as accurate as any of
nine techniques we tried. As discussed earlier, the optimum portfolio is that which
maximizes the ratio of excess return on the portfalio to its standard deviation of
returns. Letting

1. ag:oovariance between security { and security j
2."a*=the variance of security i
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3. p=the correlation coefficient between any two securities
4, all other terms as before
then excess returns on a N security portfolio is
N
R~k 3 X(R-R)
and the standard deviation is
172
N N N
o,=| 2 X+ 2 XXX, o

i=1 i=1 j=1
JEL

i

A. Optimal Policies When Short Sales Are Allowed

If we allow short sales then we maximize £J=(R)‘J —Rj/a, without restricting the
sign of X,. The first order conditions necessary for a maximum were presented by
Lintner [4] and are;

N

Z:JJZ+ E zjo{'lg‘:Rr_Rf t= l! 1N
=
7

where

This is equal to
N J—
zia.r;(l _p) + pO"- Z ZJ O:I,: Ra"_ ‘R_(
=1
Solving for Z, yields'?
R—-R N
i By o 1
=3 79 (10)

“ei(l-p)y l-no 2

The term j‘; 1Z;0; can be eliminated by multiplying through by ¢, and summing
Z.a,= — N Z.o,
= ri Fl%(l_p) 1-p = F

13. Any security with 62 =0 is a riskless asset. The one with the highest return is the preferred ane and
Ryis the return on this security. Hence at this step al>0.
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Salving for 3 Z.a, yields

j= 1V

N ¥ R—R
1 VY

2 Z0= 2 =

AT et Ne Ty g

" Substituting this into equation (10} yields
_RTR b 1 1SR
g (1l —p) pl-ptiNpo o ¢
Thus the amount to invest in each security is
: —p g, l—p+ Np a

A X 9; L = | i
2 l Zj| 2 ( Z;( /
=t

i=1

This equation can be used to determine whether a stock is sold short or purchased
long and the amount invested in each stock. Several conclusions can be drawn.
First, the above is an extremely simple equation. For even a medium sized portfolio
X, could be determined from the estimates quickly using only a pencil and paper.
Second, if a stock with a particular excess return to standard deviation is purchased
long all stocks with higher ratios are also purchased long. This 1s true since the
terms in the bracket of equation (12) determines the sign of X, and the second term
is the same constant for all securities. The contrary is of course also true if a
security with a particular excess return to standard deviation ratio 18 purchased
short all securities with a smaller ratio are also purchased short. This can be
tllustrated with a simple example. Consider the example shown in Table 1.
Calculating excess returns to standard dewviation and other useful quantities yield
the numbers shown in Table 2. _

With a correlation coefficient assumed to be .5 we have from equation (11)

Z,= ﬁ%{l‘ T (55| =201/10)[ 1~ 1.1] = =2/100
Z,=21/8)[1-1.1]=—1/40

Z,=2(1/H{1.5-11]=1/5

Z=X1/2)[2-11]=29

Scaling the abave sa that the sum of the absolute values equals 1.0 yields the
same results as shown in Section L.
B. Optimal Policies When Short Sales Are Not Allowed

If. short selling is not allowed then we have to rely on the Kuhn-Tucker
conditions. As detailed in Appendix C they are both necessary and sufficient. The
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TABLE 2
Security R- Ry 1/a, (R~ Ry/a,;
1 10 1/10 1
2 3 178 1
3 6 1/4 1.5
4 4 1/2 2.0
55
Kuhn-Tucker conditions which maximize # are
1. R R Zo—EZoﬂu‘ 0
j=1
f#i
22,2020
3. Zop, =0
Salving for Z; we have
E - R y ty
T2 f_llf Ezjoﬁz
o {l—p) O P g, (1—p)

Without loss of generality, we can assume that the first & securities are included.
For an excluded security, Z =0 sco that the summation in the equation can be
written as summing te & rather than N. For an included security, p, is zero. Thus
for these securities

R-R k
i f 1 il
— E 2:}.

f 0‘1(1_]0) a; l'_‘p =1

<&

Multiplying both sides by o, and summing allows us to sclve for 2;‘: 1Z; 0,

& ¥ R—R
J / 1
2 g 9; l—p+kp

Substituting this expression into the equation for Z, given the above yields

R-B 1 » L SRR m

Z,= - 2 -

+ 13
al(l-py @ l=pl-p+kp T a  o}l—p) “

The term containing the p, can only increase Z. Hence if Z, 1s positive with y, zero
a pasitive value of p, cannot make Z,=0. Thus any security with positive Z;, when
;=40 must be included. Correspondmgly, any security with negatwe Z, when w=0
must be excluded.
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Rearranging the ahove for included securities yields

11| Rk p & KRR
2= — - >
“l-p g a; f—p+kp =

The sign of Z; depends on the terms in the brackets. Since the last term in the
brackets is a constant for any k if a security with a particular rate (R,— Rp/a has a
positive Z, then all securities with a higher ratio must also be included. [t ¢an be
shown in a manner analogous to Appendix B that if a stock has a negative Z, all
lower ranking stocks will also have a negative Z, if they are added. These two
characteristics can be used to determine decision rules for solving the portfolio
problem. Rank stocks in decreasing order of excess return to standard deviation,
add securities unti] the term in the brackets becomes negative. Once the term in the
brackets is negative for the security added last, it will be negative for any
additional securities that are added.

The optimum amount to invest in each security is given by the above divided by
the sum of the Z. Thus

0_
X'=—
2 Z,
i=1

Let us illustrate this with an example. Consider the example shown in Table | with
p=.5 and the intermediate calculations shown in Table 2. The ranking of the
securities mn decreasing order of desirability is 4,3,2,1. Including only 4 the
expression in the brackets is"

5
2-—2
[ -5+ }>0
Including 3 and 4 the expression in the brackets for security 3 is

5
{1.5« 1__5+13.5]>0

Including 2,3 and 4 the expression in the brackets becomes

45|<0

o5
[—5+15

Thus 3 and 4 are included. The amount of each is

=91 —-------—5 =

X 2‘2[2 l__les.:a} 5/6
x90=2-4[15- —3 __35]=1/6
3 s [—.5+1

These are the same as the proporticns calculated in Section One.

14. Inspection shows that the highest ranking security is always included so that this step could have
been skipped.
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Befare closing this section a couple of observations are in order. First, if a new
stock is under consideration it will be included if its excess return to standard
deviation ratio exceeds that of the lowest ranking stock included in the portfolio,
and will be excluded if its excess return to standard deviation ratio is below that of
the highest ranking excluded stock.'” This makes very explicit the characteristics
that will make a stock enter and means that the proportions in the optimum
portfolio will only have to be recalculated occasionally. Second, the introduction of
a new stock is unlikely to cause a radical change in the stocks included in the
optimal portfolio. At most, the entry of a new stock should cause a marginal
change in the optimal excess return to standard deviation cutoff rate. Thus, using
the old cutoff rate as a starting point in determining the new cutoff rate should lead
to a quick solution to the problem.

III. Cowncrusion

In this paper we have developed decision rules that allow one to reach optimal
solutions to realistic portfolio problems without ever solving a mathematical
programming problem. Furthermore, the characteristics of the stock that make it
desirable are readily understood and calculated. In a forthcoming paper, we will
show that similar {but more complex) results can be reached when we introduce
multiple indices and more complicated correlation structures.

APPENDIX A

Proof that if any stock with a positive # belongs 1n an optimal portfolio, all stocks
with positive 8’s which have a higher ratio of excess return to £ belong in that
portfolio.

Given that an optimal portfolio exists containing some set of securities %, then
by equation (9) it follows from p,=0 and Z,>0 that

R—R;
B;

if stock 7 is contained in the portfolio. Consequently, for any stock j with

>y,

R,—R, R R,—R,

5 5
it follows that the expression for ZJ given by (9) is positive with ]uj=0. Con-
sequently, by the Kuhn-Tucker conditions (5), stock j belongs to the optimal
portfolio.

APPENDIX B

Proof that if any stock with a positive 8 is not in an optimal portfalio no stock with
a lower excess return to f ratio and a positive 8 can be in the optimal portfolio.

I5. IF its excess return to standard deviation ratio falis between these two limits, equation ¢13) will
have to be used to see if the stock should be included ar excluded.
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Given that an optlimal portfolio exists containing some set of securities k, then
by equation (9) it follows from Z,=0 and p, > ¢ that

R—R,
B;

if stock i is not contained in the portfolio. Consequently, for any stock j with

< ¢,

it follows that the expression for Z; given by (9) is non-positive with =0
Consequently, by the Kuhn-Tucker conditions (5), stack j does not belong to the
optimal pertfolio.

ApPPENDIX C

In order to prove that the methods employed in the paper yield optima in both the
cases where short sales are allowed and disallowed, respectively, we need to show
that the function # is pseudo-concave on the domain of positivity of 4. More
precisely, let I'={X €R" EJ_I(RJ-—RI)X,.>O}, By our blanket assumption
mentioned in the introduction, it follows that I is nonempty and furthermore, that
I' is an open convex subset of R*. To prove that §=8(X) is pseudo-concave on I'
we have to show (see Mangasarian [7, p. 141]) that for every X €[' and all X €T
such that V(X)X -X)<0 it follows that #(X)<8(X), where VA(X) is the
gradient of @ evaluated at X. Since X €T, it follows that X # 0 and consequently,
by the positive-definiteness of the variance-covariance matrix, that the numerator
of # does not vanish. Denoting by Q the variance-covariance matrix and by R the
vector with components R,— Ryi=1,.... N, we can write Q(X) (RX)(XQX)’_
Consequently, VH(X X —X)= (RX)(XQX) 1—(RX)(XQX) 3(XQX) From the
Cauchy-Schwartz inequality (see Mangasarian [7, p. 7], it follows that ¥QX
<(XQX): (XQ)()é and hence that #X) is pseudo-concave. {(For an alternative
proof of the pseude-concavity of #(X') see also Mangasarian [7, p. 148, Problem
6.11.) Having established the pseudo-concavity of #(X), it now follows from
Theorem 9.3.3 of Mangasarian {7, p. 141} that in the case where short-sales are
allowed the calculations of Sections I.] and II.[ produce an coptimum. Similarly,
from Théorem 10.1.2 of [7] sufficiency of the Kuhn-Tucker conditions ensues,
when short-sales are disallowed. Since the constraints of our optimization problem
are linear, it follows from our blanket assumption mentioned in the introduction,
that Slater’s constraint qualification [7, p. 155] is satisfied and hence by Theorem
10.2.7[7, p. 156], necessity of the Kuhn-Tucker conditions follows.
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