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Binomial and Black-Scholes option pricing models - summary

Binomial option pricing formula:
The value C' of a European call option at time ¢t = 0 is:
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Black-Scholes option pricing formula:
The value C' of a European call option at time ¢ = 0 is:
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So Price of the stock at time ¢t = 0

E Exercise price at expiration

r Continuously compounded risk-free interest

o Annual standard deviation of the returns of the stock

t Time to expiration in years

®(d;) Cumulative probability at d; of the standard normal distribution N(0,1)

Binomial convergence to Black-Scholes option pricing formula:

The binomial formula converges to the Black-Scholes formula when the number of periods n is large. In the
example below we value the call option using the binomial formula for different values of n and also using the
Black-Scholes formula. We then plot the value of the call (from binomial) against the number of periods n.
The value of the call using Black-Scholes remains the same regardless of n. The data used for this example

are:
So =848, E =850, Ry =0.05, 0 = 0.30, Days to expiration = 73.

Using the Statistics Online Computational Resource (SOCR) at http://www.socr.ucla.edu we find the
results on the next page.
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