Homework 10

Due Friday, June 7

p. 426

7.3, 5, 6, 7, 8, 9 ( see this link for the data ), 10, 17, 18, 20, 28 ( data ), 29 (data )

Some useful R commands


Here's an example of how to deal with the anscombe data (problem 9)
>anscombe <- read.table("anscombe.dat", header=T)
> attach(anscombe)
> plot(X1, Y1)
> cor(X1, Y1)
[1] 0.8164205    # To compute the correlation coefficient
> output1 <- lm(Y1 ~ X1)    # This computes the regression line
> abline(output1)    #This superimposes the regression line on your scatterplot
> summary(output1) #Below is the output
Call:
lm(formula = Y1 ~ X1)

Residuals:
     Min       1Q   Median       3Q      Max
-1.92127 -0.45577 -0.04136  0.70941  1.83882

Coefficients:
            Estimate Std. Error t value Pr(>|t|)  
(Intercept)   3.0001     1.1247   2.667  0.02573 *
X1            0.5001     0.1179   4.241  0.00217 **
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.237 on 9 degrees of freedom
Multiple R-Squared: 0.6665,    Adjusted R-squared: 0.6295
F-statistic: 17.99 on 1 and 9 DF,  p-value: 0.00217


To help you read the output of the "summary" command:
The estimated intercept is given in the row marked "(Intercept)" and the column marked "Estimate".  The value is 3.0001.  The estimated slope is in the row marked "X1".  It's value is .5001.  Hence the regression line, or "best fit" line is y = 3.0001 + 0.5501*X1