Stat 232B-CS266B: 
 Statistical Computing and Inference
      in Vision and Cognition
                      MW 3:30-4:45 pm, Spring 2020, Online
  This graduate level course introduces a broad range of advanced algorithms for statistical inference and learning on hierachical models. More specifically, this course will focus on grammatical models in the form of probabilistic And-Or Graphs, including i) Spatial AOG for object recognition and scene understanding; ii) Attribute-AOG for human pose and attribute inference; iii) Temporal-AOG for event understanding and behavior predictions; iv) Causal-AOG for causal-effects in human-object/scene interactions; and v) the joint STC-AOG for comprehensive scene and event parsing across multi-cameras. the lecture will covers topics on:
Prerequisites
Reference books
Instructors
Grading Plan: 4 units, letter grades
  | Project 1: Sampling And-Or Graph models | 20% | 
Project 2: Parameter learning of And-Or Graph  | 
      20% | 
| Project 3: Structure Learning of And-Or Graph | 20% | 
| Project 4: Generalized Earley Parser for online parsing and prediction | 20% | 
| Project 5: Inside-outside Algorithm for neural-symbol inference and learning | 20% | 
Tentative List of Topics [draft textbook, lecture notes, reading materals are distributed in CCLE]
  Chapter 1   Introduction                                                             
   1. Overview of regimes of models from Stat232A
   2. Hierarchical STC-AOG representation and applications
   3. Project design and requirements
          
 Chapter 2  Spatial And-Or Graph            
   1. Terminology: basics of grammars, vocabulary, relations, parse graph, language   
   2. Characteristics of image grammars  
   3. And-Or graph for knowledge representation
   4. Some examples 
  Chapter 3  Learning And-Or Graph
   1. Parametric learning: EM algorithm, pursuit of contextural relations
   2. Structure learning: Block pursuit, AOG fragment pursuit
   3. Structure-parametric learning: Full-AOG and pruning
  Chapter 4  Inference and parsing algorithms 
   1. Traditional parse algorithms: CYK, Earley parser, chart parsing
   2. Inside-Outside: inferring and learning SCFG
   3. Alpha-beta-gamma scheduling
   4. Examples on object parsing             
  
 Chapter 5  Attributed And-Or Graph 
   1. Attribute grammar 
   2. Example I: parsing man-made object and scenes 
   3. Example II: geometric attribute for scene parsing
   4. Example III: appearance attributes for human parsing
  Chapter 6 Temporal And-Or Graph 
   1. Atomic actions 
   2. Representing events by T-AOG
   3. Learning and pursuit T-AOG from videos and demonstrations                         
   4. Event parsing and intent prediction with generalized Earley parser.
    
 Chapter 7 Fluent and Causal-And-Or Graph
   1. Fluents of objects and scenes, and causal relations
   2. Perceptual causality
   3. Pursueing causal relations
   4. Learning the causal-AOG: Pursuit and transfer 
 
 Chapter 8 Joint parsing and integration
   1. Scene centric parsing of object, scene and event
   2. Examples: cross-view parsing of scenes and humans
   3. Advanced topics: explanation and exploration with Logic + AOG + DNN.