

Examples of the image primitive

Learned texton dictionary with some landmarks that can transform and warp the patches

MSRI workshop on low and middle lever vision, Feb, 2005

The primal sketch model

3. The non-sketchable part is divided into homogeneous texture regions

$$\Lambda_{\mathsf{nsk}} = \cup_{i=1}^n \Lambda_{\mathsf{nsk},\mathsf{i}}$$

Each region has a statistical summary h_n

$$S_{\mathsf{nsk}} = (N, \{ (\Lambda_{\mathsf{nsk},i}, h_i \leftrightarrow \beta_i) : n = 1, 2, ..., N \})$$

$$p(\mathbf{I}, S_{\mathsf{sk}}, S_{\mathsf{nsk}}; \Delta_{\mathsf{sk}}, \Delta_{\mathsf{nsk}}) = \frac{1}{Z} \exp\{-E_{\mathsf{sk}}(S_{\mathsf{sk}}) - E_{\mathsf{nsk}}(S_{\mathsf{nsk}}) - \sum_{k=1}^{K} \sum_{(x,y) \in \Lambda_{\mathsf{nsk},k}} (\mathbf{I}(u, v) - B_k(x, y))^2 - \sum_{i=1}^{n} < \beta_i, h(\mathbf{I}_{\Lambda_{\mathsf{nsk},i}}) > \}$$

MSRI workshop on low and middle lever vision, Feb, 2005

Song-Chun Zhu

More examples

MSRI workshop on low and middle lever vision, Feb, 2005

More examples

MSRI workshop on low and middle lever vision, Feb, 2005

Song-Chun Zhu

Manifold learning and entropy minimization

Let Ω_{nat} be the ensemble of natural images on large enough lattice. To measure the Volume/dimension of this manifold, we construct an ensemble Ω_{ϵ} which is an ϵ -cover of Ω_{nat} for a certain perceptual metric $\rho.$

$$\forall I \in \Omega_{nat}, \exists J \in \Omega_{\epsilon}, \text{ so that } \rho(I, J) \leq \epsilon.$$

The minimum ε -cover has size $\mathcal{N}(\Omega_{nat}, \rho, \epsilon)$ The ε -entropy of the natural image ensemble is

$$\mathcal{H}(\Omega_{\mathsf{nat}},\rho,\epsilon) = \log_2 \mathcal{N}(\Omega_{\mathsf{nat}},\rho,\epsilon)$$

In the literature, there are two ways for manifold learning using two perceptual metrics

- 1. generative models (Harmonic analysis)
- 2. descriptive models (Markov random fields)

MSRI workshop on low and middle lever vision, Feb, 2005

Song-Chun Zhu

Explicit manifold learning

Generative models build the e-ensemble by explicit functions,

$$\Omega_{gen} = \{ I : I = g(W; \Delta_{gen}), W \in \Omega_W \}$$

W are the dimensions of the manifold $\Omega_{\rm W\,:}$ geometric and photometric. The metric is the MSE,

$$\rho_{\text{gen}}(\mathbf{I}, \mathbf{J}) = \frac{1}{|\mathbf{\Lambda}|} \sum_{x,y} (\mathbf{I}(x, y) - \mathbf{J}(x, y))^2$$

This ensemble has size $\mathcal{M}(\Omega_{\text{gen}}, \rho_{\text{gen}}, \epsilon)$ The ϵ -entropy of the ensemble is

$$\mathcal{H}(\Omega_{\text{gen}}, \rho_{\text{gen}}, \epsilon) = \log_2 \mathcal{M}(\Omega_{\text{gen}}, \rho_{\text{gen}}, \epsilon)$$

The objective is to find the optimal dictionary to minimize the discrepancy (KL-divergence),

 $\Delta_{\mathsf{gen}}^* = \arg\min\left\{\mathcal{H}(\Omega_{\mathsf{gen}}, \rho_{\mathsf{gen}}, \epsilon) - \mathcal{H}(\Omega_{\mathsf{nat}}, \rho_{\mathsf{gen}}, \epsilon)\right\}$

MSRI workshop on low and middle lever vision, Feb, 2005

Song-Chun Zhu

$\label{eq:product} \begin{array}{l} \mbox{Implicit manifold learning} \\ \mbox{Generative models build the e-ensemble by explicit functions,} \\ \Omega_{des} = \{I: \ h(I; \Delta_{des}) = h_o, \ h_o \in \Omega_h\} \\ \mbox{h are the statistics/features extracted (projection of the image space).} \\ \mbox{The metric is on the projected statistics,} \\ \end{tabular} \\ \mbox{$\rho_{des}(I,J) = ||h(I) - h(J)||$} \\ \mbox{This ensemble has size} \qquad \mathcal{M}(\Omega_{des},\rho_{des},\epsilon) \\ \mbox{The ϵ-entropy of the ensemble is} \\ \end{tabular} \\ \end{tabular} \\ \mbox{$\mathcal{H}(\Omega_{des},\rho_{des},\epsilon) = \log_2 \mathcal{M}(\Omega_{des},\rho_{des},\epsilon)$} \\ \mbox{The objective is to find the optimal dictionary to minimize the discrepancy (KL-divergence),} \\ \end{tabular} \\ \end{tabular} \\ \end{tabular} \\ \mbox{$\Delta^*_{des} = \arg\min{\{\mathcal{H}(\Omega_{des},\rho_{des},\epsilon) - \mathcal{H}(\Omega_{nat},\rho_{des},\epsilon)\}}$} \\ \hline \end{tabular} \\ \end{ta$

