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Introduction to computer vision:
image parsing: decomposing images into their constituent visual patterns

scene

objects

patterns

parts

textons (Tu et al, 2000-2004)
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Introduction to computer vision:
3D scene construction

3D reconstruction from a Single Image

input I

curve & tree layer        region layer

3D reconstruction and rendering

(Han and Zhu, 2003)
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In statistics, we sample from a posterior probability to preserve ambiguities.
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Let I be an image and W the semantic representation of the world in I.
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An example:  image segmentation

input image graph partition 
(coloring/labeling)

image segmentation result

Let πn be the n-coloring of a lattice (image domain) Λ.

The world representation is

(Barbu and Zhu, 2003)
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c). an atomic space

atomic 
particles

iΩ

a). solution space

7πΩ

b). a sub-space of 7 regions

A 7-partition
space

atomic
spaces

1CΩ 1CΩ

2CΩ 2CΩ 2CΩ

3CΩ 3CΩ

The Search Space 

Any algorithm should be able to explore the whole space regardless its 
initialization. We design Markov chains that are “ergodic”.
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Graph (lattice) partitioning with Potts model being the prior

The Ising model (1920, two labels) and Potts model (1953, multiple labels) were 
used as a priori probabilities for segmentation (for fixed color n). 

1/2 1/2

For single site Gibbs sampler (Geman and Geman 1984), the boundary spins are 
flipped with a p=½ probability. Flipping a string of length n will need on average 

t >= 1/pn =2n steps!             
This is exponential waiting time.
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Swendsen-Wang for Ising / Potts models

Swedsen-Wang (1987) is a smart idea that flips a patch/cluster at a time. 

Each edge in the lattice e=<s,t> is associated with probability ρ=1-e-β.  

V0

state A state B

V0

V1

V2

V1

V2



5

Statistics Dept. UC Berkeley,   April, 2005,                    Song-Chun Zhu          

Interpreting SW by data augmentation
One useful interpretation of SW is proposed by Edward and Sokal (1988) using the concept of
data augmentation (Tanner and Wang 1987).

Augment the probability with auxiliary variables on the edges of the adjacency graph  

The augmented probability should have two nice properties,

1.  The two conditional probabilities are easy to sample

2. Its marginal probability on C is the target (Potts model in SW),
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Interpreting SW by data augmentation

1. Flipping the edges by Bernoulli probability,

CP(U) is a hard constraint that vertices in each connected component 
according to U has the same color. So we flip the ccp in the quotient space.

2. Flipping the color of a connected component (CCP) by uniform probability,



6

Statistics Dept. UC Berkeley,   April, 2005,                    Song-Chun Zhu          

Intuition
Energy landscape

Conclusion: any two coloring states are connected in one step by SW if we flip the clusters all once.
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Some theoretical results about SW

1. (Gore and Jerrum 97) constructed a “worst case”
SW does not mix rapidly if G is a complete graph with n>2, and a certain β.

2.  (Cooper and Frieze 99) had positive results
If G is a tree, SW mixing time is O(|G|) for any b.
If G has constant connectivity O(1), the SW has polynomial mixing time for ρ<=ρ0.   

3. (Huber 2002) proposed a method for exact sampling using bounding chain technique
for small lattice with very low and very high temperature.

To engineers, the real limit of SW is that it is only valid for Ising/Potts models.
(A tiger contained in Potts’ cage!)

Furthermore, it makes no use of the data (external fields) in forming clusters.
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Our generalization

Barbu and Zhu (ICCV 03, CVPR04) extended SW in three aspects.

1. Generalize SW to arbitrary probabilities on graphs with variable color#.
It  can also be made into a generalized Gibbs sampler which flips a CCP at each step

with simple weights on the conditional probabilities. 

2. Using discriminative models (data-driven) for the edge probabilities
The edge probability approaches the marginal posterior probability for how likely
two sites s and t belong to the same color (object surface)

3. Hierarchical coloring in a multi-resolution pyramid representation.
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Computing the edge weights by discriminative methods

The edge probability is decided by local features

Histogram Hi

Histogram Hj

is a marginal probability of p(W|I) 1. Konishi et al 01, Ren et al 04
2. Adaboost,  Shapire 00
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Clusters (connected components)
by flipping the edge probabilities independently

T=1                            T=2                              T=4                              T=8

Sample 1

Sample 2

Sample 3
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Swendsen-Wang Cuts

V0

V1

V2

x

x
x

x

x

x

Definition:  A Swendsen-Wang cut is the set of edges between a cluster (CCP) with other sites 
of the same color.

Intuitively, this is the set of edges that must have been turned off for V0 being a CCP.
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State A State B
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Swendsen-Wang Cuts

Theorem.  The probability ratio for selecting CCP V0 at states A and B is
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(Barbu and Zhu, 2003)
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Same conclusion when multiple paths exist

State A

State C

State B

A

CB
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State A State B
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Metropolis-Hasting Step

Theorem.  The acceptance probability for flipping V0 is

results in an ergodic and reversible Markov Chain.
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Acceptance probability can be made always 1
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Zero rejection rate may not necessarily be an optimal design.
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A generalized Gibbs sampler

We denote the probabilities on the SW-cuts C(V0, Vk)  by weights

labelnewafor1
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Flip the label of a CCP according to a condition probability weighted by the SW-weights

n,...,1,0k),()|( 0k =⋅= kk VpVlp ϖ
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Statistics Dept. UC Berkeley,   April, 2005,                    Song-Chun Zhu          

SW comes as a special case

Consider the reversible moves between states A and B by Metroplis-Hastings:
the proposal probability ratio is:

the probability ratio of the two states is:
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If we choose 
β−−= eqo 1

Then the acceptance probability is always 1.
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Comparison with the Gibbs sampler in CPU time

Convergence comparison of SWC-1 and the Gibbs sampler on the cheetah image, starting from a random 
state or from the state where all nodes have label 0. Right – zoom in view of the first 20 seconds.
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Convergence comparison: in seconds

7000 seconds                                       zoom-in view of the first 200 seconds

Another example
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Comparison
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Scene depth from stereo

depth map

Camera 

parameters

disparity map
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Examples on Stereo Reconstruction

left image

Ground truthLeft image Segmentation result
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Performance comparison with Graph Cuts and Belief 
propagation on a special (simplified) energy
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Hierarchical partition and segmentation

– Level 0: Pixels are grouped into atomic regions
rijk of relatively constant motion and intensity

– motion parameters (uijk,vijk) 
– intensity histogram hijk

– Level 1: Atomic regions are grouped into 
intensity regions Rij of coherent motion
with intensity models Hij

– Level 2: Intensity regions are grouped into 
moving objects Oi with motion parameters θi

X0

X1

X2
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Motion segmentation examples

Image Segmentation Motion SegmentationInput sequence

Image Segmentation Motion SegmentationInput sequence
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Motion segmentation examples

Image Segmentation Motion SegmentationInput sequence

Image Segmentation Motion SegmentationInput sequence
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Summary: Ideas to Improve MCMC Speed in Stat Literature

A main idea is to introduce auxiliary random variables:

x ~ π(x)

The common problem is:
The Markov chain moves are designed a priori, without looking at the data.

T --- temperature    (Simulated tempering, Narinari and Parisi, 92, Geyer and Thompson, 95 )
s --- scale                (Multi-grid sampling, Goodman and Sokal 88, Liu et al 94 )
w --- weight              (dynamic weighting, Liang and Wong 1996 )
b --- bond                (clustering, Swendsen-Wang, 87)
u --- energy level     (slice sampling, Edwards and Sokal, 88 …)

Augment x by variables:
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Data-Driven Markov Chain Monte Carlo

Consider a reversible jump BA WW ↔
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Without looking at the data, the pre-designed proposal probabilities are often uniform distributions, thus it is a blind 
(exhaustive) search !

Then it may converges in a small number of steps !
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c). an atomic space

atomic 
particles

iΩ

a). solution space

7πΩ

b). a sub-space of 7 regions

A 7-partition
space

atomic
spaces

1CΩ 1CΩ

2CΩ 2CΩ 2CΩ

3CΩ 3CΩ

Revisit the Search Space 

Any algorithm should be able to explore the whole space regardless its 
initialization. We design Markov chains that are “ergodic”.
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Example: Clustering in Color Space

saliency maps     1              2            3             4   5            6
The brightness represents how likely a pixel belongs to a cluster.

Input

Using Mean-shift clustering (Cheng, 1995, Meer et al 2001)

∑
=

−=
K

1i
ii )θg(θωI)|q(θ
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Generative

Discriminative

marginal posterior

Generative vs. Discriminative Algorithms



19

Statistics Dept. UC Berkeley,   April, 2005,                    Song-Chun Zhu          

face text region model switching

Markov kernel

deathbirth deathbirth split merge

input image

face detection text detection edge detection model clustering

+

generative
inference

discriminative
inference

weighted 
particles

Diagram for Integrating 
Top-down generative  and
Bottom-up discriminative
Methods.
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Input                          segment π∗ synthesis  I ~ p( I | W*)

Experiments: Color Image Segmentation
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a. Input  image       b. segmented regions    c. synthesis  I ~ p( I | W*)
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The Berkeley Benchmark Study

test images                     DDMCMC        manual segment

0.3082

0.5627

“error” 
measure

0.1083

(David Martin et al, 2001)
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Image Parsing Results
Tu, Chen, Yuille, and Zhu, iccv2003

Input Regions Objects Synthesis
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Image Parsing Results
Input Regions Objects Synthesis
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Examples on Stereo Reconstruction

Statistics Dept. UC Berkeley,   April, 2005,                    Song-Chun Zhu          

Integrating generative and discriminative
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Two Computing Mechanisms
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Alternating Bottom-up and Top-Down

Measuring the power of a discriminative Test

Measuring the power of sub-kernels


