Lecture 2

Inference in And-Or Graph

--- Scheduling Top-Down/Bottom-Up Processes
--- Computing Multiple Solutions

Song-Chun Zhu

University of California, Los Angeles, USA
Lotus Hill Research Institute, China

Ref: [1] X. Yang, T. F. Wu, and S.C. Zhu. "Evaluating Information Contributions of Bottom-up and Top-down Processes", ICCV09. [2] J. Porway S.C. Zhu, "C4: Cluster Sampling with Collaborative and Competitive Constraints".

Seeing as Statistical Inference

A basic assumption, since Helmholtz (1860), is that biologic and machine vision compute the most probable interpretation(s) from input images.

Let I be an image and W be a semantic representation of the world.

$$
\mathrm{W}^{*}=\underset{\mathrm{W} \in \Omega}{\arg \max } p(\mathrm{~W} \mid \mathrm{I})=\underset{\mathrm{W} \in \Omega}{\arg \max } p(\mathrm{I} \mid \mathrm{W}) p(\mathrm{~W})
$$

In statistics, we need to preserve the full posterior.

$$
\left(\mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{~W}_{\mathrm{k}}\right) \sim p(\mathrm{~W} \mid \mathrm{I})
$$

Top-down / Bottom-up Inference at all levels

Image parsing by DDMCMC, Tu et al, 2002-05

Two Basic Computing Mechanisms: Bottom-up vs. Top-down

Some objects can be computed more effectively by bottom-up while others by top-down

(a) bottom-up graph construction

(b) Top-down graph construction

How to formulate this problem?

Part 2.A: $\quad \alpha, \beta$ and γ computing processes in AoG

The And-Or graph is a recursive structure. So, consider a node A. 1, any node A terminate to leaf nodes at a coarse scale (ground). 2 , any node A is connected to the root.

Starting the $\alpha / \beta / \gamma$ channels when they are applicable ---an optimal scheduling problem

Compositional boosting, T.F. Wu et al, CVPR 07

An example: human faces are computed in 3 channels

In general: recursive α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Integrating α, β and γ channels

Information contribution

α channels

Performance improvement

red for α, blue for $\alpha+\beta$, green for $\alpha+\gamma$, cyan for $\alpha+\beta+\gamma$ channels

At low-middle level: α, β and γ channels
junctions: β channels dominate, say, binding.

At low-middle level: α, β and γ channels

junctions: β channels dominate, say, binding.

(a) Information contributions (IC) evaluated for the five low-level primitives: α (in red), $\alpha+\beta$ (in blue) $\alpha+\beta+\gamma$ (in green).

(b) The testing ROCs of α (in red) and $\alpha+\beta$ (in blue) for $L, T / Y /$ arrow and cross junctions, respectively.

2.B Computing Multiple Solutions

(1), preserve uncertainty, and (2), avoid premature commitments.

Concave

Rabbit

Here are two more examples

We showed that computers can dream. Can computers find these solutions?

Ambiguities are ubiquitous in images

Local interpretations are often strongly coupled !
They form "clusters" and the search algorithms often get stuck.

Sampling Probabilities with Multiple Modes

The two criteria for MCMC design:
$\begin{array}{ll}\text { 1, Short "burn-in" period } & -- \text { - The MC reaches the equilibrium fast } \\ \text { 2, Fast "mixing rate" } & \text {--- The MC states are less correlated in time }\end{array}$

$p(X)$

Background: Swendsen-Wang 1987

(a) Augment with auxiliary bonding variable U along edges E :

$$
U=\left\{u_{i j}, i, j \in X ; u_{i j} \in\{-1,+1\}\right\}
$$

(b) Turn edges "on" ($u_{\mathrm{ij}}=+1$) or "off" ($\mathrm{u}_{\mathrm{ij}}=-1$) probabilistically.
(c) Select a connected component V_{0} and update its nodes' labels.
state A
state B

Representation: Candidacy Graphs

We formulate a candidacy graph representation, as it can represents
1, MRF and CRF structures
2, Soft and hard constraints.
3, Positive (collaborative) and negative (competitive) edges.

MCMC 101: Sampling with Auxiliary Variables

Augment the Ising model with bond variable U :

$$
p(X, U)=\frac{1}{Z} \prod_{\langle i, j\rangle \in E^{+}} \varphi^{+}\left(x_{i}, x_{j}, u_{i j}\right) \prod_{\langle i, j\rangle \in E^{-}} \varphi^{-}\left(x_{i}, x_{j}, u_{i j}\right)
$$

Define the joint probability so that

1. $\sum_{U} p(X, U)=p(X)$
2. $p(U \mid X)$ and $p(X \mid U)$ are easy to sample from.

(Edwards and Sokal, 1988)

Experiments on Negative Edge Ising Model

Created "checkerboard" constraint problem.

Initial State

Solution 1
Solution 2

Convergence plot: Energy over iterations

C4 converges fastest of all.
Gibbs takes huge amount of time to converge. BP has trouble with loops and never converges.

Simulating the Potts model

C4: Generalization to Arbitrary Posteriors

Same protocol with Potts model, different dynamics.

1. $\mathrm{p}(\mathrm{U} \mid \mathrm{X}) \rightarrow$ Data driven edge probabilities. Learn distributions on features of node cliques.
2. $p(X \mid U) \rightarrow$ Random sampling or CSP.

Metropolis-Hastings Design

$$
\begin{gathered}
\alpha(A \rightarrow B)=\min \left(1, \frac{q(B \rightarrow A)}{q(A \rightarrow B)} \cdot \frac{p\left(X_{B} \mid F, B\right)}{p\left(X_{A} \mid F, A\right)}\right) \\
\frac{q(B \rightarrow A)}{q(A \rightarrow B)}=\frac{q\left(V_{0} \mid B\right)}{q\left(V_{0} \mid A\right)} \cdot \frac{q\left(l_{V_{0}}=\lambda^{\prime} \mid V_{0}, B\right)}{q\left(l_{V_{0}}=\lambda \mid V_{0}, A\right)}
\end{gathered}
$$

$q\left(V_{0} \mid B\right)$ depends only on its cuts! Ratio simplifies!

$$
\frac{q\left(V_{0} \mid B\right)}{q\left(V_{0} \mid A\right)}=\frac{\prod_{e \in u t\left(V_{0}, B\right)}\left(1-q_{e}\right)}{\prod_{e \in u t\left(V_{0}, A\right)}\left(1-q_{e}\right)}
$$

Solving the Necker Cube problem

C4 finds both solutions, swaps corner labels continuously.

Problem with "Flat"--C4

The "love triangles":
create inconsistent clusters
e.g. Love triangles in the duck / rabbit illusion.

Hierarchical C4

The candidacy graph so far represent pair-wise edges, high-order relations are represented by extended candidacy graphs.

System will now flip between duck and rabbit without love triangle issue.

Solving the Elephant Illusion

Layered representation of hierarchy

Elephant
Leg Pair, Head,
Back
Leg, Trunk
Line

Composing by the β-channels

Part binding for next layer

Trunk bindings

Leg bindings

Elephant
Leg Pair, Head,

Top Level Bindings and sampling

Long standing debates in vision

They have to be resolved by numeric answers
Structure vs. Appearance
Hierarchy vs. Context
Bottom-up vs. Top-down
Generative vs. Discriminative
View-centered vs. Object-centered

