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In the pattern theoretical framework developed by Grenander and
advocated by Mumford for computer vision and pattern recog-
nition, different patterns are represented by statistical generative
models. The FRAME (Filters, Random fields, And Maximum En-
tropy) model is such a generative model for texture patterns. It
is a Markov random field model (or a Gibbs distribution, or an
energy-based model) of stationary spatial processes. The log prob-
ability density function of the model (or the energy function of the
Gibbs distribution) is the sum of translation-invariant potential
functions that are one-dimensional non-linear transformations of
linear filter responses. In this paper, we review two generalizations
of this model. One is a sparse FRAME model for non-stationary
patterns such as objects, where the potential functions are loca-
tion specific, and they are non-zero only at a selected collection of
locations. The other generalization is a deep FRAME model where
the filters are defined by a convolutional neural network (CNN or
ConvNet). This leads to a deep convolutional energy-based model.
The local modes of the energy function satisfies an auto-encoder
which we call the Hopfield auto-encoder. The model can be learned
by an “analysis by synthesis” algorithm that iterates a sampling
step for synthesis and a learning step for analysis. The algorithm
admits an adversarial interpretation where the learning step and
sampling step play a minimax game based on a value function. We
can recruit a generator model as a direct and approximate sam-
pler of the deep energy-based model to speed up the sampling step,
and the two models can be learned simultaneously by a cooperative
learning algorithm.

Keywords and phrases:Adversarial interpretation, convolutional neu-
ral network, cooperative learning, energy-based model, generator model,
Hopefield auto-encoder, sparse coding.

1. Introduction

1.1. Pattern theory and generative models

Pattern theory is a theoretical and computational framework developed by
Grenander [33] and advocated by Mumford [62] for computer vision and
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pattern recognition. In this framework, the patterns are represented by sta-
tistical generative models that are in the form of probability distributions
of the signals such as images. Intuitively, such models tell us what the pat-
terns look like, e.g., what a cat looks like and what a dog looks like. The
models can be learned from the observed training examples, e.g., images of
cats, or images of dogs, often via an “analysis by synthesis” scheme, where
the parameters of the models are updated to make the synthesized examples
generated by the learned models to be similar to the observed examples, e.g.,
a model of cats can generate images that are similar to the observed images
of cats. With the learned models of the patterns, pattern recognition can be
accomplished by likelihood-based or Bayesian inference, e.g., the knowledge
of what cats and dogs look like enables us to recognize cats and dogs from
testing images by matching the images to the models.

More specifically, the generative models can be useful in the following
scenarios of learning. (1) Unsupervised learning, where the observed data
are not annotated or labeled, for instance, we observe images of cats and
dogs, but do not know which images are cats and which images are dogs. The
generative models enable us to learn features or hidden structures (such as
clusters or attributes) in the data. (2) Semi-supervised learning, where only
part of the data are annotated. The generative models enable us to make
better use of the unlabeled data for the purpose of classification or predic-
tion. (3) Supervised learning from small data. The generative models enable
us to learn from the data more efficiently (in terms of statistical accuracy).
(4) Reinforcement learning in the Markov decision process framework. The
generative models can be used for model-based inference of the states and
model-based planning of the action policies. In addition to learning, realistic
generative models are also useful for computer graphics.

1.2. FRAME model of texture patterns

In this paper, we shall review a particular generative model called FRAME
(Filters, Random field, And Maximum Entropy) model developed by Zhu,
Wu, and Mumford [99, 86, 97] and its recent generalizations.

The FRAME model was originally developed for modeling texture pat-
terns, which are ubiquitous in natural scenes, such as grasses, tree leaves,
brick walls, water waves, etc. The problem of texture perception in pre-
attentive vision was extensively studied by Julesz, whose pursuit for a solu-
tion to this problem was driven by the following two fundamental questions.
(1) What are the statistical properties that define a texture? [46] (2) What
are the basic elements, or textons, that constitute a texture? [47] For the first
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question, researchers have studied second order statistics, k-gon statistics,
etc [96]. For instance, mathematicians Diaconis and Freedman [14] designed
image pairs with the same second order statistics but different texture pat-
terns. The second question inspired Marr [59] to propose the theory of primal
sketch based on image primitives or local image tokens detected by some lo-
cal image operators or feature extractors. An important advance was made
by Heeger and Bergen [36], who showed that realistic texture patterns can
be synthesized by matching the marginal histograms of responses from a
bank of linear filters.

Inspired by the idea that texture statistics can be defined by the marginal
histograms of filter responses, Zhu, Wu, and Mumford [99] developed the
FRAME model as the maximum entropy model that is constrained by such
statistics. The resulting maximum entropy model is a Markov random field
model or an energy-based model [53] in the form of a Gibbs distribution
[2, 28]. Originated from statistical physics, the Markov random field models
or the Gibbs distributions are an important class of probability models for
spatial processes such as those observed in natural images. The log probabil-
ity density function of a Markov random field model or the energy function
of the Gibbs distribution is the sum of potential functions defined on the so-
called cliques that consist of neighboring sites or pixels. The potential func-
tions can be high-dimensional for those cliques that consist of many pixels,
and it is difficult to learn such high-dimensional potential functions from the
data. The FRAME model solves this problem by recruiting a bank of linear
filters, and parametrizing the potential functions as one-dimensional non-
linear transformations of linear filter responses. This model is the maximum
entropy distribution that reproduces the marginal statistics such as marginal
histograms of the filter responses, where for each filter, the marginal his-
togram is pooled over all the pixels in the image domain. The bank of filters
can be designed, such as Gabor filters or Gabor wavelets [9] tuned to dif-
ferent locations, scales and orientations. They can also be learned, together
with the non-linear transformations, from the training data.

Another justification for the FRAME model is via the so-called Julesz
ensemble [86, 95], which is the uniform distribution over the set of images
with the same marginal histograms of filter responses. If the image size is
large, then the probability distribution of local image patches is given by the
FRAME model. The set of images constrained by certain feature statistics
can be used to define a certain concept such as a texture pattern. It is related
to the micro-canonical ensemble in statistical physics [29], which is the set of
configurations with the same energy. Under the uniform distribution on the
micro-canonical ensemble, the local system follows the Gibbs distribution or
the canonical ensemble.
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1.3. Sparse and deep generalizations

The FRAME model is originally developed for modeling spatially stationary
processes such as stochastic textures, where the potential functions are trans-
lation invariant. In this article, we review two generalizations of the FRAME
model. One is a sparse FRAME model [87, 89] where the potential functions
are location specific, and they are non-zero only at selected locations. This
model is intended to model image patterns that are non-stationary in the
spatial domain, such as object patterns, e.g., images of cats and dogs. The
model can be written as a shared sparse coding model, where the observed
images are represented by a commonly shared set of wavelets selected from
a dictionary. In this shared sparse coding model, the original linear filters
for bottom-up computation (from image to filter responses) become linear
basis functions for top-down representation (from coefficients to image).

The second generalization of the FRAME model is inspired by the recent
successes of deep convolutional neural networks (CNNs or ConvNets) [52,
50], and it can be called the deep FRAME model [57]. The filters used in the
original FRAME model are linear filters that capture local image features.
In the deep FRAME model, the linear filters are replaced by the non-linear
filters at a certain convolutional layer of a pre-trained deep ConvNet. Such
filters can capture more complex patterns, and the deep FRAME model
built on such filters can be more expressive.

Instead of using filters from a pre-trained ConvNet, we can also learn the
filters from the observed data. The resulting model is a deep convolutional
energy-based model [65, 8, 90] or what can be called a generative ConvNet
model [90]. Such a model can be considered a recursive multi-layer general-
ization of the original FRAME model. The log probability density function
of the original FRAMEmodel consists of non-linear transformations of linear
filter responses. If we repeat this structure recursively, we get the generative
ConvNet model with multiple layers of linear filtering followed by point-wise
non-linear transformations. It is possible to learn such a model from natural
images [90].

We can generate synthetic images by sampling from the above FRAME
models using Markov chain Monte Carlo (MCMC) such as the Langevin
dynamics [55, 30], which runs gradient descent on the energy function of
the model while adding Gaussian white noises for diffusion. This sampling
scheme was first applied to the original FRAME model by Zhu and Mumford
(1998) [97], where the gradient descent part of the dynamics was interpreted
as the Gibbs Reaction And Diffusion Equation (GRADE). The Langevin dy-
namics can be used to sample from deep FRAME model where the gradient
can be efficiently computed by back-propagation.
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1.4. Auto-encoder, adversarial interpretation, generator as

sampler

The FRAME model can be written as exponential tilting of a reference dis-

tribution such as the uniform measure or the Gaussian white noise model.

If the reference distribution is the Gaussian white noise model, the local

modes of the probability density follow an auto-encoder. We call it the Hop-

field auto-encoder, because it defines the local energy minima of the model

[43]. In the Hopfield auto-encoder, the bottom-up filters detect the patterns

corresponding to the filters, then the binary detection results are used as the

coefficients in the top-down representation where the original filters play the

role of basis functions.

The learning of the FRAME model follows the analysis by synthesis

scheme [33]. We can use the Langevin dynamics to sample from the current

model to generate synthetic images. Then we update the model parame-

ters based on the statistical difference between the observed images and

the synthetic images, so that the model shifts its probability density func-

tion, especially the high density regions or the low energy regions, from the

synthetic images to the observed images. In the zero temperature limit, this

learning and sampling algorithm admits an adversarial interpretation, where

the learning step and the sampling step play a minimax game based on a

value function.

The sampling of the FRAME model requires iterative MCMC such as

Langevin dynamics or Hamiltonian Monte Carlo [63]. A recently proposed

generator model [32, 49, 71, 60] can be recruited as a much more efficient

non-iterative sampler that replaces the MCMC sampling by direct ancestral

sampling [88].

The rest of the paper is organized as follows. Section 2 introduces the

original FRAME model. Section 3 presents the sparse FRAME model. Sec-

tion 4 presents the deep FRAME model. Section 5 explains the Hopfield

auto-encoder structure. Section 6 introduces the generator model as a non-

iterative sampler. Section 7 presents the adversarial interpretation. Section 8

concludes with a discussion.

2. FRAME model

The original FRAME model [99, 86, 97] is based on linear filters. We shall

first review the linear filters as well as linear basis functions. Then we present

the FRAME model.
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2.1. Filters and basis functions

Let I(x) be an image defined on the square (or rectangular) domain D, where
x = (x1, x2) (a two-dimensional vector) indexes the coordinates of pixels.
We can treat I(x) as a two-dimensional function defined on D. We can also
treat I as a vector if we fix an ordering for the pixels. Let D = |D| count
the number of pixels in D, i.e., D is the dimensionality of the vector I.

A linear filter is a local weighted sum of image intensities around each
pixel. A linear basis function (or basis vector) is a local image patch intended
to represent image intensities.

Suppose we have a set of linear filters {Fk, k = 1, ...,K}. We can apply
each Fk to image I to obtain a filtered image or feature map, denoted by
Fk ∗ I, which is of the same size as I and is also defined on D (with proper
handling of boundaries). Let [Fk ∗ I](y) be the filter response or feature at
position y, then

(1) [Fk ∗ I](y) =
∑
x∈S

wk,xI(y + x),

where the weights wk,x define the filter Fk, and S is the localized support
of the filter centered at the origin. See Figure 1 for an illustration, where S
is 3 × 3, and D is 6 × 6. In practice, both S and D can be much larger. S
can be different for different Fk. The filtering operation is also a convolution
operation.

Suppose we have a set of prototype basis functions or wavelets {Bk(x),
k = 1, ...,K}. We assume that each Bk is supported on a local domain S
centered at the origin. Again, S may be different for different Bk. We can
spatially shift or translate Bk to a position y to get a translated copy of Bk,
denoted by Bk,y(x) = Bk(x − y). We can treat each Bk,y(x) as a function
defined on x ∈ D, just as I, except that Bk,y(x) is locally supported. We can
also treat Bk,y as a vector of the same dimensionality as I.

The basis functions are used in the linear representation

I(x) =
∑
k,y

ck,yBk,y(x) + ε(x),(2)

where ck,y are the coefficients, often assumed to be sparse, and ε(x) is the
residual image.

The inner product between I and Bk,y is

〈I, Bk,y〉 =
∑
x∈D

I(x)Bk,y(x) =
∑
x∈S

I(y + x)Bk(x).(3)
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Figure 1: (a) Filtering or convolution: applying a filter F (3×3) on an image
I (6× 6) to get a filtered image (6× 6) or feature map F ∗ I. Each pixel of
F ∗I is computed by the weighted sum of the 3×3 pixels of I centered at this
pixel. (b) Gabor filters (wavelets) at different orientations, and Difference of
Gaussians (DoG) filter (the rightmost one). The Gabor wavelets are sine and
cosine waves multiplied by elongated Gaussian functions. The DoG wavelet
is isotropic. The wavelets can appear at different locations and scales.

The connection between Bk,y and Fk is

〈I, Bk,y〉 = [Fk ∗ I](y)(4)

if Bk(x) = wk,x. Examples of basis functions or filters include oriented and

elongated Gabor wavelets [9] as well as isotropic Difference of Gaussian

(DoG) wavelets as illustrated by Figure 1. In subsequent sections, we shall

often drop the argument x in I(x) and Bk,y(x), and treat them as vectors.

While the filters are about bottom-up feature extraction (bottom-up

means from the image to the filter responses), the basis functions are about

top-down linear representation (top-down means from the coefficients to the

image). It is desirable to unify these two roles in the same model.

2.2. Sparse representation

Assume we are given a dictionary of wavelets or basis functions {Bk,x}, where
k may index a finite collection of prototype functions {Bk, k = 1, ...,K},
and where Bk,x is a spatially translated copy of Bk to position x. We can
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represent an image I by

I =
∑
k,x

ck,xBk,x + ε,(5)

where ck,x are the coefficients, and ε is the residual image. It is often assumed

that the representation is sparse, i.e., most of the ck,x are equal to zero. The

resulting representation is also called sparse coding [66, 20].

The sparsification of ck,x, i.e., the selection of the basis functions, can

be accomplished by matching pursuit [58] or basis pursuit/Lasso [5, 78].

Using a Lasso-like objective function, the dictionary of basis functions {Bk}
can be learned from a collection of training images [66, 19]. It is sometimes

called sparse component analysis [17]. It can be considered a generalization

of factor analysis. For natural images, the basis functions learned resemble

the Gabor and DoG wavelets in Figure 1.

2.3. FRAME model

The original FRAME model [99, 86, 97] for texture patterns is a stationary

or spatially homogeneous Markov random field model [2, 28] defined by the

following probability distribution:

p(I;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈D

λk ([Fk ∗ I](x))
]
,(6)

where each λk() is a one-dimensional non-linear function to be estimated

from the training data, λ = (λk(), k = 1, ...,K), and Z(λ) is the normalizing

constant that makes p(I;λ) integrate to 1. Model (6) is stationary because

the function λk() does not depend on position x.

λk() can be further parametrized, e.g., λk(r) = wkh(r) for some given

h(), to make (6) an exponential family model.

As a Markov random field model or a Gibbs distribution, the FRAME

model represents the potential functions in the form of λk ([Fk ∗ I](x)), i.e.,
one-dimensional non-linear transformations of filter responses. The model

achieves the maximum entropy among all the distributions with fixed

marginal distributions of [Fk ∗ I](x) for k = 1, ...,K.

The filters {Fk} can be designed, such as the Gabor filters, or be learned

from the data together with λk.
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3. Sparse FRAME

This section presents the sparse FRAME model. We start from a dense
version of the model. We then present the maximum likelihood learning
algorithm. After that, we describe the generative boosting algorithm for
learning the sparse version of the model.

3.1. Dense model

We start from the non-stationary or spatially inhomogeneous FRAMEmodel
[87, 89, 84] based on a dictionary of basis functions or wavelets {Bk,x, ∀k, x}
(we assume that the dictionary of wavelets, such as the Gabor and DoG
wavelets in Figure 1, has been given or has been learned by sparse component
analysis [66, 4, 19]). The model is a random field of the following form:

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,xh(〈I, Bk,x〉)
]
q(I).(7)

The above model is a simple generalization of the FRAME model (6), where
〈I, Bk,x〉 is the filter response, which can also be written as [Fk ∗ I](x). The
parameter wk,x depends on position x, so the model is non-stationary. w =
(wk,x, ∀k, x). Again Z(w) is the normalizing constant. h() is a pre-specified
rectification function. In [87], h(r) = |r|, i.e., the model is insensitive to the
signs of filter responses. q(I) is a reference distribution, such as the uniform
distribution or the Gaussian white noise model

q(I) =
1

(2πσ2)D/2
exp

[
− 1

2σ2
||I||2

]
,(8)

where D counts the number of pixels in the image domain D.
The reference distribution q(I) can be considered an initial null model

without any features. p(I;w) is an exponential tilting of q(I) to modify
q(I) to be close to the data distribution. According to the maximum en-
tropy principle, among all the distributions p with the same expectations
Ep[h(〈I, Bk,x〉)] for all (k, x), p(I;w) achieves the minimal Kullback-Leibler
divergence KL(p|q). That is, p(I;w) is the minimal modification of the null
model q among all the distributions that reproduce the observed feature
statistics.

In the original FRAME model (6), q(I) is the uniform distribution and
is made implicit. For Gaussian white noise q(I), the parameter σ2 can be
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either estimated from the data together with other parameters or be fixed
at a certain value. For the sparse FRAME model to be reviewed later, σ2

can be interpreted as the variance of the residual image of the sparse coding
representation, and σ2 is often set at a small value. For the dense FRAME
model or the deep FRAME model to be reviewed later, the choice of σ2 is
not very critical, because the exponential tilting can be very flexible.

3.2. Maximum likelihood learning

The basic learning algorithm estimates the parameters w = (wk,x, ∀k, x)
from a set of aligned training images {Ii, i = 1, ..., n} that come from the
same category, where n is the total number of training images. The algorithm
can be extended to learn from non-aligned images from mixed categories.
The basic learning algorithm seeks to maximize the log-likelihood

(9) L(w) =
1

n

n∑
i=1

log p(Ii;w),

which is a concave function, whose partial derivatives are

(10)
∂L(w)

∂wk,x
=

1

n

n∑
i=1

h(〈Ii, Bk,x〉)− Ew [h(〈I, Bk,x〉)] ,

where Ew denotes expectation with respect to p(I;w) in (7). The key to the
above identify is that ∂ logZ(w)/∂wk,x = Ew [h(〈I, Bk,x〉)]. This expectation
can be approximated by Monte Carlo integration. Thus, w can be computed
by the stochastic gradient ascent algorithm [72, 92]

(11) w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉)
]
,

where γt is the step size or the learning rate, and {Ĩi, i = 1, ..., ñ} are the
synthetic images sampled from p(I;w(t)) using MCMC, such as Hamiltonian
Monte Carlo [63] or the Gibbs sampler [27]. ñ is the total number of inde-
pendent parallel Markov chains that sample from p(I;w(t)). We initialize
the learning from w(0) = 0, and the initial synthetic images are sampled
from q(I), i.e., the Gaussian white noise images. By gradually updating the
parameters, the distribution of the synthetic images becomes closer to the
distribution of the observed images.
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3.3. Generative boosting

Model (7) is a dense model in that all the wavelets (or filters) in the dic-
tionary are included in the model. We can sparsify the model by forcing
most of the wk,x to be zero, so that only a small number of wavelets are in-
cluded in the model. This can be achieved by a generative version [89] of the
epsilon-boosting algorithm [25, 23] (see also [22, 10, 83, 85]). The algorithm
starts from w = 0, the zero vector. At the t-th iteration, let

Δk,x =
1

n

n∑
i=1

h(〈Ii, Bk,x〉)−
1

ñ

ñ∑
i=1

h(〈Ĩi, Bk,x〉)(12)

be the Monte Carlo estimate of ∂L(w)/∂wk,x, where again {Ĩi, i = 1, ..., ñ}
are the synthetic images sampled from the current model. We select

(k̂, x̂) = argmax
k,x

Δk,x,(13)

and update wk̂,x̂ by

w
(t+1)

k̂,x̂
= w

(t)

k̂,x̂
+ γtΔk̂,x̂,(14)

where γt is the step size at the t-th step, which is assumed to be sufficiently
small (thus the term “epsilon” in the epsilon-boosting algorithm). We call
this algorithm generative epsilon boosting because the derivatives are es-
timated by images generated from the current model. See Figure 2 for an
illustration. The training images are of the size 100× 100, whose intensities
are within [0, 255]. We fix σ2 = 1 in the reference distribution q.

The selected wavelet Bk̂,x̂ reveals the dimension along which the current
model is most conspicuously lacking in reproducing the statistical properties
of the training images. By including Bk̂,x̂ into the model and updating the
corresponding parameter wk̂,x̂, the model receives the most needed boost.
The process is like an artist making a painting, where Bk̂,x̂ is the stroke
that is most needed to make the painting look more similar to the observed
objects.

The epsilon boosting algorithm [25, 35] has an interesting relationship
with the �1 regularization in the Lasso [78] and basis pursuit [5]. As pointed
out by [73], under a monotonicity condition (e.g., the components of w keep
increasing), such an algorithm approximately traces the solution path of the
�1 regularized minimization of

− L(w) + ρ‖w‖�1 ,(15)
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Figure 2: Learning process of the generative boosting. (a) 5 observed train-
ing images (100 × 100 pixels) from which the random field model is learned.
(b) a sequence of synthetic images generated by the learned model as more
and more wavelets are induced into the model. The numbers of the selected
wavelets are 1, 20, 65, 100, 200, 500, and 800 respectively. (c) a sequence of
sketch templates that illustrate the wavelets selected from the given dictio-
nary. The dictionary includes 4 scales of Gabor wavelets, illustrated by bars
of different sizes, and 2 scales of Difference of Gaussian (DoG) wavelets, il-
lustrated by circles. In each template, smaller scale wavelets appear darker
than larger ones. (d) more synthetic images independently generated from
the final learned model.

where the regularization parameter ρ starts from a big value so that all
the components of w are zero, and gradually lowers itself to allow more
components to be non-zero so that more wavelets are induced into the model.

3.4. Sparse model

After selecting m wavelets, we have the following sparse FRAME model:

p(I;B, w) =
1

Z(w)
exp

⎡
⎣ m∑
j=1

wjh(〈I, Bkj ,xj
〉)

⎤
⎦ q(I),(16)

where B = (Bj = Bkj ,xj
, j = 1, ...,m) is the set of wavelets selected from

the dictionary, and wj = wkj ,xj
.
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In model (16), m is much smaller than D, the number of pixels. Thus,
we can represent I by

I =

m∑
j=1

cjBkj ,xj
+ ε,(17)

where C = (cj , j = 1, ...,m)� are the least square regression coefficients of
I on B = (Bj , j = 1, ...,m), i.e., C = (B�B)−1B�I, and ε is the residual
image. The distribution of C under p(I;B, w) is

(18) pC(C;w) =
1

Z(w)
exp

[
〈w, h(B�BC)〉

]
qC(C),

where qC(C) is the distribution of C under q(I), and the transformation h()
is applied element-wise. Thus, p(I;B,w) in (16) can be written as a wavelet
sparse coding model (17) and (18). The forms of (16) and (17) show that
the selected wavelets {Bj} serve as both filters and basis functions. The
sparse coding form of the model (17) and (18) is used for sampling {Ĩi}
from p(I;B, w) by first sampling C ∼ pC(C;w) using the Gibbs sampler
[27], and then generating Ĩi according to (17).

Model (17) suggests that we can also select the wavelets by minimizing

n∑
i=1

‖Ii −
m∑
j=1

ci,jBkj ,xj
‖2,(19)

using a shared matching pursuit method [87]. See Figure 3 for an illustra-
tion. We can also allow the selected wavelets to perturb their locations and
orientations to account for shape deformations [84].

The sparse FRAME model can be used for unsupervised learning tasks
such as model-based clustering [21]. Extending the learning algorithm, one
can learn a codebook of multiple sparse FRAME models from non-aligned
images. The learned models can be used for tasks such as transfer learning
[87, 41].

The sparse FRAME model merges two important research themes in
image representation and modeling, namely, Markov random fields [2, 28]
and wavelet sparse coding [66, 19].

The wavelets can be mapped to the first layer filters of a ConvNet [52]
to be described below. The sparse FRAME models can be mapped to the
second layer nodes of a ConvNet, except that the sparse FRAME versions
of the second layer nodes are selectively and sparsely connected to the first
layer nodes.



224 Ying Nian Wu et al.

Figure 3: Shared matching pursuit for the purpose of wavelet selection. (a)
sequence of sketch templates that illustrate the wavelets selected sequen-
tially in order to reconstruct all the training images simultaneously. The
selected wavelets are shared by all the training images (100 × 100) in their
reconstructions. The numbers of selected wavelets in the sequence are 2, 20,
60, 100, 200, 500, and 800 respectively. (b) sequences of reconstructed images
by the selected wavelets for the 1st and 3rd training images in Figure 2(a).

4. Deep FRAME

In the deep FRAME model, the filters are non-linear filters in a pre-trained
ConvNet. We shall first review the ConvNet and then present the deep
FRAME model.

4.1. ConvNet

The convolutional neural network (CNN or ConvNet) [52] is a specialized
neural network devised for analyzing signals such as images, where the lin-
ear transformations take place around each pixel, i.e., they are filters or
convolutions. See Figure 4 for an illustration.

A ConvNet consists of multiple layers of linear filtering and point-wise
non-linear transformation, as expressed by the following recursive formula:

[F
(l)
j ∗ I](y) = h

⎛
⎝Nl−1∑

k=1

∑
x∈Sl

w
(l,j)
k,x [F

(l−1)
k ∗ I](y + x) + bl,j

⎞
⎠ ,(20)

or

I
(l)
j (y) = h

⎛
⎝Nl−1∑

k=1

∑
x∈Sl

w
(l,j)
k,x I

(l−1)
k (y + x) + bl,j

⎞
⎠ ,(21)
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Figure 4: Convolutional neural networks consist of multiple layers of filtering
and sub-sampling operations for bottom-up feature extraction, resulting in
multiple layers of feature maps and their sub-sampled versions. The top layer
features are used for classification via multinomial logistic regression. The
discriminative direction is from image to category, whereas the generative
direction is from category to image.

where l = 1, ..., L indexes the layer, and I
(l)
j = F

(l)
j ∗ I are filtered images

or feature maps at layer l. In Figure 4, the feature maps are illustrated by

the square shapes. Each [F
(l)
j ∗ I](x) is called a filter response or a feature

extracted by a node or a unit at layer l.

{F (l)
j , j = 1, ..., Nl} are the filters at layer l, and {F (l−1)

k , k = 1, ..., Nl−1}
are the filters at layer l − 1. j and k are used to index the filters at layers l
and l − 1 respectively, and Nl and Nl−1 are the numbers of filters at layers
l and l − 1 respectively. The filters are locally supported, so the range of
x in

∑
x is within a local support Sl (such as a 7 × 7 image patch). We

let I(0) = I. The filter responses at layer l are computed from the filter

responses at layer l − 1, by linear filtering defined by the weights w
(l,j)
k,x as

well as the bias term bl,j , followed by the non-linear transformation h(). The
most commonly used non-linear transformation in the modern ConvNets is
the rectified linear unit (ReLU) [50],

h(r) = max(0, r).(22)

{F (l)
j } are non-linear filters because we incorporate h() in the computation

of the filter responses. We call I
(l)
j = F

(l)
j ∗ I the filtered image or the feature

map of filter j at layer l. We denote I(l) = (I
(l)
j , j = 1, ..., Nl), which consists
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of a total of Nl feature maps at layer l, and j = 1, ..., Nl. Sometimes, people
call I(l) as a whole feature map or filter image with Nl channels, where each

I
(l)
j corresponds to one channel. For a colored image, I(0) = I has 3 channels
for RGB.

The filtering operations are often followed by sub-sampling and local-
max pooling (e.g., I(x1, x2) ← max(s1,s2)∈{0,1}2 I(2x1 + s1, 2x2 + s2)). See
Figure 4 for an illustration of sub-sampling. After a number of layers with
sub-sampling, the filtered images or feature maps are reduced to 1 × 1 at
the top layer. These features are then used for classification (e.g., does the
image contain a hummingbird or a seagull or a dog) via multinomial logistic
regression.

4.2. FRAME with ConvNet filters

Instead of using linear filters as in the original FRAME model, we can use
the filters at a certain convolutional layer of a pre-learned ConvNet. We call
such a model the deep FRAME model.

Suppose there exists a bank of filters {F (l)
k , k = 1, ...,K} at a certain

convolutional layer l of a pre-learned ConvNet, as recursively defined by (20).

For an image I defined on the image domain D, let F
(l)
k ∗I be the feature map

of filter F
(l)
k , and let [F

(l)
k ∗I](x) be the filter response of I to F

(l)
k at position

x (again x is a two-dimensional coordinate). We assume that [F
(l)
k ∗ I](x)

is the response obtained after applying the non-linear transformation or
rectification function h() in (22). Then the non-stationary deep FRAME
model becomes

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x)

]
q(I),(23)

where q(I) is again the Gaussian white noise model (8), and w = (wk,x, ∀k, x)
are the unknown parameters to be learned from the training data. Model
(23) shares the same form as model (7) with linear filters, except that the
rectification function h(r) = max(0, r) in model (7) is already absorbed in

the ConvNet filters {F (l)
k } in model (23). We can also make model (23)

stationary by letting wk,x = wk for all x.

4.3. Learning and sampling

The basic learning algorithm estimates the unknown parameters w from a
set of aligned training images {Ii, i = 1, ..., n} that come from the same
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object category. Again the weight parameters w can be estimated by max-

imizing the log-likelihood function, which is a concave function, and w can

be computed by the stochastic gradient ascent algorithm [92]:

(24) w
(t+1)
k,x = w

(t)
k,x + γt

[
1

n

n∑
i=1

[F
(l)
k ∗ Ii](x)−

1

ñ

ñ∑
i=1

[F
(l)
k ∗ Ĩi](x)

]

for every k ∈ {1, ...,K} and x ∈ D, where γt is the learning rate, and {Ĩi, i =
1, ..., ñ} are the synthetic images sampled from p(I;w(t)) using MCMC. This

is an analysis by synthesis scheme that seeks to match the average filter

responses of the synthetic images to those of the observed images.

In order to sample from p(I;w), we adopt the Langevin dynamics [55, 30].

Writing the energy function

U(I, w) = −
K∑
k=1

∑
x∈D

wk,x[F
(l)
k ∗ I](x) + 1

2σ2
||I||2,(25)

the Langevin dynamics iterates

Iτ+1 = Iτ − δU ′(Iτ , w) +
√
2δετ ,(26)

where U ′(I, w) = ∂U(I, w)/∂I. This gradient can be computed by back-

propagation. In (26), δ is a small step-size, and ετ ∼ N(0, ID), independently

across τ , where ID is the identity matrix of dimension D = |D|, i.e., the
dimensionality of I. ετ is a Gaussian white noise image whose pixel values

follow N(0, 1) independently. Here we use τ to denote the time steps of

the Langevin sampling process, because t is used for the time steps of the

learning process. The Langevin sampling process (26) is an inner loop within

the learning process (24). Between every two consecutive updates of w in the

learning process, we run a finite number of steps of the Langevin dynamics

starting from the images generated by the previous iteration of the learning

algorithm.

The Langevin dynamics was first applied to the FRAME model by [97],

where the gradient descent component is interpreted as the Gibbs Reaction

And Diffusion Equation (GRADE), and the patterns are formed via the

reactions and diffusions controlled by different types of filters.

Again we initialize the learning algorithm from w(0) = 0, and the initial

synthesized images are sampled from q(I), i.e., the white noise images.
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Figure 5: Generating object patterns. In each row, the left half displays 4 of
the training images (224 × 224), and the right half displays 4 of the synthetic
images. In the last row, the learned model generates hybrid patterns of lion
and tiger.

We first learn a non-stationary FRAME model (23) from images of
aligned objects of the same pose. The images were collected from the in-
ternet. For each category, the number of training images was around 10.
We used ñ = 16 parallel chains for Langevin sampling with 100 Langevin
steps between every two consecutive updates of the parameters. Figure 5
shows some experiments using filters from the 3rd convolutional layer of the
VGG ConvNet [76], a commonly used pre-learned ConvNet trained on Im-
agenet ILSVRC2012 dataset [12]. For each experiment on each row, the left
half displays 4 of the training images, and the right half displays 4 of the
synthetic images generated by the Langevin dynamics. The last experiment
is about learning the hybrid pattern of lion and tiger. The model re-mixes
local image patterns seamlessly.

Figure 6 shows results from experiments on the stationary model for
texture images. The model does not require image alignment. It re-shuffles
the local patterns seamlessly. Each experiment is illustrated by 3 images,
where the first image is the training image, and the other 2 images are
generated by the learning algorithm. In the last 3 images, the first 2 images
are training images, and the last image is generated by the learned model
that mixes the patterns of brick wall and ivy.

4.4. Learning a new layer of filters

On top of the existing pre-learned convolutional layer of filters {F (l)
k , k =

1, ...,K}, we can build another layer of filters {F (l+1)
j , j = 1, ..., J}, according
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Figure 6: Generating texture patterns. For each category, the first image (224
× 224) is the training image, and the next 2 images are generated images,
except for the last 3 images, where the first 2 are the training images, and
the last one is the generated image that mixes brick wall and ivy.

to the recursive formula (20), so that

[F
(l+1)
j ∗ I](y) = h

⎛
⎝∑

k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

⎞
⎠ ,(27)

where h(r) = max(0, r). The set {F (l+1)
j } is like a dictionary of “words” to

describe different types of objects or patterns in the training images.
Due to the recursive nature of ConvNet, the deep FRAME model (23)

based on filters {F (l)
k } corresponds to a single filter in {F (l+1)

j } at a par-
ticular position y (e.g., the origin y = 0) where we assume that the object
appears. In [8], we show that the rectification function h(r) = max(0, r) can
be justified by a mixture model where the object can either appear at a
position or not. The bias term is related to − logZ(w).

Model (23) is used to model images where the objects are aligned and
are of the same category. For images of non-aligned objects from multiple
categories, we can extend model (23) to a convolutional version with a whole
new layer of multiple filters

p(I;w) =
1

Z(w)
exp

⎡
⎣ J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x)

⎤
⎦ q(I),(28)

where {F (l+1)
j } are defined by (27). This model is a product of experts

model [38, 74], where each [F
(l+1)
j ∗ I](x) is an expert about a mixture of an

activation or inactivation of an object of type j at position x. The stationary
model for textures (in Figure 6) is a special case of this model.
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Suppose we observe images of non-aligned patterns {Ii, i = 1, ..., n}, and
we want to learn a new layer of filters {F (l+1)

j , j = 1, ..., J} by fitting the

model (28) with (27) to the observed images, where {F (l+1)
j } model different

types of patterns in these images. This is an unsupervised learning problem
because we do not know where the patterns are. The model can still be
learned by the analysis by synthesis scheme as before.

Let L(w) = 1
n

∑n
i=1 log p(Ii;w) be the log-likelihood where p(I;w) is

defined by (28) and (27). Then the gradient ascent learning algorithm is
based on

(29)

∂L(w)

∂w
(j)
k,x

=
1

n

n∑
i=1

∑
y∈D

sj,y(Ii)[F
(l)
k ∗ Ii](y + x)

− Ew

⎡
⎣∑
y∈D

sj,y(I)[F
(l)
k ∗ I](y + x)

⎤
⎦ ,

where

(30) sj,y(I) = h′

⎛
⎝∑

k,x

w
(j)
k,x[F

(l)
k ∗ I](y + x) + bj

⎞
⎠

is a binary on/off detector of object j at position y on image I, because for
h(r) = max(0, r), h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r > 0. The gradi-
ent (29) admits an EM [11] interpretation which is typical in unsupervised
learning algorithms that involve hidden variables. Specifically, sj,y() detects

the pattern of type j that is modeled by F
(l+1)
j at location y. This step

can be considered a hard-decision E-step. With the patterns detected, the

parameters of F
(l+1)
j are then refined in a similar way as in (24), which can

be considered the M-step. That is, we learn F
(l+1)
j only from image patches

where patterns of type j are detected.

For this model as well as the models in the subsequent sections, the log-
likelihood is not concave anymore, thus the maximum likelihood learning
algorithm will converge to a local maximum. Adopting the common practice
of training neural networks, we initialize the learning algorithm from small
parameter values sampled from a Gaussian white noise distribution with
small variance, and update the parameters by stochastic gradient ascent.
The synthesized images are again initialized from the Gaussian white noise
distribution q(I).
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Figure 7: Learning a new layer of filters without requiring object bounding
boxes or image alignment. For each experiment, the first image (224 × 224)
is the training image, and the next 2 images are generated by the learned
model.

Figure 7 displays two experiments. In each experiment, the first image
(224 × 224) is the training image, and the rest 2 images are generated by the
learned model. In the first scenery experiment, we learn 10 filters at the 4th
convolutional layer, based on the pre-trained VGG filters at the 3rd layer.
The size of each Conv4 filter to be learned is 11 × 11 × 256. In the second
sunflower experiment, we learn 20 filters of size 7 × 7 × 256. Clearly these
learned filters capture the local patterns and re-shuffle them seamlessly.

4.5. Deep convolutional energy-based model

Instead of relying on the pre-trained filters from an existing ConvNet, we

can also learn the filters {F (l)
k , k = 1, ...,K} themselves. The resulting model

is a deep convolutional energy-based model [65, 8, 90],

p(I;w) =
1

Z(w)
exp[f(I;w)]q(I),(31)

where f(I;w) is defined by a ConvNet. In model (28) with (27), we have

f(I;w) =

J∑
j=1

∑
x∈D

[F
(l+1)
j ∗ I](x).(32)

Using more compact notation, we can define f(I;w) recursively by

I(l) = h(wlI
(l−1) + bl),(33)

for l = 1, ..., L, where h() is applied element-wise. I(0) = I, and f(I;w) =
I(L). I(l) consists of all the filtered images or feature maps at layer l, and
the rows of wl consist of all the filters as well as all the locations where the
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filters operate on I(l−1) to extract the features in I(l). We assume that at
the final layer L, I(L) is reduced to a number (i.e., a 1 × 1 feature map).
w = (wl, bl, l = 1, ..., L). We can compare the compact equation (33) with
the more detailed equation (21).

For piecewise linear h(), such as h(r) = max(0, r), the function f(I;w)
is piecewise linear [68, 61]. Specifically, h(r) = max(0, r) = 1(r > 0)r, where
1(r > 0) is the indicator function that returns 1 if r > 0 and 0 otherwise.
Then

I(l) = sl(I;w)(wlI
(l−1) + bl),(34)

where

sl(I;w) = diag(1(wlI
(l−1) + bl > 0)),(35)

i.e., a diagonal matrix of binary indicators (the indicator function is applied
element-wise) [68]. Let s = (sl, l = 1, ..., L) consists of indicators at all the
layers, then

f(I;w) = Bs(I;w)I+ as(I;w)(36)

is piecewise linear, where

Bs =

1∏
l=L

slwl,(37)

and as can be similarly calculated. s(I;w) partitions the image space of I
into exponentially many pieces [68] according to the value of s(I;w). The
partition is recursive because sl(I;w) depends on sl−1(I;w). The boundaries
between the pieces are all linear. On each piece with s(I;w) = s, where s on
the right-hand side denotes a particular instantiation of s(I;w), f(I;w) is a
linear function f(I;w) = BsI+as. The binary switches in s(I;w) reconfigure
the linear transformation according to (37).

f(I;w) generalizes three familiar structures in statistics:
(1) Generalized linear model (GLM). A GLM structure is a composition

of a linear combination of the input variables and a non-linear link func-
tion. A ConvNet can be viewed as a recursion of this structure, where each
component of I(l) is a GLM transformation of I(l−1), with h being the link
function.

(2) Linear spline. A one-dimensional linear spline is of the form y =
β0 +

∑d
k=1 βk max(0, x− ak), where ak are the knots. The ConvNet f(I;w)
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can be viewed as a multi-dimensional linear spline. The number of linear
pieces is exponential in the number of layers [68]. Such a structure can
approximate any continuous non-linear function by a large number of linear
pieces.

(3) CART [3] and MARS [24]. In the classification and regression tree
(CART) and the multivariate adaptive regression splines (MARS), the input
domain is recursively partitioned. The linear pieces mentioned above are also
recursively partitioned according to the values of sl(I;w) for l = 1, ..., L.
Moreover, MARS also makes use of the hinge function max(0, r).

For Gaussian reference q(I), the energy function is

U(I;w) = −f(I;w) +
1

2σ2
||I||2.(38)

We can continue to use Langevin dynamics (26) to sample from p(I;w).
The parameter w can be learned by the stochastic gradient ascent algo-

rithm [92]

(39) w(t+1) = w(t) + γt

[
1

n

n∑
i=1

∂

∂w
f(Ii;w)−

1

ñ

ñ∑
i=1

∂

∂w
f(Ĩi;w)

]
,

where again γt is the learning rate, and {Ĩi, i = 1, ..., ñ} are the synthetic
images sampled from p(I;w(t)). This is again an analysis by synthesis scheme.
This step shifts the probability density function p(I;w), or more specifically,
the high probability regions or the low energy regions, from the synthetic
images {Ĩi} to the observed images {Ii}.

In the sampling step, we need to compute ∂f(I;w)/∂I. In the learning
step, we need to compute ∂f(I;w)/∂w. Both derivatives can be calculated
by the chain rule back-propagation, and they share the computations of
∂I(l)/∂I(l−1).

Our experiments show that the model is quite expressive. For example,
we learn a 3-layer model. The first layer has 100 15 × 15 filters with sub-
sampling size of 3 pixels. The second layer has 64 5 × 5 filters with sub-
sampling size of 1. The third layer has 30 3×3 filters with sub-sampling size
of 1. We learn a model (31) for each texture category from a single training
image. Figure 8 displays some results. For each category, the first image
is the training image, and the rest are 2 of the images generated by the
learning algorithm. We use ñ = 16 parallel chains for Langevin sampling.
The number of Langevin iterations between every two consecutive updates
of parameters is 10. The training images are of the size 224 × 224, whose
intensities are within [0, 255]. We fix σ2 = 1 in the reference distribution q.
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Figure 8: Generating texture patterns. For each category, the first image (224
× 224) is the training image, and the rest are 2 of the images generated by
the learning algorithm.

Figure 9: Generating object patterns. For each category, the left panel dis-
plays 100 randomly sampled training image, and the right panel displays
100 randomly sampled synthesized images.

In our recent work [26], we develop a multi-grid modeling and sampling
method for learning the deep convolutional energy-based model. Figure 9

displays the results of two experiments, where in each row, the left panel
consists of randomly sampled training images, and the right panel consists of
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randomly sampled synthetic images generated by the learned model. In the
first experiment, we learn the model from 10,000 images randomly sampled
from the CelebA [56] dataset of face images, and the image size is 64×64. In
the second experiment, we learn the model from 73,257 training images from
the SVHN dataset [64] of house numbers collected by Google Street View.
The learned models can be used for classification and pattern completion.
See [26] for details.

5. Hopfield auto-encoder

Consider the sparse FRAME model (16). Let us assume that the reference
distribution q(I) is white noise with mean 0 and variance σ2 = 1. The energy
function is

(40) U(I) =
1

2
‖I‖2 −

m∑
j=1

wjh(〈I, Bkj ,xj
〉).

This energy function can be multi-modal, and each local minimum Î satisfies
U ′(Î) = 0, which implies

Î =

m∑
j=1

wjh
′(〈Î, Bkj ,xj

〉)Bkj ,xj
.(41)

This reveals an auto-encoder [81, 31] hidden in the local modes:

Encoding : cj = wjh
′(〈Î, Bkj ,xj

〉),(42)

Decoding : Î =

m∑
j=1

cjBkj ,xj
,(43)

where (42) encodes Î by (cj), and (43) reconstructs Î from (cj). Bkj ,xj
serves

as both bottom-up filter in (42) and top-down basis function in (43). We call
this auto-encoder the Hopfield auto-encoder because Î is a local minimum
of the energy function (40). Hopfield [42] proposes that the local energy
minima may be used for content-addressable memory.

The Hopfield auto-encoder also presents itself in the deep convolutional
energy-based model (31) [90]. The energy function of the model is ‖I‖2/2−
f(I;w). The local minima satisfies the Hopfield auto-encoder Î = f ′(Î;w),
or more specifically,

Encoding : s = s(Î;w),(44)

Decoding : Î = Bs,(45)
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where s(Î;w) and Bs are defined by (35) and (37) respectively. The encoding
process is a bottom-up computation of the indicators at different layers
sl = sl(I;w), for l = 1, ..., L, where wl plays the role of filters, see equation
(35). The decoding process is a top-down computation for reconstruction,
where sl plays the role of coefficients, and wl plays the role of basis functions.
See equation (37). The encoding process detects the patterns corresponding
to the filters, and the decoding process reconstructs the image using the
detected filters as the basis functions.

The relationship between auto-encoders and energy-based models [53]
has been investigated by [80] and [77] for the restricted Boltzmann machine
and its extensions [37]. A regularized auto-encoder is a special form of score
matching estimator [44]. The Hopfield auto-encoder was first elucidated by
[90].

In order to learn the parameters from training images, we may fit the
Hopfield auto-encoder using the least squares reconstruction loss. After learn-
ing by auto-encoder, we may use MCMC-based learning to further refine the
learning results, i.e., learn to synthesize after learning to reconstruct.

6. Generator as a sampler

In order to learn the deep FRAME model (23) or the deep convolutional
energy-based model (31), we need to sample synthesized images from the
current model using MCMC such as Langevin dynamics in the analysis by
synthesis scheme. This is often time consuming. We can recruit a generator
model [32] as a much more efficient sampler that generate synthesized images
via non-iterative direct ancestral sampling.

6.1. Generator model

The generator model can be considered a non-linear multi-layer generaliza-
tion of the factor analysis model. It has the following form

(46)
X ∼ N(0, Id);

Ĩ = g(X; w̃) + ε; ε ∼ N(0, σ2ID).

where X consists of d latent factors that follow N(0, 1) independently, and
the image Ĩ is obtained by a top-down ConvNet that transforms X to Ĩ. We
use the notation Ĩ to emphasize the fact that the generator model is used
to generate the synthetic images, and we use w̃ to denote the parameters
of this model for synthetic images. To generate Ĩ, we can simply generate
X from its known prior distribution N(0, Id), and then transform X to Ĩ by
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g(X; w̃) plus the white noise ε. This is called ancestral sampling, which is
non-iterative and does not require MCMC. The prior distribution N(0, Id) is
the same as the original factor analysis, which assumes that the components
of X are the latent factors that generate Ĩ, and these factors do not need
further explanation as they are independent of each other.

g(X; w̃) can be considered a recursion of factor analysis, with

X(l−1) = h(w̃lX
(l) + b̃l)(47)

for l = 1, ..., L, and w̃ = (w̃l, b̃l, l = 1, ..., L). Ĩ = X(0) = g(X; w̃), and
X(L) = X. X(l) can be interpreted as factors at layer l. Again h is a non-
linear rectification function such as h(r) = max(0, r) that is applied element-
wise. In this case, g(X; w̃) is piecewise linear, and the model becomes a
piecewise linear factor analysis.

g(X; w̃) is a top-down ConvNet [93, 18], which should be contrasted
with f(I;w) in the deep FRAME model or deep convolutional energy-based
model, which is a bottom-up ConvNet, as illustrated by the following dia-
gram:

Top-down ConvNet Bottom-up ConvNet
latent factors features

⇓ ⇑
image image

(a) g(X; w̃) (b) f(I;w)

(48)

In the literature, the generator model is trained by methods that in-
volve learning extra networks [32, 69, 49, 71, 60]. [34] proposes an alternat-
ing back-propagation algorithm for learning the model from training images
{Ii, i = 1, ..., n} without relying on an extra network. Specifically, let q(X)
be the prior distribution of X, and let q(I|X, w̃) be the conditional dis-
tribution of I given X. Then the marginal distribution of I is q(I; w̃) =∫
q(X)q(I|X, w̃)dX. The log-likelihood is L(w̃) = 1

n

∑n
i=1 log q(Ii; w̃), whose

gradient can be computed based on the following identity that underlies the
EM algorithm [11]

∂

∂w̃
log q(I; w̃) = Eq(X|I,w̃)

[
∂

∂w̃
log q(I|X, w̃)

]
,(49)

where the expectation is with respect to the posterior distribution q(X|I, w̃),
and it can be approximated by Monte Carlo samples from q(X|I, w̃). This
leads to the following stochastic gradient descent algorithm [72, 92], which
iterates the following two steps. (1) Inferring the latent factors Xi from Ii
for each i, given the current w̃, by sampling from the posterior distribution
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q(Xi|Ii, w̃) using the Langevin dynamics. (2) Updating w̃ by gradient de-
scent on

∑n
i=1 ‖Ii − g(Xi; w̃)‖2. In Step (1), we can sample multiple copies

of Xi to approximate the expectation. Step (1) requires the computation
of ∂g(X; w̃)/∂X, while step (2) requires the computation of ∂g(X; w̃)/∂w̃.
Both computations can be carried out by back-propagation, and the whole
algorithm is in the form of alternating back-propagation.

Our experiments show that the generator model (learned by alternating
back-propagation) is very expressive in that it can generate realistic images,
sounds and videos. We adopt the structure of the generator network of [69,
18]. The network g(X; w̃) has 5 layers of convolution with 5 × 5 kernels
(i.e., linear superposition with 5 × 5 basis functions), with an up-sampling
factor of 2 at each layer (i.e., the basis functions are 2 pixels apart). The
number of channels in the first layer is 512 (i.e., 512 translation invariant
basis functions), and is decreased by a factor 2 at each layer. There is a
fully connected layer under the latent factors X. The images are of the size
64× 64.

In the first experiment, we learn a model where X has two components,
i.e., X = (x1, x2), and d = 2. The training data are 11 images of 6 tigers
and 5 lions. After training the model, we generate images using the learned
top-down ConvNet for (x1, x2) ∈ [−2, 2]2, where we discretize both x1 and
x2 into 9 equally spaced values. The first panel of Figure 10 displays the
synthetic images on the 9× 9 panel.

In the second experiment, we learn a model with d = 100 from 1,000 face
images randomly selected from the CelebA dataset [56]. The middle panel of
Figure 10 displays the images generated by the learned model, where for each
synthetic image, we first generate X ∼ N(0, Id), and then transform it to the
synthetic image by the learned network g(X; w̃). The right panel displays
the interpolation results. The images at the four corners are generated by
the inferred X vectors of four images randomly selected from the training
set, where for each selected image I, we infer X by sampling from q(X|I, w̃).
The images in the middle are obtained by first interpolating the inferred
X’s of the four corner images using the sphere interpolation [16] and then
generating the images by the learned network.

6.2. Cooperative learning

The challenge in learning the generator model from the observed images is
that for each observed image Ii, the latent factors in Xi are unknown, and
must be inferred. The inference of Xi requires expensive MCMC such as
Langevin dynamics. The learning is called unsupervised because Xi is not
given.
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Figure 10: Modeling object patterns. Left: The 64× 64 synthetic images are
generated by g(X; w̃) with the learned w̃, where X = (x1, x2) ∈ [−2, 2]2, and
X is discretized into 9×9 values. Middle: Each synthetic image is generated
by first sampling X ∼ N(0, I100) and then generating the image by g(X; w̃)
with the learned w̃. Right: Interpolation. The images at the four corners are
reconstructed from the inferred X vectors of four images randomly selected
from the training set. Each image in the middle is obtained by first inter-
polating the X vectors of the four corner images, and then generating the
image by g(X; w̃).

[88] proposes a cooperative learning algorithm that incorporates the gen-
erator model into the learning of the deep FRAME model or the deep con-
volutional energy-based model (see also [48]). The basic idea is that we still
learn the deep FRAME model (23) (or the deep convolutional energy-based
model (31)) via the analysis by synthesis scheme. However, we recruit the
generator model to jumpstart the MCMC sampling such as the Langevin dy-
namics that samples from the deep FRAME model, because it is much easier
to generate synthetic images from the generator model via direct ancestral
sampling. Meanwhile, we let the generator model learn from the synthetic
images, in particular, how the MCMC changes the synthesized images.

The following diagrams explain the basic idea:

Xi

Ĩ
(t)
i Ĩ

(t+1)
i

w̃(t) w̃(t+1)

w(t)

Xi X
(t+1)
i

Ĩ
(t)
i Ĩ

(t+1)
i

w̃(t)

w̃(t) w̃(t+1)

w(t)
(50)

The diagram on the left illustrates a simple learning scheme. In each iter-



240 Ying Nian Wu et al.

ation, we generate Xi from its known prior distribution N(0, Id). Then we

generate Ĩ
(t)
i ∼ g(Xi; w̃

(t)) + εi according to the current generator model
with parameter w̃(t), for i = 1, ..., ñ. After that, we initialize the MCMC

such as the Langevin dynamics from Ĩ
(t)
i , and run a finite number of steps

of MCMC to get Ĩ
(t+1)
i by sampling from the current deep FRAME model

with parameter w(t). We then update the deep FRAME model to w(t+1)

based on {Ĩ(t+1)
i , i = 1, ..., ñ} according to (39). Meanwhile, we update the

generator model to w̃(t+1) by gradient descent on

ñ∑
i=1

‖Ĩ(t+1)
i − g(Xi; w̃)‖2,(51)

over w̃. In the above scheme, the generator model learns from the synthetic
images {Ĩi}, where for each Ĩi, the latent factors Xi are known, so that
there is no need to infer Xi, and the learning becomes a much simpler su-
pervised learning problem. The diagram on the right of (50) illustrates a

more rigorous scheme, where we sample X
(t+1)
i from the posterior distribu-

tion q(Xi|Ĩ(t+1)
i , w̃(t)) by the Langevin dynamics, which is initialized from

the Xi generated from the prior distribution.
The interaction between the generator model and the MCMC can be il-

lustrated by the following diagram (assuming that the generator is of enough
capacity to approximate any distribution):

MCMC : P (t)
Markov transitions
−−−−−−−−−→ P (t+1)

� �

Generator : w̃(t)
Parameter updating

−−−−−−−−−→ w̃(t+1)

(52)

In each iteration t, the generator provides a fresh new batch {Ĩ(t)i , i =

1, ..., ñ}. We then run a finite number of MCMC transitions from {Ĩ(t)i , i =

1, ..., ñ} to obtain {Ĩ(t+1)
i , i = 1, ..., ñ}. After that, we let the generator model

reconstruct {Ĩ(t+1)
i , i = 1, ..., ñ}, with essentially known Xi that generates

Ĩ
(t)
i , as illustrated by the diagrams in (50), in order for the generator to shift

its density from P (t), which is the distribution of {Ĩ(t)i }, to P (t+1), which is

the distribution of {Ĩ(t+1)
i }.

In the above learning scheme, the deep FRAME model and the generator
model cooperate with each other like a teacher and a student, where the deep
FRAME model plays the role of the teacher, and the generator model plays
the role of the student. It is as if the student writes up the initial draft of
the paper. The teacher then revises it. After that, the teacher learns from
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Figure 11: Generating texture patterns. For each category, the first image
(224 × 224) is the training image, and the rest are 3 of the images generated
by the cooperative learning algorithm.

Figure 12: Generating object patterns. For each object category, the first
3 images (64 × 64) are 3 of the training images, and the rest are 3 of the
images generated by the cooperative learning algorithm.

the outside review, while the student learns from how the teacher revises
the initial draft.

[88] provides a theoretical understanding of the cooperative learning al-

gorithm. The learning of the deep FRAME model p(I;w) follows a modi-

fied version of the contrastive divergence method [38], where the generator
q(Ĩ; w̃) provides examples to initialize MCMC sampling of p(I;w). The up-

date of the generator q(Ĩ; w̃) seeks to approximate the Markov transition

from Ĩ
(t)
i to Ĩ

(t+1)
i , more specifically, q(Ĩ; w̃) seeks to be the stationary distri-

bution of this Markov transition, and the stationary distribution is nothing

but p(I;w). If the generator has infinite learning capacity, then it will repli-
cate the deep FRAME model perfectly. The analysis of the more realistic

situation where there is discrepancy between the generator model and the

deep FRAME model is much more complicated, which we shall study in our

future work.

Figure 11 displays the results of learning texture patterns. Figure 12

displays the results of learning object patterns.

We then conduct an experiment on synthesizing images of categories

from MIT places205 dataset [94]. We adopt a 4-layer network for f(I;w).
The first layer has 64 5× 5 filters with sub-sampling of 2 pixels, the second

layers has 128 3 × 3 filters with sub-sampling of 2, the third layer has 256

3× 3 filters with sub-sampling of 1, and the final layer is a fully connected

layer with 100 channels as output. We continue to use the structure of the
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Figure 13: Generating scene images (64 × 64). For each category, the left
panel consists of randomly sampled training images. The right panel consists
of randomly sampled synthetic images generated by the learned models. The
categories are from MIT places205 dataset.

generator network of [69, 18]. We set the number of Langevin dynamics

steps in each learning iteration to 10. For each category, we learn f(I;w)

and g(X; w̃) from all the 10,000+ images in this category where we resize

the images to 64×64. We run about 1,000 iterations. Figure 13 displays the

results for two categories, where for each category, we show 144 randomly

sampled observed images on the left, and 144 randomly sampled synthetic

images generated by our method on the right.
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7. Adversarial interpretation

The deep convolutional energy-based model (31) can be written as

p(I;w) =
1

Z(w)
exp[−U(I;w)],(53)

where the energy function U(I;w) = −f(I;w) + 1
2σ2 ||I||2. The update of w

is based on L′(w) which can be approximated by

∂

∂w

[
1

ñ

ñ∑
i=1

U(Ĩi;w)−
1

n

n∑
i=1

U(Ii;w)

]
,(54)

where {Ĩi, i = 1, ..., ñ} are the synthetic images that are generated by the
Langevin dynamics. At the zero temperature limit, the Langevin dynamics
becomes gradient descent:

(55) Ĩτ+1 = Ĩτ − δ
∂

∂Ĩ
U(Ĩτ ;w).

Consider the value function

V (Ĩi, i = 1, ..., ñ;w) =
1

ñ

ñ∑
i=1

U(Ĩi;w)−
1

n

n∑
i=1

U(Ii;w).(56)

The updating of w is to increase V by shifting the low energy regions from
the synthetic images {Ĩi} to the observed images {Ii}, whereas the updating
of {Ĩi, i = 1, ..., ñ} is to decrease V by moving the synthetic images towards
the low energy regions. This is an adversarial interpretation of the learning
and sampling algorithm [91]. It can also be considered as a generalization
of the herding method [82] for the exponential family models to general
energy-based models.

If we recruit a generator model g(X; w̃) as a sampler, then the energy-
based model and the generator model play a minimax game with the value
function

V (w̃;w) = Ew̃[U(Ĩ;w)]− Edata[U(I;w)],(57)

where Ew̃ is the expectation with respect to the generator model with pa-
rameter w̃, and Edata[U(I;w)] = 1

n

∑n
i=1 U(Ii;w). This is related to [1].
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8. Discussion

This paper reviews the sparse and deep generalizations of the FRAME
model, and explains an auto-encoding structure and an adversarial inter-
pretation.

Besides the FRAMEmodel and its generalizations, there are other gener-
ative models, such as deep Boltzmann machines [40, 75, 54], auto-regressive
models [67, 15, 16]. As to the generator network, it can also be learned
by generative adversarial learning [69, 13, 6, 1], or variational auto-encoder
[49, 71, 60], or the wake-sleep algorithm [39].

Recently an introspective learning method has been proposed by [51, 45],
by generalizing Tu’s original proposal in 2007 [79] to deep neural networks.
This method learns a deep energy-based model by training a discriminative
model. The discriminative model seeks to tell apart the synthesized examples
generated by the current energy-based model from the real examples. The
learned discriminative model can then be used to update the energy-based
model so that it can generate new synthesized examples to pass the discrimi-
native model. Repeating this process enables learning of both discriminative
and generative models.

While the sparse FRAME model is interpretable in terms of symbolic
sketch of the images, the deep FRAME model is not interpretable with its
multiple layers of dense connections in linear filtering. Perhaps the non-
interpretability of the deep ConvNets is a fact we have to live with, very
much like we find peace with quantum mechanics with its unitary linear
evolution of the wave function and non-linear probabilistic collapsing of the
wave function at measurement, as long as it is mathematically consistent
and it gives correct predictions. The dense connections may be doing some
implicit form of Bayesian model averaging without explicitly inferring la-
tent variables whose uncertainties may be too large to be worthy of explicit
inference, especially at the lower layers. On the other hand, at the higher
layers, sparse connections and symbolic representations, as well as grammat-
ical understanding [98] and logical reasoning, may naturally emerge, as the
uncertainties become smaller. It would be interesting to find out how such
sparse and symbolic representations arise from dense continuous represen-
tations.

Another aspect of the ConvNet is that it blurs the boundary between
representation and computation. While the nodes in the ConvNet may rep-
resent certain features or non-linear dimensions in the data, a ConvNet
may also encode a computational algorithm. For example, in the coopera-
tive learning algorithm, we may consider the generator model as encoding a
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non-iterative sampling algorithm that reproduces the iterative MCMC sam-
pling by accumulating and memorizing the effect of MCMC transitions. As
another example, the variational auto-encoder method recruits an inference
ConvNet that maps the image to the latent factors. This inference ConvNet
actually encodes the computation of the posterior sampling of the latent fac-
tors. It appears that we not only learn the models with the ConvNet, we can
also learn the computations in sampling and inference with the ConvNet.

A most surprising fact about the ConvNet is that even though the learn-
ing objective function is highly non-convex, the simple stochastic gradient
descent algorithm works very well in practice. Because each iteration of the
stochastic gradient only requires operating on a mini-batch, it can easily
scale up to big data. Even though the stochastic gradient can only hope to
get close to a local minima, this may actually be an advantage in the sense
that the local modes and the randomness or noises may provide regular-
ization to avoid over-fitting. Our current theoretical understanding of this
issue is still rather limited, despite some recent progresses [61, 7, 70]. It is
our hope that some mathematically minded readers of this paper may offer
some theoretical insights into this issue.
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