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C4: Exploring Multiple Solutions in Graphical Models by Cluster Sampling

Jake Porway and Song-Chun Zhu

Abstract—This paper presents a novel Markov Chain Monte Carlo (MCMC) inference algorithm called C4 – Clustering with
Cooperative and Competitive Constraints for computing multiple solutions from posterior probabilities defined on graphical models,
including Markov random fields (MRF), conditional random fields (CRF) and hierarchical models. The graphs may have both
positive and negative edges for cooperative and competitive constraints. C4 is a probabilistic clustering algorithm in the spirit of
Swendsen-Wang [34]. By turning the positive edges on/off probabilistically, C4 partitions the graph into a number of connected
components (ccp’s) and each ccp is a coupled sub-solution with nodes connected by positive edges. Then by turning the negative
edges on/off probabilistically, C4 obtains composite ccp’s (called cccp’s) with competing ccp’s connected by negative edges. At
each step C4 flips the labels of all nodes in a cccp so that nodes in each ccp keep the same label while different ccp’s are assigned
different labels to observe both positive and negative constraints. Thus the algorithm can jump between multiple competing
solutions (or modes of the posterior probability) in a single or a few steps. It computes multiple distinct solutions to preserve the
intrinsic ambiguities and avoids premature commitments to a single solution that may not be valid given later context. C4 achieves
a mixing rate faster than existing MCMC methods, such as various Gibbs samplers [15], [26] and Swendsen-Wang cuts [2],
[34]. It is also more “dynamic” than common optimization method such as ICM [3], LBP [21], [37], and graph cuts [4], [20]. We
demonstrate the C4 algorithm in line drawing interpretation, scene labeling, and object recognition.
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1. INTRODUCTION
1.1. Motivations and Objective
Many vision tasks, such as scene labeling [22], [31], [32],
object detection/recognition [11], [36], segmentation [8],
[35], and graph matching [6], [24] are formulated as
energy minimization (or maximum a posteriori probability)
problems defined on graphical models – Markov random
fields [3], [15], conditional random fields [22], [23], or
hierarchical graphs [14], [40]. These optimization prob-
lems become exceedingly difficult when there are multiple
solutions, i.e. distinct modes with high probabilities and,
in some cases, equal probability.

Fig. 1 shows examples of typical scenarios that have
multiple, equally likely solutions in the absence of further
context. The top row shows the well-known Necker Cube
which has two valid 3D interpretations. The middle row
is the Wittgenstein illusion, in which the drawing can
appear to be either a duck or a rabbit. Without further
context, we cannot determine the correct labeling. The
bottom row shows an aerial image for scene labeling. It
can be explained as either a roof with vents or a parking
lot containing cars.

Computing multiple solutions is important for preserv-
ing the intrinsic ambiguities and avoiding early commit-
ment to a single solution which, even if it’s currently the
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Fig. 1: Problems with multiple solutions: (top) the Necker Cube;
(Middle) the Wittgenstein illusion; and (Bottom) An aerial image
interpreted as either a roof with vents or a parking lot with cars.
Ambiguities should be preserved until further context arrives.

globally optimal one, may turn out to be less favorable
when later context arrives. However, it is a persistent
challenge to enable algorithms to climb out of local optima
and to jump between solutions far apart in the state space.
Popular energy minimization algorithms, such as Iterative
Conditional Modes (ICM) [3], Loopy Belief Propagation
(LBP) [21], [37], and graph cuts [4], [20] compute one
solution and thus do not address this problem. Existing
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MCMC algorithms, such as various Gibbs samplers [15],
[26], DDMCMC [35], and Swendsen-Wang cuts [2], [34],
promise global optimization and ergodicity in the state
space, but often need long waiting time in moving between
distinct modes, which needs a sequence of lucky moves up
the energy landscape before it goes down.

In this paper, our objective is to develop an algorithm
that can discover multiple solutions by jumping out of
equal probability states and thus preserve the ambiguities
on rather general settings:

1) The graph can be flat, such as a MRF or CRF, or
hierarchical, such as a parse graph.

2) The graph may have positive (cooperative) and neg-
ative (competitive or conflicting) edges for both hard
or soft constraints.

3) The probability (energy) defined on the graph is quite
general, even with energy terms involving more than
two nodes.

In vision, it is safe to assume that the graph is locally
connected and we do not consider the worst case scenario
where graphs are fully connected.

1.2. Related Work in the Literature
In the 1970s, many problems, including line drawing
interpretation and scene labeling, were posed as constraint
satisfaction problems (CSPs). The CSPs were either solved
by heuristic search methods [30] or constraint propagation
methods [1], [28]. The former keeps a list of open nodes
for plausible alternatives and can backtrack to explore
multiple solutions. However, the open list can become too
long to maintain when the graph is large. The latter itera-
tively updates the labels of nodes based on their neighbors.
One well-known constraint propagation algorithm is the
relaxation labeling method by Rosenfeld, Hummel, and
Zucker in 1976 [32].

In the 1980s, the famous Gibbs sampler – a probabilistic
version of relaxation labeling – was presented by Geman
and Geman in 1984 [15]. The update of labels is justified in
a solid MCMC and MRF framework and thus is guaranteed
to sample from the posterior probabilities. In special cases,
the Gibbs sampler is equal to belief propagation [30] for
polytrees and to dynamic programming in chains. The
Gibbs sampler is found to slow down critically when a
number of nodes in the graph are strongly coupled.

Fig. 2 illustrates an example of the difficulty with
strongly coupled graphs using the Necker Cube. The six
internal lines of the figure are divided into two coupling
groups: (1-2-3) and (4-5-6). Lines in each group must have
the same label (concave or convex) to be valid as they share
the two ’Y’-junctions. Thus, updating the label of a single
line in a coupled group does not move at all, unless we
update the label of the whole group together, i.e. all six
labels in one step.

The problem is that we don’t know which nodes in
the graph are coupled and to what extent they are cou-
pled for general problems with large graphs. In 1987, a
breakthrough came from two physicists, Swendsen and
Wang [34], who proposed a cluster sampling technique.
The Swendsen-Wang (SW) method finds coupled groups,
called “clusters”, dynamically by turning the edges in
the graph on/off according to the probabilities defined on
these edges. The edge probability measures the coupling
strengths. Unfortunately, their algorithm only works for the
Ising and Potts models. We will discuss the SW method
in later sections.

There were numerous attempts made to improve
MCMC methods in the 1990’s (see Liu [25] for surveys),
such as the block Gibbs sampler [26]. Green formulated
reversible jumps in 1995 [17] following the jump-diffusion
algorithm by Grenander and Miller in 1994 [18]. In 1999,
Cooper and Frieze analyzed the convergence speed of
SW using a path coupling technique and showed that
the SW method has a polynomial mixing time when the
nodes in the graph are connected to a constant number
of neighbors [7]. Nevertheless, it was also shown that
SW could mix slowly under conditions when graphs were
heavily or fully connected [16].

In the 2000s, a few non-MCMC methods generated
remarkable impacts on the vision community. For example,
the loopy belief propagation (LBP) algorithm by Weiss
et. al. [37] and the graph cut algorithms by Boykov,
Kolmogorov, et. al.[4], [20]. These algorithms are very
fast and work well on special class of graph structures
and energy functions. In addition, techniques such as
survey propagation [5] have had great success in statis-
tical physics. In the case of multimodal energy functions,
however, it can be difficult for these techniques to converge
properly, as we will see.

On the MCMC side, Tu and Zhu developed the Data-
Driven Markov Chain Monte Carlo (DDMCMC) algorithm
for image segmentation in 2002 [35], which uses bottom-
up discriminative probabilities to drive the Markov chain
moves. They also developed a “K-adventurer” procedure
to keep multiple solutions. The DDMCMC method was
also used by Dellaert [29] for tracking bee dances. Dellaert
also used MCMC to explore correspondences for structure-
from-motion problems, even incorporating a “jump param-
eter” to allow the algorithm to jump to new solutions [9].
In 2005, Barbu and Zhu proposed the SW-cut algorithm [2]
which, for the first time, generalized the SW method
to arbitrary probabilities models. As we will discuss in
later sections, the SW-cut did not consider negative edges,
high order constraints, or hierarchical graphs and is less
effective in swapping between competing solutions. The
C4 algorithm in this paper is a direct generalization of the
SW-cut algorithm [2].
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Fig. 2: Swapping between the two interpretations of the Necker
Cube. Locally coupled labels are swapped with alternate labelings
to enforce global consistency. See text for explanation.

1.3. Overview of the Major Concepts of C4

In this paper we present a probabilistic clustering algorithm
called Clustering Cooperative and Competitive Constraints
(C4) for computing multiple solutions in graphical models.
We consider two types of graphs:

Adjacency graphs treat each node as an entity, such as
a pixel, a superpixel, a line, or an object, which has to be
labeled in K-classes (or colors). Most MRFs and CRFs
used in computer vision are adjacency graphs.

Candidacy graphs treat each node as a candidate or
hypothesis, such as a potential label for an entity, or a
detected object instance in a window, which has to be
confirmed (’on’) or rejected (’off’). In other words, the
graph is labeled with K = 2 colors.

As we will show in Section 2.1, an adjacency graph can
always be converted to a bigger candidacy graph. In both
cases, the tasks are posed as graph coloring problems on
MRF, CRF or hierarchical graphs. There are two types
of edges expressing either hard or soft constraints (or
coupling) between the nodes.

Positive edges are cooperative constraints that favor the
two nodes having the same label in an adjacency graph
or being turned on (or off) simultaneously in a candidacy
graph.

Negative edges are competitive or conflicting constraints
that require the two nodes to have different labels in an
adjacency graph or one node to be turned on and the other
turned off in a candidacy graph.

In Fig. 2, we show that the Necker cube can be
represented in an adjacency graph with each line being a
node. The six internal lines are linked by 6 positive edges
(in green) and two negative edges (in red and wiggly).
Lines 2 and 4 have a negative edge between them as they
intersect with each other, as do lines 3 and 6. We omit the
labeling of the six outer lines for clarity.

In this paper, the edges play computational roles, and
are used to dynamically group nodes which are strongly

coupled. On each positive or negative edge, we define an
edge probability (using bottom-up discriminative models)
for the coupling strength. Then we design a protocol for
turning these edges on and off independently according
to their edge probabilities respectively for each iteration.
The protocol is common for all problems while the edge
probabilities are problem specific. This probabilistic pro-
cedure turns off some edges, and all the edges that remain
’on’ partition the graph into some connected components
(ccp’s).

A ccp is a set of nodes that are connected by the positive
edges. For example, Fig. 2 has two ccp’s: ccp1 includes
nodes 1-2-3 and ccp2 includes nodes 4-5-6. Each ccp is a
locally coupled sub-solution.

A cccp is a composite connected component that con-
sists of a number of ccp’s connected by negative edges. For
example, Fig. 2 has one cccp containing ccp1 and ccp2.
Each cccp contains some conflicting sub-solutions.

At each iteration, C4 selects a cccp and updates the
labels of all nodes in the cccp simultaneously so that
(i) nodes in each ccp keep the same label to satisfy the
positive or coupling constraints, and (ii) different ccp’s
in the cccp are assigned different labels to observe the
negative constraints.

Since C4 can update a large number of nodes in a
single step, it can move out of local modes and jump
effectively between multiple solutions. The protocol design
groups the cccp’s dynamically and guarantees that each
step follows the MCMC requirements, such as detailed
balance equations and thus it samples from the posterior
probability.

We evaluate C4 against other popular algorithms in the
literature by two criteria.

1) The speed that they converge to solutions. In some
studied cases, we know the global minimum solu-
tions.

2) The number of unique solution states generated
by the algorithms over time. This measures how
“dynamic” an algorithm is.

3) The estimated marginal probability at each site in
the graphical model after convergence.

The remainder of the paper is organized as follows:
In Section 2 we describe the graph representation and an
overall protocol for C4. In Section 3 we introduce the
C4 algorithm on flat graphs and show the sampling of
Potts models with positive and negative edges as a special
case. In Section 4, we show experiments on generalized
C4 outperforming BP, graph cuts, SW and ICM for some
segmentation, labeling, and CRF inference tasks. We ex-
tend C4 to hierarchical graphs in Section 5 and show
experiments for hierarchical C4. Finally we conclude the
paper with a discussion of our findings in Section 6.



42. GRAPHS, COUPLING, AND CLUSTERING
2.1 Adjacency and candidacy graphs

We start with a flat graph G that we will extend to a
hierarchical graph in Section 5,

G =< V, E >, E = E+ ∪ E−. (1)

Here V = {vi, i = 1, 2, ..., n} is a set of vertices or
nodes on which variables X = (x1, ..., xn) are defined, and
E = {eij = (vi, vj)} is a set of edges which is divided
into E+ and E− for positive (cooperative) and negative
(competitive or conflicting) constraints respectively. We
consider two types of graphs for G:

Adjacency graph, where each node vi ∈ V is an
entity, such as a pixel or superpixel in image labeling, a
line in a line drawing interpretation, or an object in scene
understanding. Its variable xi ∈ {1, 2, 3, ...,Ki} is a label
or color. MRFs and CRFs in the literature belong to this
category, and the task is to color the nodes V in K colors.

Candidacy graph, where each node vi ∈ V is a can-
didate or hypothesis, such as a potential label assignment
for an entity, an object instance detected by bottom-up
methods, or a potential match of a point to another point in
graph matching. Its variable xi ∈ {′on′,′ off ′} is a boolean
which confirms (‘on’) or rejects (‘off’) the candidate. In
other words, the graph is labeled with K = 2 colors. In
the graph matching literature [6], the candidacy graph is
represented by a assignment matrix.

An adjacency graph can always be transferred to a
bigger candidacy graph by converting each node vi into Ki

nodes {xij}. xij ∈ {′on′,′ off ′} represents xi = j in the
adjacency graph. These nodes observe a mutual exclusion
constraint to prevent fuzzy assignments to xi.

Fig. 3 shows this conversion. The adjacency graph
Gadj =< Vadj, Eadj > has six nodes Vadj =
{A,B,C,D,E, F} and each has 3 ∼ 5 potential la-
bels. The variables are Xadj = (xA, ..., xF ) with xA ∈
{1, 2, 3, 4, 5} and so on. We convert it to a candidacy
graph Gcan =< Vcan, Ecan > with 24 nodes Vcan =
{A1, ..., A5, ..., F1, ..., F4}. Node A1 represents a candi-
date hypothesis that assigns xA = 1. The Xcan =
(xA1

, ..., xF4
) are boolean variables.

Represented by the graph G, the vision task is posed
as an optimization problem that computes a most probable
interpretation with a posterior probability p(X| I) or an
energy function E(X ).

X∗ = arg max p(X| I) = arg min E(X). (2)

To preserve the ambiguity and uncertainty, we may com-
pute multiple distinct solutions {Xi} with weights {ωi} to
represent the posterior probability.

(Xi, ωi) ∼ p(X| I), i = 1, 2, ...,K. (3)
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Fig. 3: Converting an adjacency graph to a candidacy graph. The
candidacy graph has positive (straight green lines) and negative
(wiggled red lines) edges depending on the values assigned to
the nodes in the adjacency graph.

2.2 Positive and Negative Edges

In conventional vision formulation, edges in the graphs are
a representational concept and the energy terms in E are
defined on the edges to express the interactions between
nodes. In contrast, Swendsen-Wang [34] and Edward-
Sokal [10] added a new computational role to the edges
in their cluster sampling method. The edges are turned
‘on’ and ‘off’ probabilistically to dynamically form groups
(or clusters) of nodes which are strongly coupled. We
will introduce the clustering procedure shortly after the
example below. In this paper, we adopt this notion and the
edges in graph G are characterized in three aspects:

Positive vs negative. A positive edge represents a coop-
erative constraint for two nodes having the same label in an
adjacency graph or being turned on (or off) simultaneously
in a candidacy graph. A negative edge requires the two
nodes to have different labels in an adjacency graph or
requires one node to be turned on and the other turned off
in a candidacy graph.

Hard vs soft. Some edges represent hard constraints
which must be satisfied, for example, in line drawing in-
terpretation or scene labeling, while other edge constraints
are soft and can be expressed with a probability.

Position dependent vs value dependent. Edges in adja-
cency graphs are generally position dependent. For exam-
ple, in an Ising model an edge between two adjacent nodes
poses a soft constraint that they should have the same label
(ferromagnetism) or opposite labels (antiferromagnetism).
In contrast, edges in candidacy graphs are value dependent
and thus have more expressive power. This is common
for vision tasks, such as scene labeling, line drawing
interpretation, and graph matching. As Fig. 3 illustrates,
the edges between nodes in the candidacy graph could
be either positive or negative depending on the values
assigned to nodes A,B in the adjacency graph.

As we will show in a later subsection that the positive
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and negative edges are crucial for generating connected
components and resolving the problem of node coupling.

2.3. The Necker Cube Example
Fig. 4 shows the construction of a candidacy graph G for
interpreting the Necker cube. For clarity of discussion we
assume the exterior lines are labeled and the task is to
assign two labels (concave and convex) to the six inner
lines such that all local and global constraints are satisfied.
Therefore we have a total of 12 candidate assignments or
nodes in G.

Based on the theory of line drawing interpretation [27],
[33], the two ’Y’-junctions pose positive constraints so
that lines 1-2-3 have the same label and lines 4-5-6 have
the same label. We have 12 positive edges (green) in G
to express these constraints. The intersection of lines 2
and 4 poses negative constraints that lines 2 and 4 have
opposite labels which are shown in the red and wiggly
edges in Fig. 4. The same is true for lines 3 and 6. The two
different assignments for each line should also be linked
by a negative edge. These negative edges are not shown
for clarity.

2

1

Fig. 4: The Necker cube example. The adjacency graph with 6
nodes (bottom) is converted to a candidacy graph of 12 nodes
(top) for concave and convex label assignments respectively. 12
positive and 2 negative edges are placed between these candidate
assignments to ensure consistency.

In this candidacy graph, the two solutions that satisfy
all constraints are represented by the 2-colors in Fig. 4.
The first has all nodes 1,2, and 3 labeled convex (’x’) and
all nodes 4,5, and 6 labeled concave (’o’). This solution
is currently in the ’on’ state. This would create a valid
3D interpretation where the cube is “coming out” of the
page. The alternative solution has the opposite labeling,

and creates a 3D interpretation of the cube “going in” to
the page.

To switch from one solution to the other, we must swap
the junction labels. Each set of nodes, 1-2-3 and 4-5-
6, constitutes a corner of the Necker Cube and all have
positive constraints between them. This indicates that we
should update all of these values simultaneously. We create
two connected component ccp1 and ccp2, comprised of the
coupled nodes 1-2-3 and nodes 4-5-6 respectively. If we
were simply to invert the labels of ccp1 or ccp2 alone we
would create an inconsistent interpretation where all edges
in the whole graph would now have the same label. What
we need to do is simultaneously swap ccp1 and ccp2.

Notice that we have negative edges between nodes 2
and 4 and between nodes 3 and 6. Negative edges can be
thought of as indicators of multiple competing solutions,
as they necessarily dictate that groups on either end of the
edge can either be (’on’, ’off’) or (’off’, ’on’), creating two
possible outcomes. This negative edge connects nodes in
ccp1 and ccp2, thus indicating that those nodes in the two
ccp’s must have different labels. We construct a composite
connected component (called cccp), cccp12, encompassing
nodes 1-6, we now have a full component that contains
all relevant constraints. Moving from solution 1 to 2 is
now as simple as flipping all the nodes simultaneously, or
equivalently satisfying all of the constraints.

In the next subsection, we explain how we form the
ccp’s and cccp’s in a formal way.

2.4. Edge Probability for Clustering
On each positive or negative edge, we define an edge
probability (using bottom-up discriminative models) for
the coupling strength. That is, at each edge e ∈ E, we
define an auxiliary probability ue ∈ {0, 1} or {′on′, ′off ′},
which follows an independent probability qe.

In Swendsen and Wang [34], the definition of qe is
decided by the energy term in the Potts model qe =
e−2β as a constant for all e. Barbu and Zhu [2], for
the first time, separate qe from the energy function and
define it as a bottom-up probability: qe = p(l(xi) =
l(xj)|F (xi), F (xj)) = p(e = on|F (xi), F (xj)) with
F (xi) and F (xj) being local features extracted at node
xi and xj . This can be learned through discriminative
training, for example, by logistic regression and boosting,

p(l(xi) = l(xj)|F (xi), F (xj))

p(l(xi) 6= l(xj)|F (xi), F (xj))
=

∑
n

λnhn(F (xi), F (xj)).

On a positive edge e = (i, j) ∈ E+, ue = ‘on′ follows
a Bernoulli probability,

ue ∼ Bern(qe · 1(xi = xj)).

1() is boolean function. It equals 1 if the condition is
satisfied and 0 otherwise. Therefore, at the present state
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X , if the two nodes have the same color, i.e. xi = xj , then
the edge e is turned on with probability qe. If xi 6= xj ,
then ue ∼ Bern(0) and e is turned off with probability 1.
So, if two nodes are strongly coupled, qe should have a
higher value to ensure that they have a higher probability
to stay the same color.

Similarly, for negative edges e ∈ E−, ue = ‘on′ also
follows a Bernoulli probability,

ue ∼ Bern(qe1(xi 6= xj)).

At the present state X , if the two nodes have the same color
xi = xj , then the edge e is turned off with probability 1,
otherwise e is turned on with probability qe to enforce that
xi and xj stay in different colors.

After sampling ue for all e ∈ E independently, we
denote the sets of positive and negative edges that remain
’on’ as E+

on ⊂ E+ and E−on ⊂ E− respectively. Then we
have a formal definitions of the ccp and cccp.

Definition 1: A ccp is a set of vertices {vi; i =
1, 2, ..., k} for which every vertex is reachable from every
other vertex by the positive edges in E+

on.
Definition 2: A cccp is a set of ccp’s {ccpi; i =

1, 2, ...,m} for which every ccp is reachable from every
other ccp by the negative edges in E−on.
No two ccp’s are reachable by positive edges, or else they
would be a single ccp. Thus a cccp is a set of isolated ccp’s
that are connected by negative edges. An isolated ccp is
also treated as a cccp.

In Section 5, we will treat the invalid cases where a ccp
contains negative edges by converting it to a cccp.

To observe the detailed balance equations in MCMC
design, we need to calculate the probabilities for selecting a
ccp or cccp which are determined by the edge probabilities
qe. For this purpose we define their cuts. In general, a cut
is the set of all edges connecting nodes between two nodes
sets.

Definition 3: Under a current state X , a cut for a ccp
is the set all positive edges between nodes in ccp and its
surrounding nodes which have the same label,

Cut(ccp|X) = {e : e ∈ E+, xi = xj , i ∈ ccp, j /∈ ccp}.

These are the edges that must be turned off probabilisti-
cally (with probability 1−qe) in order to form the ccp and
the cut depends on the state X .

Definition 4: A cut for a cccp at a state X is the set
of all negative (or positive) edges connecting the nodes in
the cccp and its neighboring node which have different (or
same) labels,

Cut(cccp|X) = {e : e ∈ E−, i ∈ cccp, j /∈ cccp, xi 6= xj}

∪{e : e ∈ E+, i ∈ cccp, j /∈ cccp, xi = xj}.

All these edges must be turned off probabilistically with
probability 1−qe in order to form the composite connected
component cccp at state X .

As edges in E+
on only connect nodes with the same

label, so all nodes in a ccp have the same label. In contrast,
all edges in E−on only connect nodes with different labels,
adjacent ccp’s in a cccp must have different labels.

3

1

2

Fig. 5: A Necker cube candidacy graph not in a solution state.

To illustrate the concepts, we show a non-solution state
X for the Necker cube in Figure 5. By turning off some
edges (marked with the crosses), we obtain three cccp’s for
the nodes that are currently ’on’. In this example, qe = 1,
as these are hard constraints that are inviolable. cccp1 and
cccp3 have only 1 node, and cccp2 has two ccp’s with 4
nodes. The algorithm will now arbitrarily select a cccp and
update its values according to its constraints. If it selects
either cccp1 or cccp3, then we are one step closer to the
solution. If it selects (cccp2), then all the 4 vertex labels
are swapped and we have reached a solution state and will
continue to swap back and forth between the two solutions.

3 C4 ALGORITHM ON FLAT GRAPHS

In this section, we introduce the C4 algorithm for cluster
sampling on flat graphs.

3.1 Outline of the algorithm

The C4 algorithm works iteratively following the MCMC
design. In each iteration, it generates the cccp’s, selects
(or visits) a cccpo with a probability, and reassigns labels
to its ccp’s such that all internal negative constraints are
satisfied. As the number of ccp’s in cccpo grows large, the
number of potential labelings will grow as well. One can
remedy this situation in two ways:

1) Use a constraint-satisfaction problem (CSP)-solver
to solve this smaller, easier constraint satisfaction
problem within cccpo.

2) Use random or heuristic sampling to find a new valid
labeling.

We will use the second approach throughout this paper
and the number of ccp’s in a cccpo is in general small, so
the label assignment is not a problem. The C4 algorithm
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can be a viewed as a method that breaks a large constraint-
satisfaction problem into smaller fragments in cccpo which
can be satisfied locally. Then it propagates the solution
through iterations.

This assignment represents a move in MCMC which
is accepted by the Metropolis-Hastings step with an ac-
ceptance probability. The acceptance probability account
for the probabilities for generating the cccp’s, selecting a
cccpo, assigning new labels, and the posterior probability.

In summary, we state the C4 algorithm below.
——————————————————————-

C4 algorithm

Input: A graph G =< V,E > and posterior prob. p(X| I).
Calculate the edge probability qe,∀e ∈ E.

//qe is a problem specific discriminative probability.
Initialize the state X = (x1, x2, ..., xn).

// e.g. all nodes are turned off in a candidacy graph.
Repeat

Denote the current X by state A.
Step 1: Generate a cccpo at state A
∀e = (i, j) ∈ E+, sample ue ∼ Bern(qe1(xi = xj))
∀e = (i, j) ∈ E−, sample ue ∼ Bern(qe1(xi 6= xj))
Generate the {ccp} and {cccp} based on E+

on and E−on
Select a cccpo from {cccp} probabilistically

// Denote the prob for selecting cccpo by q(cccpo|A).
Step 2: Assign labels to ccp’s in the cccp with

probability: q(l(cccpo = L|cccpo, A)).
Denote the new X as state B.

Step 3: Calculate the acceptance probability:
α(A→ B) = min(1, q(B→A)

q(A→B) ·
p(X=B| I)
p(X=A| I) ).

Output: Distinct states {X∗} with highest probabilities.

——————————————————————-
We will elaborate on the probabilities used in the

algorithm in the next subsection,

3.2 Calculating the Acceptance Probability

In Markov chain design, each move between two states A
and B is made reversible and observes the detailed balance
equation,

p(X = A| I)K(A→ B) = p(X = B| I)K(B → A).
(4)

K(A→ B) is the Markov chain kernel or transition prob-
ability from A to B. In the Metropolis-Hastings design,

K(A→ B) = q(A→ B)α(A→ B), ∀A 6= B. (5)

q(A → B) is the probability for proposing state B from
state A, and α(A→ B) is the acceptance probability,

α(A→ B) = min(1,
q(B → A)

q(A→ B)
· p(X = B| I)
p(X = A| I)

). (6)

It is easy to check that the design of proposal probability in
eqn.(6) and the acceptance probability in eqn.(5) makes the
kernel satisfy the detailed balance equation in (4), which
in turn suffices to observe the invariance condition,

p(X = A| I)K(A→ B) = p(X = B| I). (7)

So, p(X| I) is the invariant probability of the Markov
chain with kernel K. Now we elaborate on the design
of proposal and acceptance probabilities. The acceptance
probability is determined by two ratios.

(i) The ratio p(X=B| I)
p(X=A| I) is problem specific and is

not part of our design. The posterior probability can be
in general form and does not have to be modified or
approximated to fit the C4 algorithm. As states A and B
only differ in their labels for nodes in cccpo, it often can
be computed locally if the posterior probability is a MRF
or CRF.

(ii) The proposal probability ratio is completely up to
our design, and it includes two parts,

q(B → A)

q(A→ B)
=
q(cccpo|B)

q(cccpo|A)
· q(l(cccpo) = LA|cccpo, B)

q(l(cccpo) = LB |cccpo, A)
.

q(cccp0|A) and q(cccp0|B) are the probabilities for choos-
ing cccpo at states A and B respectively. Given the chosen
composite connected component cccpo, in both states A
and B, the assignment of new labels is independent of the
surrounding neighbors of cccpo and is often assigned by
equal probability (uniform) among all valid assignments
in the CSP-solver. Thus they cancel out, and we have
q(l(cccpo)=LA|cccpo,B)
q(l(cccpo)=LB |cccpo,A) = 1.

To summarize, the key to the algorithm design is the
ratio q(cccpo|B)

q(cccpo|A) . In single site sampling, such as Gibbs
sampler, each node is a cccpo and the selection is simply
a visiting scheme. In C4, the probability for choosing
cccpo at a state depends on two steps: (a) How likely it
is to generate cccpo by sampling the edge probabilities qe
following the Bernoulli probability. (b) How likely it is to
select cccpo from the set of formed {cccp} in states A and
B. These probabilities are hard to compute, because there
are a vast amount of partitions of the graph that include a
certain cccpo by turning on/off edges. A partition is a set
of cccp’s after turning off some edges.

Interestingly, the set of all possible partitions in state A
is identical to those in state B, and all these partitions must
share the same cut Cut(cccpo). That is, in order for cccpo
to be a composite connected component, its connections
with its neighboring nodes must be turned off. Even though
the probabilities are in complex form, their ratio is simple
and clean due to cancellation. Furthermore, given the
partition, cccpo is selected with uniform probability from
all possible cccp’s.
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Fig. 6: The Potts model with negative edges. (a) Minimum energy is a checkerboard pattern. (b) Forming cccps. (c) cccp0 consists of
sub-ccps of positive edges connected by negative edges.

Proposition 1: The proposal probability ratio for select-
ing cccpo at states A and B is

q(cccp0|B)

q(cccp0|A)
=

∏
e∈Cut(cccpo|B)(1− qe)∏
e∈Cut(cccpo|A)(1− qe)

. (8)

We will prove this in the appendix in a similar way to the
SW-cut method [2]

3.3. Special case: Potts model with +/- edges
To illustrate C4, we derive it in more detail for a Potts
model with positive and negative edges. Let X be a
random field defined on a 2D lattice with discrete states
xi ∈ {0, 1, 2, ..., L− 1}. Its probability is specified by

p(X) =
1

Z
exp{−E(X)}; (9)

E(X) =
∑

<i,j>∈E+

βδ(xi = xj) +
∑

<i,j>∈E−

βδ(xi 6= xj),

where β > 0 is a constant. The edge probability will be
qe = 1− e−β for all edges.

Fig. 6.(a) shows an example on a small lattice with
L = 2 labels, which is an adjacency graph with position
dependent edges. The states with checkerboard patterns
will have highest probabilities. Fig. 6(b) and (c) show
two reversible states A and B by flipping the label
of a cccpo in one step. In this example, cccpo has
three ccp’s, cccpo = {{2, 5, 6}; {3, 7, 8}; {11, 12}}. The
labels of the 8 nodes are re-assigned with uniform
probability, and this leads to the difference in the
cuts for cccpo at the two states, Cut(cccpo|A) =
{(3, 4), (4, 8), (12, 16)} and Cut(cccpo|B) =
{(1, 2), (1, 5), (5, 9), (6, 10), (10, 11), (11, 15)}.

Proposition 2: The acceptance probability for C4 on
the Potts model is α(A→ B) = 1 for any two states with
different labels in cccpo. Therefore, the move is always
accepted.

The proof follows two observations. Firstly, the energy
terms inside and outside cccpo are the same for both A and
B, and they differ only at the cuts of cccpo. More precisely,
let c = |Cut(cccpo|B)|− |Cut(cccpo|A) be the difference
of sizes in the two cuts (i.e. c = 3 in our example), it is
not too hard to show that

p(X = B| I)
p(X = A| I)

= e−βc (10)

Secondly, we have the proposal probability ratio, following
eqn.(8),

q(cccp0|B)

q(cccp0|A)
=

(1− qe)|Cut(cccpo|B)|

(1− qe)|Cut(cccpo|A)| = eβc. (11)

Plugging the two ratios in eqn.6, we have α(A→ B) = 1.
In the literature of SW [10], Edwards and Sokal explain the
SW on Potts model as data augmentation where the edge
variables {ue} are treated as auxiliary variables and they
sample {xi} and {ue} iteratively from a joint probability.

(a) initial state 

(b) solution state 1 (c) solution state 2
Fig. 7: The Ising/Potts model with checkerboard constraints and
two minimum energy states computed by C4.



94. EXPERIMENTS ON FLAT GRAPHS
In this section we test C4’s performance on some flat
graphs (MRF and CRF) in comparison with the Gibbs
sampler [15], SW method [34], iterated conditional modes
(ICM), graph cuts [4], and loopy belief propagation
(LBP) [21]. We choose classical examples: (i) Ising/Potts
model for MRF; (ii) Line drawing interpretation for
constrained-satisfaction problem using candidacy graph;
(iii) scene labeling using CRF; and (iv) scene interpretation
of aerial images.

4.1. Checkerboard Ising Model
We first show the Ising model on a 9 × 9 lattice with
positive and negative edges (the Ising model is a special
case of the Potts model with L = 2 labels). We tested
C4 with two parameters settings: (i) β = 1 and thus
qe = 0.632; and (ii) β = 5 and thus qe = 0.993. In
this lattice we’ve created a checkerboard pattern. We’ve
assigned negative and positive edges so that blocks of
nodes want to be the same color, but these blocks want
to be different colors than their neighbors.

Fig. 7 shows a typical initial state to start the algorithm,
and two solutions with minimum (i.e. 0 ) energy. Fig. 8(a)
shows a plot of energy versus time for C4, Gibbs sampler,
SW, graph cuts, and LBP. C4 converges second fastest of
all five algorithms in about 10 iterations, behind graph cuts.
Belief propagation cannot converge due to the loopiness
of the graph, and Gibbs sampler and the conventional
Swendsen-Wang cannot quickly satisfy the constraints as
they do not update enough of the space at each iteration.
This shows that C4 has a very low burn-in time.

Fig. 8(b)(c) show the state visited at each iteration. We
show the states in 3 levels: the curve hits the ceiling or
floor for the two minimum energy states respectively, and
the middle for all other states. Here we are only comparing
graph cuts, SW and C4 as they are the only algorithms that
converge to a solution in a reasonable amount of time. C4

keeps swapping solutions while SW and graph cuts get
stuck in their first solution. This is because C4 can group
along negative edges as well as positive edges to update
large portions of the system at once, while Swendsen-Wang
is stuck proposing low probability moves over smaller
portions of the solution space.

We also compared our results for experiments where
β = 1 and β = 5. Figure 8(c) shows the states visited by
the sampler over time. In the β = 1 case, it takes longer for
C4 to converge, because it can’t form large components
with high probability. As β gets large, however, C4 very
quickly takes steps in the space towards the solution and
can move rapidly between solution states. We have found
that an annealing schedule where qe = 1 − e−β/T and T
is adjusted such that qe moves from 0 to 1 over the course
of the experiment works quite well too.

We finally compare the estimated marginal beliefs at
each node as computed by each algorithm. LBP computes
these beliefs directly, but we can estimate them for Gibbs
sampling, SW, and C4 by running each algorithm and
recording the empirical mean at each iteration for each
node given the previous states. Fig. 9 shows the belief for
one of the Ising model sites over time for each of the
4 algorithms. LBP does not converge, so it has a noisy
estimate over time and is not plotted for clarity, Gibbs and
SW converge to a probability of 1, because they get stuck
in a single solution state, while C4 approaches 0.5, as it
keeps flipping between the two states.
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Fig. 8: (a) Energy plots of C4, SW, Gibbs sampler, graph cuts,
and LBP on the Ising model vs. time. (b) (c) The state (visited
by the algorithms) in time for graph cuts, SW and C4. Once
SW and graph cuts hit the first solution, they get stuck while
C4 keeps swapping between the two minimum energy states. C4

results shown for β = 1 and β = 5.
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Fig. 9: Comparison of marginal beliefs at a single site of the Ising
model for Gibbs, SW, and C4. C4 correctly converges toward 0.5,
while the other algorithms only find a single solution state. LBP
does not converge and thus has erratic beliefs that we do not
show on this plot.

4.2. Checkerboard Potts Model with 7 Labels
We ran the same experiment as with the Ising model above
but this time solved the same checkerboard pattern on a
Potts model in which each site could take one of seven
possible colors (L = 7). In this example, we have a
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states visited by SW and C4 algorithms over time. (d) Total number of unique solutions found vs. time for SW and C4 with β = 1
and β = 5.

large number of equal states (in checkerboard pattern) with
minimum energy.

Fig. 10(a) plots the energy convergence of each algo-
rithm over time. Graph cuts again converges to just one
of the many solutions. Unlike in the case of the L = 2
model, SW is able to find multiple solutions this time, as
seen in Fig. 10(b). Fig. 10(c) shows the number of distinct
states with minimum energy that have been visited by SW
and C4 over time. We see that C4 explores more states
in a given time limit which again demonstrates that C4 is
more dynamic and thus have fast mixing time – a crucial
measure for the efficiency of MCMC algorithms. We also
compare the case where β = 1 vs. β = 5. Once again, we
see that β = 1 doesn’t create strong enough connections
for C4 to move out of local minimum, so it finds roughly as
many unique solutions as Swendsen-Wang does (about 13).
When β is increased to 5, however, the number skyrockets
from 13 to 90. We thus see that C4 can move around
the solution space much more rapidly than other methods
when β is high and can discover a huge number of unique
solution states.

4.3. Line Drawing Interpretation
The previous two examples are based on MRF models
whose edges are position dependent. Now we test on line
drawing interpretation on candidacy graph. We use two
classical examples which have multiple stable interpreta-
tions, or solutions: (i) the Necker cube in Fig. 1 that has
two interpretations; and (ii) a line drawing with double
cubes in Fig. 11 that has four interpretations. The swapping
between these states involves the flipping of 3 or 12 lines
simultaneously. Our goal is to test whether the algorithms
can compute the multiple distinct solutions over time.

We adopt a Potts like model on the candidacy graph.
Each line in the line drawing is a node in the Potts model,
which can take one of eight line drawing labels indicating
whether the edge is concave, convex, or a depth boundary.

See [33] for an in-depth discussion on labels for consistent
line drawings. We add an edge in our candidacy graph
between any two lines that share a junction. At each
junction, there are only a small set of valid labels for each
line that are realizable in a 3D world. We add positive
edges between pairs of line labels that are consistent with
one of these junction types, and negative edges between
line labels that are not. Thus, we model the pairwise
compatibility of neighboring line labels given the type of
junction they form.

For these experiments we set β = 2, resulting in
qe = 0.865. Figs 11(a) and (c) plot the state visited by
the algorithms over time. Once again we see that C4 can
quickly switch between solutions where CSP solvers or
other MCMC methods could get stuck.

4.4. Labeling Man-made Structures on CRFs
We recreate the experiments in [22], where CRFs were
learned to model man-made structures in images. Fig. 12
shows images that are broken into 16x24 grids and as-
signed a label xi = {−1,+1} if they cover man-made
structure or not. The probability of labeling the sites x
given data y in a Conditional random field (CRF) is

p(X|Y ) =
1

Z
exp

∑
i

φ(xi, y) +
∑
i

∑
j∈Ni

ψ(xi, xj , y) .

(12)

For space we refer the reader to [22] for more details of
this model. We simply choose their model so that we can
compare various algorithms on the same representation.
The authors use a greedy algorithm (ICM) for inference.

We learned the CRF weights via BFGS [13] using the
data from [22] and compared inference results using C4

to ICM, LBP, and SW. Edge probabilities were taken from
the CRF interaction potentials. The CRF defines a potential
for the case when two sites have the same label and for
when they have different labels. If the ratio of these two
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Fig. 11: Experimental results for swapping state between interpretations: (a) States visited by C4 for the Necker Cube. (b) A line
drawing with outer and inner cubes. (c) States visited by C4 for the double cubes.

Method FalsePositive (per image) DetectRate (%)
SW 46.51 0.556

ICM 46.90 0.651
LBP 47.18 0.685
C4 47.12 0.696

TABLE 1: False positives per image and detection rate using
Loopy BP, SW, ICM, and C4 for man-made structure detection.

potentials was below a threshold τ , a negative edge was
used to connect the sites to enforce them to be labeled
differently.

Fig. 12 shows the detection results and ground truths.
LBP has very few false positives, but misses huge amounts
of the detection. ICM looks graphically similar to C4, but
produces significantly more false positives. C4 is able to
swap between foreground/background fragments in large
steps so it can find blocks of man-made structure more
effectively.

Table 1 shows our results as in [22]. We used an
implementation for that paper provided by K. Murphy1

that achieves a higher false positive rate than Hebert’s
model. Nevertheless, our goal is not to outperform [22],
but to show that, given the same learned model, C4 can
outperform other inference methods. Here we see that,
for roughly the same false alarm rate, C4 has a higher
detection rate than other algorithms.

4.5. Parsing Aerial Images
In this experiment we use C4 to parse aerial images. This
experiment is an extension of our work from [31]. In [31],
aerial images are represented as collections of groups of
objects, related by statistical appearance constraints. These
constraints are learned automatically in an offline phase
prior to inference.

We create our candidacy graph by letting each bottom-
up detected window be a vertex in the graph, connected
by edges with probabilities proportional to how compatible
those objects are (we refer to [31] for detailed discussion

1. http://people.cs.ubc.ca/∼murphyk/Software/CRF/crf2D kumarData.html

of the energy function). Each candidate can be on or off,
indicating whether it is in the current explanation of the
scene or not.

Each edge is assigned to be positive or negative and
assigned a probability qe of being on by examining the
energy e = φ(xi, xj) between its two nodes. If e > t,
the edge is labeled as a negative edge and if e < t the
edge is labeled as a positive edge, where t is a threshold
of the user’s choosing. In our experiments we let t = 0.
In this way we create data-driven edge probabilities and
determine positive and negative edge types for C4.

In these experiments we learned a prior model for
likely object configurations using labeled aerial images.
Object boundaries were labeled in each image from a set
of over 50 images. We tested the results on five large
aerial images collected from Google Earth that were also
labeled by hand, so that we could measure how much
C4 improved the final detection results. Though we only
use five images, each image is larger than 1000x1000 and
includes hundreds of objects, so one could also think of
the evaluation as spanning 125 200x200 images.

Figure 13 shows an example of a parsed aerial scene.
The bottom-up detected windows are treated as candidates
and many are false positives. After using C4 minimizing
a global energy function, however, we are left with the
subset that best satisfies the constraints of the system. The
false positive rates are vastly diminished after C4 rules out
incompatible proposals. Figure 13(d) shows the precision-
recall curve for aerial image object detection using C4

vs. just bottom-up cues. We can see that the C4 curve,
drawn in dashed green, has a much higher precision than
the bottom-up detections even as the recall increases.

We also compared the results of using C4 over LBP,
ICM, and SW for similar false alarm rates. The results are
shown in Table 2

Fig. 14 shows the true power of C4. Panel (a) shows
an interpretation of a scene that C4 initially incorrectly
labeled as a line of cars in a parking lot, which it has
mistaken some building vents for. Because C4 can simul-
taneously swap these competing sub-solutions, however,
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Fig. 12: Man-made structure detection results using a CRF model with LBP, ICM, and C4.
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Fig. 13: An application of C4 to aerial image parsing. (a) A portion of an aerial image from Google earth. (b) A set of bottom-up
detections of objects with each being a candidate, i.e. a node in the candidacy graph. Note the large number of false positives that
need to be turned off. (b) The final subset of proposals selected by C4 to represent the scene. C4 has removed the candidates that are
inconsistent with the prior. (c) Precision recall curve for pixel level performance over a dataset of aerial images.

(b) interpretations 2: roof with vents(a) interpretation 1: cars in parking lot

Fig. 14: Alternate sub-solutions during scene parsing. C4 swaps
between these two interpretations during inference. (a) Vents on
top of building roofs incorrectly detected as cars in parking lot.
(b) Vents on top of buildings correctly grouped with buildings,
thus removing the car detections.

Method FalsePositive (per image) DetectRate (%)
LBP 85.32 0.668
ICM 82.11 0.768
SW 87.91 0.813
C4 83.04 0.875

TABLE 2: False positives per image and detection rate using
Loopy BP, SW, ICM, and C4 for aerial image parsing.

we see in Panel (b) that, later in the algorithm, C4 has
settled on the correct explanation.

5. C4 ON HIERARCHICAL GRAPHS
In this section, we discuss the consistency of the flat graphs
and extend C4 from flat graphs to hierarchical graphs and
then we address high-order constraints that involve more
than two sites.
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5.1 Condition for Graph Consistency

In each iteration of the C4 algorithm, suppose we have
turned on edges probabilistically and the original graph
G =< V,E > becomes Gon =< V,Eon > with E =
Eon∪Eoff , Eon = E+

on∪E−on, and Eoff = E+
off ∪E

−
off .

As we discussed in Section 2.4 all nodes in the graph Gon
in each ccp shares the same label and they are supposed to
form a coupled partial solution. However, if the constraints
in graph G are inconsistent, then some nodes in a ccp
may be connected by edges in E−off . Though such negative
edges are not turned on in ccp, they indicate that some
nodes in the ccp may be conflicting to each other. This may
not be a serious problem, for example, the negative edges
may simply express soft constraints, such as overlapping
windows due to occlusion, which is acceptable in the final
solution.

Fig. 15: An attempt to solve the duck/rabbit illusion using flat
C4. We see that we are very likely to form love triangles on the
left and right of the graph, making constraint satisfaction very
difficult.

Fig. 15 shows an example where the negative edge
is a hard constraint. If we try to solve the duck/rabbit
illusion using flat candidacy graph, a ccp may contain
{′eye′,′ nose′,′ head′} which is inconsistent. We call it a
”love triangle”.

Definition 5: In a graph G, two nodes i, j connected
by a negative edge is said to be involved in a love triangle
if there also exists a path between i, j that consists of all
positive edges.

Definition 6: A ccp is said to be consistent in graph G
if there are no negative edges in E that connect two nodes
in the ccp, that is, {e : i, j ∈ ccp} ∩ E− = ∅. A graph G
is said to be consistent if all its ccp’s are always consistent
in C4.
When a graph is consistent, then we are guaranteed to get
valid solutions.

The existence of the so-called ’love triangles’ are the
sole reason to generate inconsistent ccp’s. For this we can
easily prove the following proposition.

Proposition 3: In the absence of ’love triangles’, the
graph G will be consistent.

The essential reason for generating the ’love triangles’
in a graph, mostly in candidacy graphs, is that certain
nodes are over-loaded with multiple labels and thus they
are coupled with conflicting nodes. For example, the node
’eye’ should be either a ’rabbit eye’ or a ’duck eye’ and it
should be split into two conflicting candidates connected
by an negative edge. This way it can eliminate the ”love
triangle”. Fig. 16 illustrates that we can remove the love
triangle by splitting node 1 into nodes 1 and 1′ and thus
we will have consistent ccp.

Fig. 16: Breaking the ’love triangle’ in a candidacy graph.

5.2. Formulation of Hierarchical C4

One other common issue that we need to address is
higher-order constraints that involve more than 2 nodes.
Fig. 17 shows a hierarchical graph representation for
the duck/rabbit illusion. This is a candidacy graph with
two layers. The top layer contains two hidden candidate
hypotheses: ’duck’ and ’rabbit’. The two nodes are de-
composed into three parts in layer 1 respectively and
thus impose high order constraints between them. Now
the hypotheses for parts are specifically for ’duck.eye’,
’rabbit.eye’ etc. The negative edge connecting the two
object nodes is inherited from their overlapping children.

This hierarchical candidacy graph is constructed on-
the-fly with nodes being generated by multiple bottom-
up detection and binding processes as well as top-down

eye headbeak

state A

ears eye nose

state B

hierarchical candidacy graph

rabbit

duck

rabbit.ears

duck.beak

rabbit.noselayer 1
candidates

layer 2
candidates

rabbit.eye

rabbitduck

duck.eye
duck.head

Fig. 17: An attempt to solve the duck/rabbit illusion using
hierarchical C4. The trees define which parts comprise each
object. Nodes are grouped according to these trees, creating
higher-level nodes. The higher-level nodes inherit the negative
constraints.
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prediction processes. We refer to a recent paper by Wu and
Zhu [39] for the various bottom-up/top-down processes in
object parsing. In this graph, positive and negative edges
are added between nodes on the same layers in a way
identical to the flat candidacy graph, while the vertical
links between parent-child nodes are deterministic.

By turning on/off the positive and negative edges prob-
abilistically at each layer, C4 obtains ccp’s and cccp’s as
in the flat candidacy graphs. In this case, a ccp contains
a set of nodes that are coupled in both horizontal and
vertical directions and thus represents a partial parse tree.
A cccp contains multiple competing parse trees, which
will be swapped in a single step. For example, the left
panel in Fig. 17 shows two ccp’s for the duck and rabbit
respectively which are connected with negative edges in
the candidacy graph.

This hierarchical representation can also eliminate the
inconsistency caused by overloaded labels. That is, if a
certain part is shared by multiple object or object instances,
we need to create multiple instances as nodes in the
hierarchical candidacy graph.

5.3. Experiments on Hierarchical C4

To demonstrate the advantages of hierarchical C4 over
flat C4, we present two experiments (i) interpreting the
duck/rabbit illusion, and (ii) finding configurations of ob-
ject parts amidst extremely high noise.

(i) Experiment on Hierarchical Duck/Rabbit Illu-
sion. As referenced above, C4 on the flat candidacy graph
in Fig. 15 creates two love triangles. The top panel of
Fig. 18 shows the results of flat C4 on the duck/rabbit
illusion. C4 continuously swaps between two states, but the
two states either have all nodes on or all nodes off, neither
of which are valid solutions. The bottom panel of Figure
18 shows the results of applying hierarchical C4 to the
duck/rabbit illusion. We defined a tree for the duck/rabbit
illusion consisting of either a duck, {beak, eye, duckhead},
or a rabbit {ears, eye, rabbithead}. As a result, the algo-
rithm instantly finds both solutions and then proceeds to
swap between them uniformly. These results show that
hierarchical C4 can help guide the algorithm to more
robust solutions and negates the effects of love triangles.

(ii) Experiments on Object Parsing. A problem that
often appears in computer science is the problem of finding
the optimal subset from a larger set of items that minimizes
some energy function. For example, in the star model [12]
, many instances of each object part may be detected in
the image. However, our algorithm should find the subset
(or subsets) of these detections that creates the highest
probability configuration. This is a combinatorially hard
problem as the number of solutions grows exponentially
in the number of detections, so heuristic approaches are
usually proposed to deal with this situation. One can

4

4

Fig. 18: (Top panel) Flat C4 results on the duck/rabbit illusion.
C4 swaps between two impossible states due to love triangles.
(Bottom panel) Hierarchical C4 results on the duck/rabbit solu-
tion. C4 now swaps uniformly between the two correct solutions.

use dynamic programming for inferring star models, but
these require that the root part be present, which our
algorithm does not. Hierarchical C4 is ideally suited for
this problem, as it can use local edge constraints and
hierarchical grouping to guide its search through large sets
of detections to find the most likely solutions.

In this experiment, we learned a star model for 4
categories of objects: ’side car’, ’front car’, ’teapot’, and
’clock’. We collected 25-50 images from the Lotus Hill
Dataset [38] for each of the categories, which include the
true labeled parts of each object. We then added 50 false
detection at random orientations, scales, and positions, for
each part to serve as distractors, as shown in Figure 19. The
goal is to see if the algorithms can identify the true ground
truth configuration amidst a huge number of distractors.
If so, then such an algorithm could thrive when we hae
weak part detectors but strong geometric information. If
we only considered configurations of 4 parts, finding the
optimal configuration would require exhaustively search-
ing 64,684,950 configurations, which quickly becomes
intractable when considering larger configurations or more
detections.

Fig. 19 shows that ICM and Swendsen-Wang find
completely unreasonable solutions. Flat C4 does not find
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flat C4

noisy part detectionsinput image ICM

SW hierarchical C4

Fig. 19: Hierarchical C4 for detecting signal from noise. A huge
set of distractors are added over a true parse of an object. Using a
spatial model, C4 can find the best subset while other algorithms
cannot.

the correct solution, although it does find a set of parts
that look similar to a teapot. Hierarchical C4, on the other
hand, quickly converges to the true solution amidst the
myriad other possible part combinations available.

Figure 21 shows the results of other signal-from-noise
images that were generated as above. We show the results
divided roughly into three categories: good, medium, and
bad results. We see that hierarchical C4 gets mostly good
results, while ICM gets entirely bad results.

Figure 22 shows the energy of the system over time for
the four algorithms we tested. Not only does hierarchical
C4 achieve a minimum energy almost instantaneously,
but that both hierarchical C4 and flat C4 are able to
achieve lower energy minimums than the other methods.
This improvement applies to graph cuts as well, which, as
mentioned, are not shown here because no implementation
we found was able to converge in the presence of love
triangles. This result shows Hierarchical C4’s ability to
quickly find deeper energy minima than competing ap-
proaches.

We also tested our negative edge selection criteria. We
use a threshold the pairwise probabilities computed by the
star model to create negative and positive edges. We had
empirically arrived at a threshold between positive and
negative edges of 1e-7. Figure 20 shows the true positive,
false positive, true negative, and false negative rates for
different thresholds (on a log scale). We can see that 1e-7 is
a good cutoff probability as it produces a clear peak in the
plots (note that all individual edge probabilities are quite
low in our star models). We propose to look at general
heuristics for negative edge creation in future work.

These results show the power of Hierarchical C4 for
quickly finding minimal energy subsets and swapping
between equally or nearly-equally likely solutions once
found, where as similar methods (Swendsen-Wang, ICM,
Graph Cuts) fail to even find a viable solution.
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Fig. 20: True positive, false positive, true negative, and false
negative rates for object part detection on the teapot category
when using different negative edge thresholds. The plots all have
a minimum/maximum near 1e-7.

Iterations
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Fig. 22: Plots of energy over time for Hierarchical C4, Flat C4,
Swendsen-Wang cuts, and iterative conditional modes (ICM). Not
only does Hierarchical C4 converge fastest of all the algorithms,
but it achieves a lower energy than the other methods.

6. DISCUSSION
In this paper we presented C4, an algorithm that can handle
complex energy minimization tasks with soft and hard
constraints. By breaking a large CSP into smaller sub-CSPs
probabilistically, C4 can quickly find multiple solutions
and switch between them effectively. This combination
of cluster sampling and constraint-satisfaction techniques
allows C4 to achieve a fast mixing time, out-performing
single-site samplers and techniques like belief propagation
on existing problems. This novel algorithm can sample
from arbitrary posteriors, and is thus applicable to general
graphical models, including MRFs and CRFs. In addition,
we were able to use a hierarchical prior to guide our search
to avoid frustrations in the graph and thus achieve richer
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Fig. 21: Examples of good/medium/bad results for Hierarchical C4, Flat C4, Swendsen-Wang cuts, and iterative conditional modes
(ICM). The graphs to the right show the proportion of the testing images that belonged to each ranking according to algorithm.

and more accurate results than just by using Flat C4 alone.
In this paper, we applied C4 to a number of simple

application for illustration purpose. In two related papers
by the author’s group, the C4 algorithm was applied to
layered graph matching [24] and aerial image parsing [31]
with state-of-the-art results. In ongoing work, we are
extending C4 for scene labeling, integrating object parsing
and scene segmentation.
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