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A B S T R A C T

This paper presents a cost-sensitive active Question-Answering (QA) framework for learning a nine-layer And-Or
graph (AOG) from web images. The AOG explicitly represents object categories, poses/viewpoints, parts, and
detailed structures within the parts in a compositional hierarchy. The QA framework is designed to minimize
an overall risk, which trades off the loss and query costs. The loss is defined for nodes in all layers of the AOG,
including the generative loss (measuring the likelihood of the images) and the discriminative loss (measuring
the fitness to human answers). The cost comprises both the human labor of answering questions and the
computational cost of model learning. The cost-sensitive QA framework iteratively selects different storylines of
questions to update different nodes in the AOG. Experiments showed that our method required much less human
supervision (e.g. labeling parts on 3–10 training objects for each category) and achieved better performance than
baseline methods.

1. Introduction

1.1. Motivation & objective

Image understanding is one of core problems in the field of com-
puter vision. Compared to object-detection techniques focusing on
the ‘‘what is where’’ problem, we are more interested in mining the
semantic hierarchy of object compositions and exploring how these
compositions/sub-compositions are organized in an object. Such knowl-
edge is a prerequisite for high-level human–computer dialog and inter-
actions in the future.

Therefore, in this paper, we aim to mine deep structures of objects
from web images. More importantly, we present a cost-sensitive active
Question-Answering (QA) framework to learn the deep structure from a
very limited number of part annotations. Our method has the following
three characteristics.

Deep and transparent representation of object compositions:
In fact, obtaining a transparent representation of the semantic hierarchy
is equivalent to understanding detailed object statuses, to some extent.
Based on such a hierarchical representation, parsing an entire object into
different semantic parts and aligning different sub-components within
each part can provide rich information in object statuses, such as the
global pose, viewpoint, and local deformation of each certain part.
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Thus, as shown in Fig. 1, a nine-layer And-Or graph (AOG) is
proposed to represent visual concepts at different layers that range from
categories, poses/viewpoints, parts, to shape primitives with clear semantic
meanings. In the AOG, an AND node represents sub-region compositions
of a visual concept, and an OR node lists some alternative appearance
patterns of the same concept. Unlike modeling visual contexts and
taxonomic relationships at the object level in previous studies, the AOG
focuses on semantic object components and their spatial relationships.

Multiple-shot QA learning from big data: In order to scale up the
technique to big data, we apply the following two strategies to limit
the annotation cost. First, we collect web images using search engines
as training samples without annotating object boxes. Second, as shown
in Fig. 1, we design a QA framework to let the computer automatically
figure out a limited number of typical examples of ‘‘known unknowns’’
in the unannotated images, ask users questions, and use the answers to
refine the AOG.

Thus, as shown in Fig. 4, we design six types of questions. Each
question is oriented to a certain node in the AOG, e.g. whether an image
contains an object of a certain category and whether the current AOG
provides a correct localization of an object (or a certain semantic part
of a category). The computer uses these questions to overcome image
noises caused by incorrect search results, intra-class variations, and
ubiquitous occlusions.

Note that this multiple-shot QA learning does not fall within a
conventional paradigm of active learning. First, we do not pre-define a
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Fig. 1. Active QA framework. The QA framework automatically collects web images from
the internet, selects something unknown to ask human beings, and uses the answer to learn
an And-Or graph (AOG). The AOG represents deformable structures and compositional
relationships between semantic visual concepts using a 9-layer hierarchy (see Fig. 2). We
formulate the generative loss and discriminative loss for the AOG, and design different
questions (see Fig. 4). Each question is used to refine a certain node in the AOG. The QA
framework trades off the cost and potential gain (loss decrease) of each question, and
selects the best sequence of questions.

certain feature space of an object as the prerequisite of active learning.
Instead, we use the QA process to gradually enrich the knowledge
of object structure, i.e. discovering new alternative part appearance
and mining the detailed components of each part. Second, we do not
simply treat each answer as a single annotation of a specific object/part
sample, but we generalize specific answers by mining the corresponding
common patterns from big data in a weakly-supervised manner.

Cost-sensitive policy: We formulate a mixed loss for each node in
the AOG as the unified paradigm to guide the learning of hierarchical
object details. It includes a generative loss (measuring the model error
in explaining the images) and a discriminative loss (i.e. the model’s
fitness to human answers). Thus, among the six types of questions, each
question corresponds to a certain node in the AOG, and we can use its
answers to explicitly optimize the generative and/or discriminative loss
of this node. Clear losses and semantic meanings of middle-layer nodes
make our deep AOG different from deep neural networks.

As shown in Fig. 1, the QA framework uses the node loss to identify
the nodes that are insufficiently trained, and selects the best sequence
of questions to optimize a list of AOG nodes in an online manner. In
each step, the QA framework balances the costs and potential gains of
different questions, and selects the questions with high gains and low
costs, to ensure high learning efficiency, which trades off the generative
and discriminative losses, the human labor for annotations, and the
computational cost.

In fact, this cost-sensitive policy is extensible. In this study, the
QA framework combines six types of questions and four modules of
(1) graph mining (Zhang et al., 2015) (unsupervised mining of AOG
structures without the labeling of object locations), (2) And-Or template
learning (Si and Zhu, 2013) (discovery of detailed structures within
aligned parts), (3) supervised learning, and (4) object parsing. In
addition, people can extend the QA system by adding more questions
and modules.

1.2. Related work

Knowledge organization for big data: Many studies organized
models of different categories in a single system. The CNN (Krizhevsky
et al., 2012) encodes knowledge of thousands of categories in numerous
neurons. The black-box representation of a CNN is not fully chaotic.

Zhang and Zhu (2018) made a survey of studies to understand feature
representations in neural networks. For example, as shown in Zhang
et al. (2018a), each filter in a convolutional layer usually encodes a
mixture of visual concepts. For example, a filter may represent both
the head part and the tail part of an animal. However, how to clearly
disentangle different visual concepts from convolutional filters is still a
significant challenge.

Recently, there has been a growing interest in modeling high-level
knowledge beyond object detection. Chen et al. (2013, 2014b) mined
models for different categories/subcategories from web images. Deng
et al. (2012) constructed a hierarchical taxonomic relationship between
categories. Zhu et al. (2015b), Kong et al. (2014), Sun et al. (2015a)
and Ba et al. (2015) formulated the relationships between natural
language and visual concepts. Antol et al. (2015) further built a Turing
test system. Doersch et al. (2015) modeled the contextual knowledge
between objects. Knowledge in these studies was mainly defined upon
object-level models (e.g. the affordance and context). In contrast, we
explore deep structures within objects. The deep hierarchy of parts
provides a more informative understanding of object statuses.

Multiple-shot QA for learning: Many weakly-supervised methods
and unsupervised methods have been developed to learn object-level
models. For example, studies of Song et al. (2014), Pandey and Lazebnik
(2011), Deselaers et al. (2010) and Zhang et al. (2015), object co-
segmentation (Kim and Xing, 2012), and object discovery (Simon and
Rodner, 2015; Wang et al., 2015) learned with image-level annotations
(without object bounding boxes). In particular, Cho et al. (2015) and
Zhu et al. (2014) did not require any annotations during the learning
process. Divvala et al. (2014), Chen and Gupta (2015), Novotny et al.
(2016) and Modolo and Ferrari (2017) learned visual concepts from web
images.

However, when we explore detailed object structures, manual an-
notations are still necessary to avoid model drift. Therefore, inspired
by active learning methods (Sun et al., 2015b; Vijayanarasimhan and
Grauman, 2011; Gavves et al., 2015; Long and Hua, 2015; Konyushkova
et al., 2015), we hope to use a very limited number of human–computer
QAs to learn each object pose/viewpoint. In fact, such QA ideas have
been applied to object-level models (Deng et al., 2014; Russakovsky
et al., 2015; Tu et al., 2014). Branson et al. (2011) used human–
computer interactions to point out locations of object parts to learn
part models, but they did not provide part boxes. In contrast, we focus
on deep object structures. We design six types of human–computer di-
alogs/QAs for annotations (see Fig. 4). Our QA system chooses questions
based on the generative and discriminative losses of AOG nodes, thereby
explicitly refining different AOG nodes. In experiments, our method
achieved good performance when we only label parts on 3–5 objects
for each pose/viewpoint. Similarly, Zhang et al. (2017) used active QA
to learn a semantic tree to disentangle neural activations inside neural
networks into hierarchical representations of object parts.

Transparent representation of structures is closely related to the
deep understanding of object statuses. Beyond the object bounding box,
we can further parse the object and align visual concepts at different
layers to different object parts/sub-parts, which provides rich informa-
tion of local appearance, poses, and viewpoints. In previous studies,
many part models were designed with single-layer latent parts (Si-
mon and Rodner, 2015; Durand et al., 2015) or single-layer semantic
parts (Azizpour and Laptev, 2012; Chen et al., 2014a; Ren et al., 2015;
Zhu et al., 2015a; Gkioxari et al., 2015; Branson et al., 2011), and
trained for object detection with strong supervision. Novotny et al.
(2016) and Modolo and Ferrari (2017) proposed to automatically learn
multi-layer structures of objects from web images, which models the
object identity, object viewpoints, semantic parts and their deformation
locations. Whereas, we have a different objective, i.e. weakly-supervised
mining a nine-layer deep structural hierarchy of objects, which models
detailed shape primitives of objects. Zhang et al. (2018b) learned an
interpretable CNN with middle-layer filters representing object parts,
and Zhang et al. (2018d) further used an explanatory tree to represent
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Fig. 2. A nine-layer And-Or Graph. An object can be explained by a parse graph 𝑝𝑔,
which is indicated by green lines. In the parse graph, AND nodes encode deformable
structures between local patches, and OR nodes contain alternative local patterns. Each
pose/viewpoint has both latent parts without names (blue OR nodes→blue rectangles on
roosters) and semantic parts with specific names (red OR nodes→other rectangles on
roosters) . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the CNN’s logic of using parts for object classification. Zhang et al.
(2018c) learned an explainer network to interpret the knowledge of
object parts encoded in a pre-trained CNN. Zhang et al. (2018e) further
designed an interpretable modular structure for a neural network for
multiple categories and multiple tasks, where each network module is
functionally interpretable.

1.3. Contributions

The paper makes the following contributions:
(1) We propose a nine-layer AOG to represent the deep semantic

hierarchy of objects.
(2) We propose an efficient QA framework that allows the computer

to discover something unknown, to ask questions, and to explicitly learn
deep object structures from human–computer dialogs.

(3) We use a general and extensible cost-sensitive policy to im-
plement the QA system, which ensures a high efficiency of mining
knowledge. To the best of our knowledge, our method is the first to
reduce the cost of learning part localization to about ten annotations
for each part.

(4) We can use our QA framework to learn deep semantic hierarchies
of different categories from web images.

2. And-Or graph representation

Fig. 2 shows the nine-layer AOG, which encodes visual concepts at
different levels within objects and organizes their hierarchy. The basic
element of the AOG is the three-layer And-Or structure in Fig. 3, where
an AND node represents (1) part compositions of a certain concept and
(2) their deformation information, and an OR node lists alternative local
patterns for a certain part. Let 𝜽 denote all the AOG parameters. Let us
use the AOG for object parsing in image 𝐼 . For each node 𝐷 in the AOG,
we use 𝛬𝐷 and 𝜽𝐷 ⊂ 𝜽 to denote the image region corresponding to 𝐷
and the parameters related to 𝐷, respectively.

Each terminal node 𝑇 in the bottom layer represents a pattern of
local shape primitives. The reference score of node 𝑇 in image 𝐼 is
formulated as

𝑆𝐼 (𝑇 ) = ⟨𝜔𝑇 , 𝛷(𝐼𝛬𝑇
)⟩ (1)

Fig. 3. Three-layer And-Or-And/Terminal structure in the AOG. Cyan lines indicate a
parse graph for object inference . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

where 𝛷(𝐼𝛬𝑇
) denotes the local features for the region 𝛬𝑇 in 𝐼 , and

𝜽𝑇 = 𝜔𝑇 is the parameter.
Each OR node 𝑂 in the AOG provides a list of alternative local

appearance patterns. In particular, OR nodes in Layers 1 and 2 encode
the category choices and possible object poses/viewpoints within each
category, respectively, and those in Layers 4, 6, and 8 offer local pattern
candidates. When we use the AOG for object inference in image 𝐼 , 𝑂
selects its child node with the highest score as the true configuration:

𝑆𝐼 (𝑂) = max
𝐷∈𝐶ℎ(𝑂)

𝑆𝐼 (𝐷) (2)

where function 𝐶ℎ(⋅) indicates the children set of a node. The child node
𝐷 can be a Terminal node, an OR node, or an AND node. Note that
‘‘invisible’’ ∈ 𝐶ℎ(𝑂) is also a child of 𝑂, which is activated when other
children patterns cannot be detected.

Each AND node 𝐴 in the AOG contains some sub-region com-
ponents, and it models their geometric relationships. In particular,
the AND nodes in Layer 3 organize the relationship between object
poses/viewpoints and object parts, and those in Layers 5 and 7 encode
detailed structural deformation within part patches. The inference score
of 𝐴 is formulated as the sum of its children’s scores:

𝑆𝐼 (𝐴) =𝑤𝐴

[

𝑆𝑎𝑝𝑝
𝐼 (𝐴) +

∑

𝐷∈𝐶ℎ(𝐴)
𝑆𝐼 (𝐷)

+
∑

(𝐷,𝐷′)∈ (𝐴)
𝑤𝐷𝐷′𝑆𝐼 (𝐷,𝐷′)

]

+ 𝑏𝐴
(3)

where 𝑆𝑎𝑝𝑝
𝐼 (𝐴) represents the score of the global appearance in the

region 𝛬𝐴.  (𝐴) denotes the set of 𝐴’s neighboring children pairs.
𝑆𝐼 (𝐷,𝐷′) measures the deformation between image regions 𝛬𝐷 and
𝛬𝐷′ of sibling children 𝐷 and 𝐷′. 𝑤𝐷𝐷′ and 𝑤𝐴, 𝑏𝐴 ∈ 𝜽𝐴 are constant
weighting parameters for normalization. 𝑤𝐴 and 𝑏𝐴 are learned to make
𝑆𝐼 (𝐴) have zero mean and unit variance through random background
images.

2.1. Design of Layers 3–5

Layers 𝟑 → 𝟒: The three-layer And-Or structure that ranges across
the pose/viewpoint, part, and local layers is derived from the AOG pattern
proposed in Zhang et al. (2015). This technique models the three-
layer sub-AOG as the common subgraph pattern that frequently appears
among a set of large graphs (i.e. images). For each pose/viewpoint node
𝑃𝑂 under a category node 𝐶, we do not model its global appearance
𝑆𝑎𝑝𝑝
𝐼 (𝑃𝑂). 𝑃𝑂 contains two types of children nodes, i.e. latent children

(the parts mined automatically from big data without clear semantic
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Fig. 4. Design of questions (top) and the QA framework (bottom). The QA framework iteratively selects a storyline and applies it to a target sub-AOG . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

meaning) and semantic children (the parts with certain names). Thus,
based on (3), we can write the inference score of 𝑃𝑂 as

𝑆𝐼 (𝑃𝑂) = 𝑤𝑃𝑂

[

∑

𝐷∈𝐶ℎ(𝑃𝑂)
𝑆𝐼 (𝑃 ) +

∑

(𝑃 ,𝑃 ′)∈ (𝑃𝑂)
𝑤𝑃𝑃 ′𝑆𝐼 (𝑃 , 𝑃 ′)

]

+ 𝑏𝑃𝑂 (4)

Part deformation: We connect all pairs of part nodes under the
pose/viewpoint 𝑃𝑂 as neighbors. For each pair of part nodes (𝑃 , 𝑃 ′) ∈
 (𝑃𝑂), the deformation score between them measures the squared
difference between the ideal (average) geometric relationship 𝛷(𝑃 , 𝑃 ′)
and the actual part relationship detected in the image 𝛷(𝛬𝑃 , 𝛬𝑃 ′ ).
In addition, we also assign a specific deformation penalty 𝜌 as the
deformation score, when one of the parts are not detected. The average
geometric relationship 𝛷(𝑃 , 𝑃 ′) and the penalty 𝜌 is estimated.

𝑆𝐼 (𝑃 , 𝑃 ′) =

⎧

⎪

⎨

⎪

⎩

𝜌, 𝑃 or 𝑃 ′ is not detected.
+∞, 𝛬𝑃 = 𝛬𝑃 ′

‖𝛷(𝑃 , 𝑃 ′) −𝛷(𝛬𝑃 , 𝛬𝑃 ′ )‖2, otherwise
(5)

where the geometric relationships 𝛷(𝛬𝑃 , 𝛬𝑃 ′ ) between 𝑃 and 𝑃 ′ com-
prise three types of pairwise features, i.e. (1) log( 𝑠𝑃

𝑠𝑃 ′
), (2) 𝑝𝑃 −𝑝𝑃 ′

‖𝑝𝑃 −𝑝𝑃 ′ ‖
, and

(3) log [𝑠𝑃 ,𝑠𝑃 ′ ]
‖𝑝𝑃 −𝑝𝑃 ′ ‖

. 𝑠𝑃 and 𝑝𝑃 denote the scale and 2D position of the part
𝑃 , respectively.

Layers 𝟒 → 𝟓: To simplify the AOG, we allow latent part nodes to
have multiple children, but the semantic part node can only have one
child besides the ‘‘invisible’’ child. For each child 𝐷 in Layer 5 of a latent
part, its appearance score measures the squared difference between 𝐷’s
ideal (average) appearance 𝛷(𝐷) and the actual appearance detected in
the image 𝛷(𝐼𝛬𝐷

). Then, for the only child 𝐷′ of a semantic part, we use
part annotations to train a linear SVM to classify its local appearance,
and set the appearance score of 𝐷′ as the SVM score. We also assign a
specific appearance penalty 𝜌𝐷 for ‘‘invisible’’ children in Layer 5.

𝑆𝐼 (𝐷) =

⎧

⎪

⎨

⎪

⎩

𝑤𝐷‖𝛷(𝐷) −𝛷(𝐼𝛬𝐷
)‖2 + 𝑏𝐷, 𝐷 is a latent part

𝑤𝐷𝑆𝑉𝑀(𝛷(𝐼𝛬𝐷
)) + 𝑏𝐷, 𝐷 is a visible semantic part

𝜌𝐷, 𝐷 is an invisible semantic part
(6)

where 𝑤𝐷 and 𝑏𝐷 are learned to make 𝑆𝐼 (𝐷) have zero mean and unit
variance through random background images. The appearance feature
𝛷(𝐼𝛬𝐷

) for patch 𝐷 comprise the HOG features and the height–width
ratio of the patch. A linear SVM is learned to estimate the score for a
visible semantic part, which returns a positive/negative value if 𝐼𝛬𝐷

is
a true/false detection of 𝐷. Model parameters, including average part
appearance 𝛷(𝐷), SVM parameters for semantic parts, the appearance
penalty 𝜌𝐷 would be learned.

2.2. Design of Layers 5–9

The bottom four layers (Layers 6–9) of the AOG represent detailed
structures within the semantic patches in Layer 5 based on the And-Or
template proposed in Si and Zhu (2013). First, for each AND node 𝐴
in Layers 5 and 7, we do not encode its global appearance. 𝐴 has two
children, and the deformation relationship between the two children
is used to roughly model the ‘‘geometric OR relationships’’ involved
in Si and Zhu (2013). Second, each OR node 𝑂 in Layers 6 and 8 has
several children, which encodes only the ‘‘structural OR information’’
described in Si and Zhu (2013). Finally, terminal nodes in Layer 9
are described by the HIT feature mined by Si and Zhu (2012), which
combines information of sketches, texture, flat area, and colors of a local
patch.

2.3. Object parsing (inference)

Given an image 𝐼 , we use the AOG to perform hierarchical parsing
for the object inside 𝐼 , i.e. estimating a parse graph (see green lines in
Fig. 2) to explain the object:

𝑝𝑔 = argmax
𝑝𝑔

𝑆𝐼 (𝑝𝑔) (7)

where we define the parse graph as a set of activated node regions for
object understanding, 𝑝𝑔 = {𝛬𝐶̂ , 𝛬 ̂𝑃𝑂 , 𝛬̂𝑃1 , 𝛬̂𝑃2 ,… , 𝛬̂𝐷9

1
,… , 𝛬̂𝐷9

𝑛
}, which

describes an inference tree of the AOG. We can understand the parse
graph in a top-down manner. (1) Let an OR node 𝑂 in Layers 1, 2, 4,
6, or 8 have been activated and put into the parse graph (𝛬̂𝑂 ∈ 𝑝𝑔). 𝑂
activates its best child 𝐷̂ = argmax𝐷∈𝐶ℎ(𝑂)𝑆𝐼 (𝐷) to explain the 𝑂’s image
region 𝛬𝐷̂ = 𝛬̂𝑂, and puts 𝐷̂ into the parse graph (𝛬𝐷̂ ∈ 𝑝𝑔). (2) Let an
AND node 𝐴̂ in Layers 3, 5, or 7 haven been activated and put into the
parse graph (𝛬𝐴̂ ∈ 𝑝𝑔). 𝐴̂ determines the best image region inside 𝛬𝐴̂ for
each of its OR children 𝑂 ∈ 𝐶ℎ(𝐴̂), i.e. {𝛬̂𝑂} = argmax{𝛬𝑂}𝑆𝐼 (𝐴)|{𝛬𝑂},
and put {𝛬̂𝑂} into the parse graph. Therefore, because we do not encode
the global appearance of pose/viewpoint nodes, the objective of object
parsing can be re-written as

max
𝑝𝑔

𝑆𝐼 (𝑝𝑔) = max
𝑃𝑂∈𝛺𝑝𝑜𝑠𝑒

𝑆𝐼 (𝑃𝑂)

= max
𝑃𝑂∈𝛺𝑝𝑜𝑠𝑒

max
{𝛬𝑃 }

𝑤𝑃𝑂

{

∑

𝑃∈𝐶ℎ(𝑃𝑂)
𝑆𝐼 (𝑃 )

+
∑

(𝑃 ,𝑃 ′)∈ (𝑃𝑂)
𝑤𝑃𝑃 ′𝑆𝐼 (𝑃 , 𝑃 ′) + 𝑏𝑃𝑂

}

(8)
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where 𝛺𝑝𝑜𝑠𝑒 is the set of pose/viewpoint nodes in the AOG. The target
parse graph 𝑝𝑔 for Layers 3–5 can be estimated via graph match-
ing (Zhang et al., 2015). As mentioned in Zhang et al. (2015), (3) is
a typical quadric assignment problem that can be directly solved by
optimizing a Markov random field (Kolmogorov, 2006). The detailed
inference for Layers 6–9 is solved by using (Si and Zhu, 2013). The left–
right symmetry of objects is considered in applications.

3. Cost-sensitive QA-based active learning

3.1. Brief overview of QA-based learning

In this section, we define the overall risk of the AOG. We use this
risk to guide the growth of the AOG, which includes the selection of
the questions, refining the current visual concepts in the AOG based
on the answers, and mining new concepts as new AOG branches. The
overall risk combines both the cost of asking questions during the
learning process and the loss of AOG representation. The loss of AOG
representation further comprises the generative loss (i.e. the fitness
between the AOG and real images) and the discriminative loss (i.e. the
AOG fitness to human supervision).

Therefore, the minimization of the AOG risk is actually to select a
limited number of questions that can potentially minimize the AOG loss.
In fact, we organize the six types of questions into four types of QA
storylines (Fig. 4). In each step of the QA process, we conduct a certain
storyline to decrease the risk. Meanwhile, we evaluate the gain (loss
decrease) of different AOG nodes after each storyline, so that we can
determine the next best storyline in an online manner.

Unlike previous active learning methods that directly use human
annotations as ground-truth samples for training, we generalize specific
annotations to common patterns among big data so as to update the
AOG.

For example, in Layer 4 of the AOG, there are two types of parts,
i.e. the semantic parts and latent parts. In Storylines 3 and 4 (details will
be discussed later), we first (1) ask for object samples with a certain
pose/viewpoint, (2) based on the object examples, select a large number
of similar objects from all the web images as potential positives of this
pose/viewpoint, then (3) use (Zhang et al., 2015) to mine the common
part patterns among these objects as the latent parts, and (4) model their
spatial relationships.

Thus, as in (3) and Fig. 3, spatial relationships between latent
parts constitute a graph that represents the latent structure of the
pose/viewpoint. Then, we continue to ask for semantic parts in Story-
lines 3 and 4, and use the pre-mined latent pose/viewpoint structure to
localize relative positions of the newly annotated semantic parts. Such
a combination of structure mining from big data and part annotations
on small data ensures high learning stability.

In the following subsections, we introduce the detailed implementa-
tions of the proposed QA framework.

3.2. Notation

As shown in Fig. 4, we design six types of questions to learn the
AOG, and organize these questions into four types of storylines. Let us
assume that the QA framework has selected a sequence of storylines
𝐐 = {𝑄1, 𝑄2,…}, and modified the AOG parameters to 𝜽̂(𝐐). We use the
system risk, 𝑅𝑖𝑠𝑘(𝐐), to evaluate the overall quality of the current status
of QA-based learning. The objective of the QA framework is to select the
storylines 𝐐 that can greatest decrease the overall risk:

𝐐̂ =argmin
𝐐

𝑅𝑖𝑠𝑘(𝐐)

𝑅𝑖𝑠𝑘(𝐐) =𝐋(𝜽̂(𝐐)) + 𝐶𝑜𝑠𝑡(𝐐)
(9)

The system risk comprises the cost of the storylines 𝐶𝑜𝑠𝑡(𝐐) and the
loss (inaccuracy) of the current AOG 𝐋(𝜽̂(𝐐)). Thus, we can expect the
QA system to select cheap storylines 𝐐̂ that greatly improve the model
quality.

Definition of 𝐐 and its cost: Let 𝛺 denote the set of storylines.
Theoretically, there are four different storylines in each pose/viewpoint
node in the AOG, which will be introduced later. The QA system selects
a sequence of storylines 𝐐 = {𝑄𝑖 ∈ 𝛺}𝑖=1,2,… to modify the AOG. Each
storyline line 𝑄𝑖 ∈ 𝛺 comprises a list of questions and learning modules.
As shown in Table 1, we can represent the storyline as a three-tuple
𝑄𝑖 = (𝑀𝑖, 𝑈𝑖, 𝑃𝑂𝑖). 𝑄𝑖 proposes some questions 𝑀𝑖 ⊂ {𝑞1, 𝑞2,… , 𝑞6}
(𝑞𝑗 is a question defined in Fig. 4) for the target parse graph of the
pose/viewpoint 𝑃𝑂𝑖, expects a tutor 𝑈𝑖 to answer these questions, and
then uses the answers for training. These storylines choose ordinary
users, professional instructors, or the computer itself as the tutor 𝑈𝑖 to
answer these queries. Because there are four types of storylines for each
pose, the entire search space for storylines is given as 𝛺 = {𝑄𝑖|𝑃𝑂𝑖 ∈
𝛺𝑝𝑜𝑠𝑒,𝑀𝑖 ∈ {Storyline-1,… , Storyline-4}}.

In addition, each storyline 𝑄𝑖 has a certain cost 𝐶𝑜𝑠𝑡(𝑄𝑖) according
to both the human labor of answering and the computational cost of
model learning.2 The overall cost of 𝐐 is given as

𝐶𝑜𝑠𝑡(𝐐) =
∑

𝑖
𝐶𝑜𝑠𝑡(𝑄𝑖) (10)

Definition of the AOG loss: Let 𝐈 = {𝐼1, 𝐼2,…} be a comprehensive
web image dataset governed by the underlying distribution 𝑓 (𝐼). When
we use our AOG (with parameters 𝜽̂) to explain the images in 𝐈, we can
formulate the overall loss as

𝐋(𝜽̂) = 𝐸𝐼∼𝑓 (𝐼)

[

−𝑆𝐼 (𝑝𝑔∗)
⏟⏞⏞⏟⏞⏞⏟

generative loss

+ 𝐿(𝑝𝑔∗, 𝑝𝑔|𝜽̂)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

discriminative loss

]

(11)

where 𝑝𝑔∗ and 𝑝𝑔 indicate the true parse graph configuration and the
estimated configuration of 𝐼 , respectively. The generative loss measures
the fitness between the image 𝐼 and its true parse graph 𝑝𝑔∗, and the
discriminative loss evaluates the classification performance.

The generative loss can be rewritten as

𝐸𝑓 [−𝑆𝐼 (𝑝𝑔∗)] =
∑

𝑃𝑂
𝑃 (𝑃𝑂)𝐿𝑔𝑒𝑛

𝑃𝑂 ,

𝐿𝑔𝑒𝑛
𝑃𝑂 =𝐸𝐼∈𝐈𝑃𝑂 [−𝑆𝐼 (𝑃𝑂)]

(12)

where 𝐈𝑃𝑂 ⊂ 𝐈 represents a subset of images that contain objects belong-
ing to the pose/viewpoint 𝑃𝑂, and 𝐿𝑔𝑒𝑛

𝑃𝑂 denotes the average generative
loss of images in 𝐈𝑃𝑂. 𝛬𝑃𝑂 ∈ 𝑝𝑔∗ indicates the true pose/viewpoint
of the object inside 𝐼 . 𝑃 (𝑃𝑂) = |𝐈𝑃𝑂|∕|𝐈| measures the probability
of 𝑃𝑂.

The discriminative loss for the pose/viewpoint 𝑃𝑂 comprises the loss
for category (pose/viewpoint) classification 𝐿𝑐𝑎𝑡𝑒

𝑃𝑂 and the loss for part
localization 𝐿𝑝𝑎𝑟𝑡

𝑃𝑂 :

𝐸𝑓
[

𝐿(𝑝𝑔∗, 𝑝𝑔|𝜽̂)
]

=
∑

𝑃𝑂
𝑃 (𝑃𝑂)

{

𝐿𝑐𝑎𝑡𝑒
𝑃𝑂 + 𝐿𝑝𝑎𝑟𝑡

𝑃𝑂
}

(13)

where 𝐿𝑐𝑎𝑡𝑒
𝑃𝑂 = 𝑉 𝑐𝑎𝑡𝑒𝐸𝐼∈𝐈𝑃𝑂

{

max{0, 𝛥(𝐶̂, 𝐶∗)+ [𝑆𝐼 (𝐶̂) −𝑆𝐼 (𝐶∗)]}
}

, 𝐿𝑝𝑎𝑟𝑡
𝑃𝑂 =

𝑉 𝑝𝑎𝑟𝑡 𝐸𝐼∈𝐈𝑃𝑂 ,𝑃∈𝐶ℎ(𝑃𝑂)
{

max{0, 𝛥(𝛬̂𝑃 , 𝛬∗
𝑃 ) +[𝑆𝐼 (𝑃 )|𝛬𝑃

−𝑆𝐼 (𝑃 )|𝛬∗
𝑃
]}
}

. 𝛬𝐶̂ ,
𝛬̂𝑃 ∈ 𝑝𝑔, 𝛬𝐶∗ , 𝛬∗

𝑃 ∈ 𝑝𝑔∗. 𝑉 𝑐𝑎𝑡𝑒 and 𝑉 𝑝𝑎𝑟𝑡 represent prior weights for
category classification and part localization, respectively (here, we set
𝑉 𝑐𝑎𝑡𝑒 = 1.0, 𝑉 𝑝𝑎𝑟𝑡 = 1.0).

3.3. Learning procedure

Algorithm 1 summarizes the procedure of the QA-based active
learning. In the beginning, we construct the top two layers of the
AOG to contain a total of 𝐾 categories. We use keywords of these
categories to crawl web images of the 𝐾 categories from the internet,
and build a comprehensive web image dataset 𝐈 = {𝐼1, 𝐼2,…}. Next, we
apply Storyline 4 to each category, which mines an initial model for a
certain pose/viewpoint of this category. Then, we simply use a greedy
strategy to solve (9), which estimates an optimal sequence of storylines

2 Professional instructors have higher labor cost considering their profes-
sional levels.
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Table 1
Four types of storylines for each pose/viewpoint 𝑃𝑂𝑖.

# Question stories 𝑀𝑖 for pose/viewpoint 𝑃𝑂𝑖 Participants 𝑈𝑖 𝛥𝐿𝑔𝑒𝑛
𝑃𝑂𝑖

𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

𝛥𝐿𝑝𝑎𝑟𝑡
𝑃𝑂𝑖

𝐶𝑜𝑠𝑡(𝑄𝑖)

1 Retrain category classification Computer � 𝐶𝑟𝑒𝑡
𝑃𝑂𝑖

2 Check & correct inaccurate semantic part localizations Users � � 𝐶𝑐𝑘𝑝
𝑃𝑂𝑖

+ 𝐶 𝑙𝑏𝑝
𝑃𝑂𝑖

3 (1) QA-based collection of object samples for pose/viewpoint
𝑃𝑂𝑖, (2) mine the latent structure of pose/viewpoint 𝑃𝑂𝑖

Users & Computer � � � 𝐶𝑐𝑜𝑙
𝑃𝑂𝑖

+ 𝐶𝑐𝑘𝑜
𝑃𝑂𝑖

+ 𝐶𝑐𝑘𝑝
𝑃𝑂𝑖

+ 𝐶 𝑙𝑏𝑝
𝑃𝑂𝑖

+ 𝐶𝑟𝑒𝑡
𝑃𝑂𝑖

4 Generate a new pose/viewpoint: label an initial object
example, collect samples, mine latent structure, label parts

Instructors & Computer � 𝐶𝑝𝑜𝑠𝑒
𝑃𝑂𝑖

+ 3𝐶𝑐𝑜𝑙
𝑃𝑂𝑖

+ 3𝐶𝑐𝑘𝑜
𝑃𝑂𝑖

+ 𝐶 𝑙𝑏𝑝
𝑃𝑂𝑖

+ 𝐶𝑟𝑒𝑡
𝑃𝑂𝑖

Algorithm 1 Pseudo-code for the learning process
Input: 1. Web images searched for a set of 𝐾 categories

2. Iteration Number 𝑁
Output: AOG initialization
for k:=1 to K do

Ask 𝑞1 and 𝑞2
Apply Storyline 4 to the 𝑘th category

end for
for i:=1 to N do

Estimate 𝑄𝑖 by determining 𝑀𝑖 and 𝑃𝑂𝑖 ∈ 𝛺𝑝𝑜𝑠𝑒.
Switch𝑀𝑖 do
Case Storyline 1

Mining hard negative samples
Retrain part classifiers

Case Storyline 2
Select samples of 𝑃𝑂𝑖 without part annotations
Ask 𝑞3 and 𝑞4
Train part classifiers
Learn Layers 5–9 via (Si and Zhu, 2013)

Case Storyline 3
Collect new samples for 𝑃𝑂𝑖
Ask 𝑞5.1 and 𝑞5.2
Graph mining (Zhang et al., 2015) to learn Layers 3–5
Apply Storyline 2
Apply Storyline 1

Case Storyline 4
Ask 𝑞6 to obtain the new target 𝑃𝑂𝑖
Apply Storyline 3

end for

𝐐 = {𝑄𝑖}𝑖=1,2,…. In each step 𝑖, we recursively determine the next best
storyline, 𝑄̂𝑖, as follows.

𝑄̂𝑖 = argmax
𝑄𝑖∈𝛺

−𝛥𝐋(𝜽̂(𝐐))
𝐶𝑜𝑠𝑡(𝑄𝑖)

(14)

where 𝛥𝐋(𝜽̂(𝐐)) denotes the potential AOG gain (decrease of the AOG
loss, which is estimated by historical operations and introduced later)
from storyline 𝐐. Considering (12) and (13), we can rewrite the above
equation as

𝑄̂𝑖 = argmax
𝑄𝑖=(𝑀𝑖 ,𝑈𝑖 ,𝑃𝑂𝑖)

−𝑃 (𝑃𝑂𝑖)[𝛥𝐿
𝑔𝑒𝑛
𝑃𝑂𝑖

+ 𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

+ 𝛥𝐿𝑝𝑎𝑟𝑡
𝑃𝑂𝑖

]

𝐶𝑜𝑠𝑡(𝑄𝑖)
(15)

where 𝛥𝐿𝑔𝑒𝑛
𝑃𝑂𝑖

, 𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

, and 𝛥𝐿𝑝𝑎𝑟𝑡
𝑃𝑂𝑖

are the potential gains of 𝐿𝑔𝑒𝑛
𝑃𝑂𝑖

, 𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

,
and 𝐿𝑝𝑎𝑟𝑡

𝑃𝑂𝑖
after storyline 𝑄̂𝑖, respectively. 𝑃 (𝑃𝑂𝑖) can be estimated based

on the current web images collected for 𝑃𝑂𝑖 (i.e. 𝐈̂𝑃𝑂𝑖
)3 and the yes/no

answer ratio during sample collection in Storyline 3.

3 𝐈̂𝑃𝑂𝑖
denotes the current images that are collected for pose/viewpoint 𝑃𝑂𝑖

from a category’s image pool 𝐈𝐶 in Storyline 3.

3.4. Introduction of storylines

Storyline 1: retraining category classification. As the QA frame-
work collects more and more web images, in this storyline, we use these
images to update the AOG parameters for the classification of a certain
pose/viewpoint 𝑃𝑂𝑖. This storyline mainly decreases the discriminative
loss 𝐿𝑐𝑎𝑡𝑒

𝑃𝑂𝑖
.

Given all the web images that have been collected for pose/
viewpoint 𝑃𝑂𝑖 (i.e. 𝐈̂𝑃𝑂𝑖

see footnote 2) we use the current AOG for
object inference on these images. Given an incorrect object inference
(i.e. an image is incorrectly recognized as a pose/viewpoint 𝑃𝑂𝑗 other
than the true pose/viewpoint 𝑃𝑂𝑖), we can use this inference result to
produce hard negatives of semantic object parts for 𝑃𝑂𝑗 , and retrain its
part classifier in Layer 5.

Therefore, the potential cost for a future storyline 𝐶𝑜𝑠𝑡(𝑄𝑖) mainly
comprises the computational cost of object inference 𝐶𝑟𝑒𝑡

𝑃𝑂𝑖
= 𝜆𝑟𝑒𝑡|𝐈̂𝑃𝑂𝑖

|

|𝛩𝑝𝑜𝑠𝑒|, where 𝛩𝑝𝑜𝑠𝑒 is the set of all the pose/viewpoint nodes, and 𝜆𝑟𝑒𝑡

is a weighting parameter.4 The potential gain 𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

can be predicted
simply using historical gains from similar storylines for pose/viewpoint
𝑃𝑂𝑖.5

Storyline 2: checking& labeling semantic parts. In this storyline,
the computer (1) selects a sequence of images, (2) asks users whether the
current AOG can correctly localize the semantic parts in these images,
and (3) lets users correct the incorrect part localizations to update the
AOG.

First, the QA system uses the pose/viewpoint model of 𝑃𝑂𝑖 for object
inference on the images 𝐈̂𝑃𝑂𝑖

⊂ 𝐈̂𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑃𝑂𝑖
in which semantic parts are not

labeled. Next, the QA system selects a set of images that potentially
contain incorrect localizations of semantic parts. We select the object
samples that have good localizations of latent parts but inaccurate
localizations of semantic parts, i.e. having high scores for latent parts
but low scores for semantic parts. Thus, we can determine the target
sample (image) as 𝐼 = argmax𝐼∈𝐈̂𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑𝑃𝑂𝑖

𝑆𝐼 (𝑃𝑂𝑖)−𝑆𝐼 (𝑃𝑂𝑙𝑎𝑡
𝑖 ), where 𝑃𝑂𝑙𝑎𝑡

𝑖
is a dummy pose/viewpoint that is constructed by eliminating semantic
parts from the current pose/viewpoint.

Then, the computer asks users to check whether the part localizations
on the selected images are correct or not6 (see Fig. 4(𝑞3)), and finally
asks users to label the boxes for the incorrect part localizations (see
Fig. 4(𝑞4)).

Given the annotations of semantic part boxes, we update the geomet-
ric relationships between part nodes in Layer 4 based on (Zhang et al.,
2015), and update SVM classifiers for local patch appearance in Layer
5. Given the part annotations, we can further learn detailed structures
in Layers 5–9 via (Si and Zhu, 2013).

The cost 𝐶𝑜𝑠𝑡(𝑄𝑖) of this storyline mainly comprises the human labor
required for both part checking 𝐶𝑐𝑘𝑝

𝑃𝑂𝑖
and part labeling 𝐶 𝑙𝑏𝑝

𝑃𝑂𝑖
, which

4 Please see Section 4.1 for parameter settings of 𝜆‘‘x’’.
5 Among all the storylines 𝑄𝑗 , 𝑗= 1,… , 𝑖−1 before 𝑄𝑖, we select the storylines

that have both the same type of questions 𝑀𝑗 = 𝑀𝑖 and the same target
pose/viewpoint 𝑃𝑂𝑗 = 𝑃𝑂𝑖 as 𝑄𝑖. We record gains of 𝛥𝐿𝑐𝑎𝑡𝑒

𝑃𝑂𝑖
and 𝛥𝐿𝑝𝑎𝑟𝑡

𝑃𝑂𝑖
after

these storylines, and use these historical gains to predict the gain for a further
storyline 𝑝𝑖𝑖.

6 The QA system asks about part compositions/names for pose/viewpoint
𝑃𝑂𝑖 in the first time of part labeling (see Fig. 4(𝑞1, 𝑞2)).
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can be measured as 𝐶𝑐𝑘𝑝
𝑃𝑂𝑖

= 𝜆𝑐𝑘𝑝|𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐶ℎ(𝑃𝑂𝑖)| (see footnote 3),
and 𝐶 𝑙𝑏𝑝

𝑃𝑂𝑖
= 𝜆𝑙𝑏𝑝|𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝐶ℎ(𝑃𝑂𝑖)| (see footnote 3), respectively. This

storyline mainly decreases 𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

and 𝐿𝑝𝑎𝑟𝑡
𝑃𝑂𝑖

. The potential gain 𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

and
𝛥𝐿𝑝𝑎𝑟𝑡

𝑃𝑂𝑖
for a future storyline can be predicted using historical gains (see

footnote 4).
Storyline 3: collecting & labeling new samples. This storyline

collects new sample for pose/viewpoint 𝑃𝑂𝑖 from web images to update
the pose/viewpoint. It decreases the generative loss 𝐿𝑔𝑒𝑛

𝑃𝑂𝑖
and the

pose/viewpoint classification loss 𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

. First, we use the sub-AOG of
pose/viewpoint 𝑃𝑂𝑖 to collect new samples from web images7 with top
inference scores. The system collects 𝑁 = 3⋅1.5𝑘 new samples, when it
is the 𝑘th time to perform Storyline 3 to pose/viewpoint 𝑃𝑂𝑖.

Second, we randomly select 𝑛 (𝑛 = 10, here) new object samples,
ask users whether they are true samples with pose/viewpoint 𝑃𝑂𝑖, and
expect yes/no answers (see Fig. 4(𝑞5.1, 𝑞5.2)).

Third, given the true samples, we use graph mining (Zhang et al.,
2015) to refine the And-Or structure in Layers 3–5 for 𝑃𝑂𝑖. The sub-
AOG is refined towards the common subgraph pattern (pose/viewpoint
model) embedded in a set of large graphs (images). Its objective can be
roughly written as follows, which is proved in Appendix.

argmax
𝜽𝑃𝑂𝑖

𝐸
𝐼∈𝐈̂𝑃𝑂𝑖

[𝑆𝐼 (𝑃𝑂𝑖)] exp[−ModelComplexity(𝜽𝑃𝑂𝑖
)] (16)

The above equation refines the 𝜽𝑃𝑂𝑖
by (1) adding (or deleting) new (or

redundant) latent parts 𝑃 ∈ 𝐿𝑎𝑡𝑒𝑛𝑡𝐶ℎ(𝑃𝑂𝑖) from the pose/viewpoint
𝑃𝑂𝑖, (2) determine the children number (i.e. the number of patches in
Layer 5) of each latent part 𝑃 , (3) updating the average appearance
𝛷(𝐷) of each patch 𝐷 ∈ 𝐶ℎ(𝑃 ), and (4) refining the average geometric
relationship 𝛷(𝑃 , 𝑃 ′) between each pair of children parts 𝑃 , 𝑃 ′ ∈
𝐶ℎ(𝑃𝑂𝑖).

At the end of Storyline 1, we further apply Storylines 2 and 1 to refine
semantic parts for pose/viewpoint 𝑃𝑂𝑖 and retrain for pose/viewpoint
classification.

Therefore, the potential cost of a future storyline can be computed
as 𝐶𝑜𝑠𝑡(𝑄𝑖) = 𝐶𝑐𝑜𝑙

𝑃𝑂𝑖
+ 𝐶𝑐𝑘𝑜

𝑃𝑂𝑖
+ 𝐶𝑐𝑘𝑝

𝑃𝑂𝑖
+ 𝐶 𝑙𝑏𝑝

𝑃𝑂𝑖
+ 𝐶𝑟𝑒𝑡

𝑃𝑂𝑖
. 𝐶𝑐𝑜𝑙

𝑃𝑂𝑖
= 𝜆𝑐𝑜𝑙|𝐈𝐶 | (see

footnote 3) is the computational cost of sample collection, where 𝐈𝐶
denotes the entire web image pool of category 𝐶, 𝑃𝑂𝑖 ∈ 𝐶ℎ(𝐶). 𝐶𝑐𝑘𝑜

𝑃𝑂𝑖
=

𝜆𝑐𝑘𝑜𝑛 (see footnote 3) indicates the human labor of checking samples.
𝐶𝑐𝑘𝑝
𝑃𝑂𝑖

, 𝐶 𝑙𝑏𝑝
𝑃𝑂𝑖

, and 𝐶𝑟𝑒𝑡
𝑃𝑂𝑖

denote the costs of checking parts, labeling
parts, and retraining pose/viewpoint classification, respectively, and
can be estimated as introduced in Storylines 1 and 2. This storyline
mainly decreases 𝐿𝑔𝑒𝑛

𝑃𝑂𝑖
, 𝐿𝑐𝑎𝑡𝑒

𝑃𝑂𝑖
and 𝐿𝑝𝑎𝑟𝑡

𝑃𝑂𝑖
. For the term of 𝐿𝑔𝑒𝑛

𝑃𝑂𝑖
, we can

roughly estimate 𝑃 (𝑃𝑂𝑖)𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

as −mean𝐼∈𝐈̂𝐶
𝛥𝑆𝐼 (𝐶), 𝑃𝑂𝑖 ∈ 𝐶 in the

last Storyline 3. 𝛥𝐿𝑐𝑎𝑡𝑒
𝑃𝑂𝑖

, 𝛥𝐿𝑝𝑎𝑟𝑡
𝑃𝑂𝑖

are approximated using historical gains
(see footnote 4).

Storyline 4: labeling a new sibling pose/viewpoint. As shown
in Fig. 4(𝑞6), in this storyline, the QA system requires a professional
instructor to label an initial sample for a new pose/viewpoint 𝑃𝑂𝑖 in
category 𝐶, and uses iterative graph mining (Zhang et al., 2015) to
extract the structure of Layers 3–5 for pose/viewpoint 𝑃𝑂𝑖 (only mining
latent parts in Layer 5). The graph mining is conducted with three
iterations. In each iteration, we first collect new object samples for
pose/viewpoint 𝑃𝑂𝑖, as shown in Fig. 4(𝑞5.1, 𝑞5.2). Based on the collected
samples, we optimize the mining objective in (16) to mine/refine the
latent parts in Layer 4 and the patches in Layer 5 for this pose/viewpoint.
In this way, we obtain the latent structure of the new pose/viewpoint
𝑃𝑂𝑖, and then we apply Storylines 2 to pose/viewpoint 𝑃𝑂𝑖 to ask
and label semantic parts and to fix these semantic parts on this latent
structure. Finally, we apply Storyline 1 to train classifiers of the semantic
parts for pose/viewpoint classification.

Therefore, the storyline cost is given as 𝐶𝑜𝑠𝑡(𝑄𝑖) = 𝐶𝑝𝑜𝑠𝑒
𝑃𝑂𝑖

+ 3𝐶𝑐𝑜𝑙
𝑃𝑂𝑖

+
3𝐶𝑐𝑘𝑜

𝑃𝑂𝑖
+𝐶 𝑙𝑏𝑝

𝑃𝑂𝑖
+𝐶𝑟𝑒𝑡

𝑃𝑂𝑖
, where 𝐶𝑝𝑜𝑠𝑒

𝑃𝑂𝑖
= 𝜆𝑝𝑜𝑠𝑒 is a constant cost for labeling a

7 The images collected from search engines comprise both correct images
with target objects and irrelevant background images.

new pose/viewpoint (see footnote 3), and other costs can be estimated
as mentioned above. This storyline mainly decreases 𝐿𝑔𝑒𝑛

𝑃𝑂𝑖
, which can

be computed as in Storyline 3.

4. Experiments

4.1. Details

To implement the QA system, we set the parameters as follows.
𝜆𝑐𝑘𝑝 = 1.0, 𝜆𝑐𝑘𝑜 = 1.0, and 𝜆𝑙𝑏𝑝 = 5. It is because that we found that
the time cost of labeling a part is usually five times greater than that of
making a yes/no judgment in our experiments. The computational cost
of the collection/inference of each object was set as 𝜆𝑟𝑒𝑡 = 0.01, 𝜆𝑐𝑜𝑙 =
0.01. We set 𝜆𝑝𝑜𝑠𝑒 = 50 as the labeling cost for a new pose/viewpoint.

We applied Bing Search and used 16 different keywords to collect
web images. The keywords included ‘‘bulldozer ’’, ‘‘crab’’, ‘‘excavator ’’,
‘‘frog ’’, ‘‘parrot ’’, ‘‘red panda’’, ‘‘rhinoceros’’, ‘‘rooster ’’, ‘‘Tyrannosaurus
rex’’, ‘‘horse’’, ‘‘equestrian’’, ‘‘riding motorbike’’, ‘‘bus’’, ‘‘aeroplane’’,
‘‘fighter jet ’’, and ‘‘riding bicycle’’. With each keyword, we collected the
top-1000 returned images. We used images of the first ten keywords
to learn an AOG (namely AOG-10) with ten categories to evaluate the
learning efficiency of our QA framework. Then, we used images of
the last seven keywords to learn an AOG (namely AOG-7) with five
categories (horse, motorbike, bus, aeroplane, and bicycle) and tested the
performance on the Pascal VOC dataset (Everingham et al., 0000).

4.2. Mining of the deep semantic hierarchy

Figs. 5 and 6 illustrate the deep structures of some categories in the
AOG-10. The QA system applied a total of 39 storylines to learn AOG-
10. The AOG-10 contains two poses/viewpoints for the frog, horse, and
parrot categories, and three poses/viewpoints for each of the other seven
categories in Layer 3. AOG-10 has 132 semantic part nodes and 84 latent
part nodes in Layer 4. AOG-7 contains a total of 12 pose/viewpoint
nodes in Layer 3, 48 semantic part nodes, and 48 latent part nodes in
Layer 4.

4.3. Evaluation of part localization

The objective of this work is to learn a transparent representation
of deep object hierarchy, and it is difficult to evaluate the quality of
deep structures. Therefore, we evaluate our AOGs in terms of part
localization, although our contribution is far more than it. We tested
the AOG-10 on web images and tested the AOG-7 on the Pascal VOC
dataset for a comprehensive evaluation.

Baselines: Our AOGs were learned with part annotations on only 2–
14 objects in each category, but most previous methods require a large
number of part annotations to produce a valid model. Nevertheless, we
still selected the nine baselines for comparisons, including benchmark
methods for object detection (here is part detection), popular part-
localization approaches, and methods for interactive learning of parts.
For each baseline, we randomly selected different numbers of training
samples to learn the model and enable a fair comparison.

First, we focused on (Azizpour and Laptev, 2012), which uses
annotations of semantic parts to train DPMs. This method clusters
training samples to different object poses/viewpoints, and trains a
DPM component for each pose/viewpoint. We designed three baselines
based on (Azizpour and Laptev, 2012), namely SSDPM-2, SSDPM-3 and
SSDPM-5. For each category, SSDPM-2, SSDPM-3 and SSDPM-5 learned
two, three, and five pairs of left–right symmetric poses/viewpoints,
respectively.8

8 Due to the limited number of training samples, the bulldozer and horse
categories could produce at most four pairs of pose/viewpoint models for
SSDPM-5. Training samples used in the baselines will be published after the
paper acceptance.
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Fig. 5. Deep semantics within object parts. We mine the common structure within each object part, and represent the shape primitives in Layers 5–9 of the AOG. In fact, some of
these shape primitives have certain latent semantics, e.g. the mandible of a Tyrannosaurus rex within its ‘‘mouth’’ part. Given an image, the shape primitives can be aligned to their
corresponding image regions with a certain deformation.

Fig. 6. Deep semantics within object parts. We mine the common structure within each object part, and represent the shape primitives in Layers 5–9 of the AOG.

Then, we used the technique of Li et al. (2013) as the fourth baseline,
namely PLDPM, which required annotations of both the parts and
object poses/viewpoints for training. To enable a fair comparison, we
only collected and labeled training samples that corresponded to the
poses/viewpoints in our AOG.

The fifth baseline was another part model proposed by Chen et al.
(2014a), namely P-Graph, which organized object parts into a graph and
trained an SVM based on the part appearance features and inter-part
relationships for part localization.

The sixth baseline was image matching, namely Matching, introduced
in Zhang et al. (2015). Unlike conventional matching between automat-
ically detected feature points (Cho et al., 2013; Leordeanu et al., 2012;
Caetano et al., 2007), Matching used a graph template to match semantic
parts of objects in images. For a fair comparison, Matching constructed
a graph template for each pose/viewpoint in our AOG (i.e. using the
template of the initial sample labeled in Storyline 4).

Then, we used two benchmark methods for object detection, i.e. Fast-
RCNN (Girshick, 2015) and YOLOv3 (Redmon and Farhadi, 2018), as
the seventh and eighth baselines to detect object parts. For the fast-
RCNN baseline, we chose the widely used 16-layer VGG network (VGG-
16) (Simonyan and Zisserman, 2015) that was pre-trained based on
the ImageNet dataset (Deng et al., 2009). For each semantic part, we
used (Girshick, 2015) to fine-tuned the VGG-16 using part annotations
and obtained a specific part detector. In order to detect small object
parts, we decreased the threshold for region proposal module and thus
received more than 200 region proposals from each object region. For
the YOLOv3 baseline, we used part annotations to fine-tune the pre-
trained network.

The ninth baseline was a method for interactive annotating and
learning object parts, which was proposed in Branson et al. (2011). We
called it Interactive-DPM. The idea of online interactive learning of object
parts is quite close to our method.
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Fig. 7. Comparisons in the efficiency of knowledge mining. The annotation cost (horizontal axis) is computed based on part annotations. The top line shows such annotations are
equivalent to labeling how many objects for each category. Instead of preparing a large training set for supervised methods, our method can achieve multiple-shot learning (on average,
2–10 shots for each part, here).

Table 2
Performance of part localization.

bicyc-L bicyc-R bus-L bus-R aero-L aero-R

#box APP AER APP AER #box APP AER APP AER #box APP AER APP AER

SSDPM (Azizpour and Laptev, 2012) 228 : 58.7 58.4 67.2 65.7 98 : 30.0 36.8 20.6 30.7 133 : 13.9 22.2 24.6 31.0
110 : 53.2 55.0 54.7 58.5 57 : 3.3 23.2 5.9 18.0 68 : 7.7 15.4 12.3 31.8

P-Graph (Chen et al., 2014a) 204 : 8.3 0 5.4 0 152 : 11.2 0 15.9 0 156 : 1.7 0 1.7 0

Fast-RCNN (Girshick, 2015) 222 : 23.0 2.6 21.3 1.8 109 : 19.0 0 20.1 6.7 95 : 14.6 4.2 16.8 2.3
113 : 24.1 5.1 15.1 0 51 : 3.0 0 12.6 6.7 49 : 5.7 0 7.0 0

YOLOv3 (Redmon and Farhadi, 2018) 222 : 33.8 – 44.4 – 109 : 18.9 – 12.3 – 186 : 14.9 – 23.4 –

Our 9 : 60.6 60.5 68.8 65.1 54 : 36.7 35.4 35.3 41.7 24 : 13.9 28.4 17.5 31.0

motor-L motor-R horse-L horse-R

#box APP AER APP AER #box APP AER APP AER

SSDPM (Azizpour and Laptev, 2012) 30 : 57.9 57.3 24.5 41.5 104 : 10.1 40.6 9.5 35.5
24 : 0 7.7 0 8.0 52 : 0 18.7 1.4 16.2

P-Graph (Chen et al., 2014a) 148 : 7.1 0 9.3 0 180 : 3.7 0 0.6 0

Fast-RCNN (Girshick, 2015) 163 : 29.2 5.5 24.4 0 208 : 29.7 8.3 26.1 8.5
83 : 15.6 1.8 9.7 0 104 : 14.1 1.7 19.2 3.4

YOLOv3 (Redmon and Farhadi, 2018) 163 : 48.3 – 30.6 – 208 : 44.4 – 38.8 –

Our 9 : 57.9 62.4 32.7 48.6 46 : 24.6 35.8 23.0 35.7

#box indicates the number of part annotations for model learning, and the performance is evaluated by the values of (APP/AER). With the help of massive web images, our method only
required 3%–95% number of the part annotations that were used by SSDPM, and achieved comparable performance to SSDPM.

Evaluation metrics:We used two ways to evaluate part localization
performance. The first metric is the APP (Ferrari et al., 2008) (Average
Percentage of Parts that are correctly estimated). Given each true object,
we used the best pose/viewpoint component in the model (with the
highest score) to explain the object. Then, for each object part of
the pose/viewpoint, we used the ‘‘𝐼𝑂𝑈 > 50%’’ criterion (Pandey and
Lazebnik, 2011; Azizpour and Laptev, 2012) to identify correct part
localizations. We computed such a percentage for each type of semantic
parts, and APP is the average for all the part types. To reduce the
effects of object detection on the APP, we detect the object within the
image region of [𝑐𝑤±𝑤] and [𝑐ℎ±ℎ], where 𝑤/ℎ/(𝑐𝑤, 𝑐ℎ) indicates the
width/height/center of the true object bounding box.

The second evaluation metric is the AER (average explanation rate)
of objects. When an object is detected,9 if more than 2∕3 of the parts in
its pose/viewpoint component are correctly localized, we consider this
object being correctly explained by this component. Fig. 7 compares part
localization performance between different baselines given a certain

9 To simplify the evaluation metric, we only detected the best object from an
image and ignored the others.

annotation cost. Different curves/dots correspond to different baselines.
For most baselines, the annotation cost is the number of labeled parts on
training samples. However, for our QA system, the overall cost consists
of the cost of labeling parts and that of making yes/no judgments.
Therefore, we drew two curves for our method: Ours simply used the
number of part boxes as the cost, whereas Ours (full cost) computed the
cost as (#𝑜𝑓𝑏𝑜𝑥𝑒𝑠) + 0.2 × (#𝑜𝑓𝑗𝑢𝑑𝑔𝑚𝑒𝑛𝑡𝑠) (a judgment costs about 1∕5
of the time of labeling a part).

Note that the baseline of Interactive-DPM (Branson et al., 2011)
cannot detect bounding boxes for object parts, but localizes the center
of each part. Therefore, just as in Zhu and Ramanan (2012), we used the
‘‘average localization error’’ to evaluate the part localization accuracy.
We normalized pixel error with respect to the part size, computed
as

√

𝑝𝑎𝑟𝑡 ℎ𝑒𝑖𝑔ℎ𝑡2 + 𝑝𝑎𝑟𝑡 𝑤𝑖𝑑𝑡ℎ2. In Fig. 9, we compared the proposed
method with Interactive-DPM (Branson et al., 2011) in terms of the
average localization error.

Comparison of learning efficiency. We used the ten category
models in the AOG-10 to explain its corresponding objects. For each
category, 75 images were prepared as testing images to compute the
object explanation rate. Fig. 8 illustrates part localization performance
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Fig. 8. AOG-based part localization. (Left) Explanation of parts in Layer 4. (Right) Semantic parts that are detected from different objects.

of the AOG-10. Fig. 7 shows the average explanation rate over the ten
categories. To evaluate our method, we computed the performance of
intermediate models for each category, which were trained during the
QA procedure with different numbers of storylines/questions. Given the
same amount of labeling, our method exhibited about twice explanation
rate of Matching. When our method only used 125 bounding boxes
for training, i.e. 3% of SSDPM-3’s annotation cost (4258 boxes), it still
achieved higher explanation rate than SSDPM-3 (22.4% vs. 17.9%).

Performance on the Pascal VOC2007:We learned the AOG-7 from
web images, and tested it using horse, motorbike, bus, aeroplane, and
bicycle images with the left and right poses/viewpoints. This subset of
Pascal images have been widely used for weakly-supervised exploiting
part structures of objects (Pandey and Lazebnik, 2011; Cho et al., 2015).
We compare our method with the baselines of SSDPM, P-Graph, Fast-
RCNN, and Interactive-DPM. SSDPM used the Pascal training samples
with the left and right poses/viewpoints for learning. We required
SSDPM to produce the maximum number of components for each
category. Table 2 shows the result. SSDPM models were learned from
different numbers of part annotations. In Fig. 9, we compared the
average localization errors of Interactive-DPM (Branson et al., 2011) and
our method.

SSDPM used part annotations for training, so its performance de-
pended on whether or not this method could extract discriminative
features from small part regions. Therefore, SSDPM may exhibit bad
performance when the annotated parts were not distinguishable enough.
In contrast, besides semantic parts, our method also mined discrim-
inative latent parts from images, which increased the robustness of
part localization. Unlike SSDPM, P-Graph and Interactive-DPM directly
learning part knowledge from a few annotations, we localized semantic
parts on a latent object structure that was mined from unannotated web
images. Thus, our method suffered less from the over-fitting problem.
In addition, although Fast-RCNN has exhibited superior performance
in most object detection tasks, it did not perform that well in part
detections. It is because (1) object parts were usually small in images,
and without contextual knowledge, the low-resolution part patches
could not provide enough distinguishing information; and (2) that we
only annotated a small number of samples for each part (e.g. 49∕4 =
12.25 annotations for each part of the aeroplane), which was not enough
to learn a solid Fast-RCNN model. In contrast, our method did not
require a large number of annotations for learning/fine-tuning, and
modeled the spatial relationships between parts. Therefore, in Table 2
and Fig. 9, our method used fewer part annotations but achieved better
localization accuracy.

5. Conclusions and discussion

In this study, we used human–computer dialogs to mine a nine-
layer hierarchy of visual concepts from web images and build an AOG.
Unlike the conventional problem of object detection that only focuses on

object bounding boxes, our AOG localized semantic parts of objects and
simultaneously aligned common shape primitives within each part, in
order to provide a deep understanding of object statuses. In addition, our
method combined QA-based active learning and weakly supervised web-
scale learning, which exhibited high efficiency at knowledge mining in
experiments.

In recent years, the development of the CNN has made great progress
in object detection. Thus, it becomes more and more important to
go beyond the object level and obtain a transparent understanding
of deep object structures. Unlike widely used models (e.g. CNNs for
multi-category or fine-grained classification), the objective of our AOG
model is not multi-category/fine-grained classification, but the deep
explanation of the structural hierarchy of each specific object. We do not
learn the AOG towards the application of multi-category classification.
Instead, we design the loss for part localization and show the perfor-
mance of hierarchical understanding of objects. Unlike object parts,
the accuracy of detailed sketches within each local part is difficult to
evaluate. Many of the sketches represent latent semantics within object
parts.

Compared to deep neural networks, AOGs are more suitable for
weakly-supervised learning of deep structures of objects. Figs. 5 and 6
show one of the main achievements of this study, i.e. the deformable
deep compositional hierarchy of an object, which ranges from the
‘‘object’’, ‘‘semantic parts’’, ‘‘sub-parts’’, to ‘‘shape primitives’’. Such
deep compositional hierarchy is difficult for deep neural networks to
learn without given sufficient part annotations.

Our deep hierarchical representation of object structures partially
solves the typical problem of how to define semantic parts for an object.
In fact, different people may define semantic parts at different fine-
grained levels. The uncertainty of part definition proves the necessity of
our nine-layer AOG. Our AOG, for the first time, provides a nine-layer
coarse-to-fine representation of object parts, which is a more flexible
representation of object parts than shallow part models. People can
define large-scale parts in the first four layers, and obtain representa-
tions of small parts in deep layers (please see Figs. 5 and 6). Thus, the
flexibility of our AOG representation is one of main contributions of this
research.

Although the AOG can be used for both object detection and part
parsing, in recent years, deep neural networks (Krizhevsky et al.,
2012; He et al., 2016; Huang et al., 2017) have exhibited superior
the discrimination power to graphical models. Therefore, we believe
the main value of the proposed method is weakly-supervised mining
deep structure of objects, which can be used as explainable structural
priors of objects for many applications and tasks. For example, a crucial
bottleneck for generative networks is its limited interpretability. The
automatically mined hierarchical object structures can be used as prior
structural codes for generative networks and boost their interpretability.

The current AOG mainly models common part structures of objects
without a strong discriminative power for fine-grained classification.
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Fig. 9. Comparisons with Interactive-DPM in terms of average localization errors. The annotation cost (horizontal axis) is computed based on part annotations. Our method exhibits low
localization errors, given a limited number of part annotations.

However, our AOG can provide dense part correspondences between
objects, which include both alignments of semantic parts and alignments
of latent parts. Such dense part correspondences are crucial for fine-
grained classification. More specifically, as discussed in Park et al.
(2018), we can simply add different attributes to each node in the AOG.
In this way, original AOG nodes mainly localize object parts, while
attribute classifiers in AOG nodes servers for fine-grained classification.

Search engines usually return incorrect images without target objects
and simple objects that are placed in image centers and well captured
without occlusions. Thus, lifelong learning studies, such as Chen and
Gupta (2015) and ours, mainly first learn from simple samples, and
then gradually switch to difficult ones. In fact, comprehensive mining
of all object poses/viewpoints, including infrequent poses/viewpoints,
remains a challenging long-tail problem.

In this study, we aimed to explore a general QA system for model
mining and test its efficiency. Thus, we applied simple features and
trained simple classifiers for simplicity. However, we can extend the QA
system to incorporate more sophisticated techniques (e.g. connecting
the AOG to the CNN) to achieve better performance. In experiments,
we simply used very few (one or two) keywords for each category to
search web images, because our weakly-supervised method did not need
numerous web images for training. However, theoretically, people can
also apply standard linguistic knowledge bases, such as WordNet (Miller,
1995), to provide several synonyms for the same category as keywords
to search web images.
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Appendix. Objective function of graph mining

The objective function in Zhang et al. (2015) was proposed in the
form of

argmin
𝜽𝑃𝑂𝑖

{

∑

𝑃∈𝐶ℎ(𝑃𝑂𝑖)
+
𝑃 −

∑

𝑃∈𝐶ℎ(𝑃𝑂𝑖)
−
𝑃 + 𝜆Complexity(𝜽𝑃𝑂𝑖

)
}

where the pattern complexity Complexity(𝜽𝑃𝑂𝑖
) is formulated using

the node number in the pattern, Complexity(𝜽𝑃𝑂𝑖
) = |𝐶ℎ(𝑃𝑂𝑖)| +

𝛽
∑

𝑃∈𝐶ℎ(𝑃𝑂𝑖) |𝐶ℎ(𝑃 )|. Then, the terms of +
𝑃 and −

𝑃 are the average
responses of part node 𝑃 among positive images and negative images,
respectively:

+
𝑃 = 𝐸𝐼∈𝐈̂𝑃𝑂𝑖

{

𝑆𝐼 (𝑃 ) + mean
𝑃 ′∈𝐶ℎ(𝑃𝑂𝑖),𝑃 ′≠𝑃

𝑤𝑃𝑃 ′𝑆𝐼 (𝑃 , 𝑃 ′)
}

−
𝑃 = 𝐸𝐼∉𝐈̂𝑃𝑂𝑖

{

𝑆𝐼 (𝑃 ) + mean
𝑃 ′∈𝐶ℎ(𝑃𝑂𝑖),𝑃 ′≠𝑃

𝑤𝑃𝑃 ′𝑆𝐼 (𝑃 , 𝑃 ′)
}

Considering 𝑆𝑎𝑝𝑝
𝐼 (𝑃𝑂𝑖) = 0, we can rewrite the objective as

argmin
𝜽𝑃𝑂𝑖

{

∑

𝑃∈𝐶ℎ(𝑃𝑂𝑖)
+
𝑃 −

∑

𝑃∈𝐶ℎ(𝑃𝑂𝑖)
−
𝑃 + 𝜆Complexity(𝜽𝑃𝑂𝑖

)
}

=argmax
𝜽𝑃𝑂𝑖

{

|𝐶ℎ(𝑃𝑂𝑖)|
{

𝐸
𝐼∉𝐈̂𝑃𝑂𝑖

[𝑆𝐼 (𝑃𝑂𝑖)] − 𝐸
𝐼∈𝐈̂𝑃𝑂𝑖

[𝑆𝐼 (𝑃𝑂𝑖)]
}

− 𝜆Complexity(𝜽𝑃𝑂𝑖
)
}

=argmax
𝜽𝑃𝑂𝑖

{

𝐸𝐼∈𝐈̂𝑃𝑂𝑖
[𝑆𝐼 (𝑃𝑂𝑖)] − 𝐸𝐼∉𝐈̂𝑃𝑂𝑖

[𝑆𝐼 (𝑃𝑂𝑖)]

−
𝜆Complexity(𝜽𝑃𝑂𝑖

)
|𝐶ℎ(𝑃𝑂𝑖)|

}

In addition, the average score of 𝑆𝐼 (𝑃𝑂𝑖) for negative (background)
images is normalized to zero. Therefore, we can further approximate
the objective as

argmax
𝜽𝑃𝑂𝑖

{

𝐸𝐼∈𝐈̂𝑃𝑂𝑖
[𝑆𝐼 (𝑃𝑂𝑖)] −

𝜆Complexity(𝜽𝑃𝑂𝑖
)

|𝐶ℎ(𝑃𝑂𝑖)|

}

Therefore, if we redefine a new complexity Complexity𝑛𝑒𝑤(𝜽𝑃𝑂𝑖
) =

Complexity(𝜽𝑃𝑂𝑖
)∕|𝐶ℎ(𝑃𝑂𝑖)|, we can write the objective function as

argmax
𝜽𝑃𝑂𝑖

{

𝐸𝐼∈𝐈̂𝑃𝑂𝑖
[𝑆𝐼 (𝑃𝑂𝑖)] − 𝜆Complexity𝑛𝑒𝑤(𝜽𝑃𝑂𝑖

)
}
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