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Abstract !

This paper presents a computational paradigm called
Data Driven Markov Chain Monte Carlo (DDMCMC)
for image segmentation in the Bayesian statistical
framework. The paper contributes to image segmen-
tation in three aspects. Firstly, it designs effective and
well balanced Markov Chain dynamics to explore the
solution space and makes the split and merge process
reversible at a middle level vision formulation. Thus it
achieves globally optimal solution independent of ini-
tial segmentations. Secondly, instead of computing a
single mazximum a posteriori solution, it proposes a
mathematical principle for computing multiple distinct
solutions to incorporates intrinsic ambiguities in im-
age segmentation. A k-adventurers algorithm is pro-
posed for extracting distinct multiple solutions from
the Markov chain sequence. Thirdly, it utilizes data-
driven (bottom-up) techniques, such as clustering and
edge detection, to compute importance proposal prob-
abilities, which effectively drive the Markov chain dy-
namics and achieve tremendous speedup in comparison
to traditional jump-diffusion method[}]. Thus DDM-
CMC paradigm provides a unifying framework where
the role of existing segmentation algorithms, such as,
edge detection, clustering, region growing, split-merge,
SNAKEs, region competition, are revealed as either re-
alizing Markov chain dynamics or computing impor-
tance proposal probabilities. We report some results on
color and grey level image segmentation in this paper
and refer to a detailed report and a web site for exten-
sive discussion.

1 DMotivation and Introduction

Image segmentation is a long standing problem
in computer vision. In recent years there appeared
some concerns that image segmentation is perhaps ill-
defined, or even a wrong problem to work on, in com-
parison to other vision tasks which have apparently well
defined objectives, such as detection, recognition, and
tracking. Unfortunately, without addressing segmen-
tation problems, those special purpose vision tasks are
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fundamentally ill-defined, and have to suffer from gen-
erality and robustness. Hard lessens were learned from
engineering practices for building large vision systems,
for example, automatic target recognition (ATR). One
cannot solve a target recognition problem robustly
without sufficient modeling and computing for back-
ground clutter. Indeed, the confusion in defining image
segmentation (and also perceptual grouping) problems
simply reflect the following two facts.

I). Computer vision needs to address the issue of
formulating the tasks of a general purpose vision sys-
tem. As David Marr pointed out in his primal sketch,
real world images consist of multiple layers of stochas-
tic processes, such as texture, texton, stochastic point,
line, curve, graph, region, and object processes, which
generate images through spatial organizations. Thus
an appropriate formulation should be image decomposi-
tion or image parsing which decomposes an image into
its natural constituents as various stochastic processes.
This subsumes image segmentation as region process,
and naturally integrates object recognition and per-
ceptual organization. The latter deal with point, line,
curve, and object processes. Implicit in this formula-
tion is the notion of generative models for image in-
terpretation in contrast to classification and discrimi-
nation. Recent progress in statistical learning, e.g.[13]
and follow-up work, brought encouraging promise that
various stochastic patterns ranging from texture, to
point process, to deformable models may well be mod-
eled under a common principle and these models can
be learned from large dataset. Thus we believe the
segmentation problem is not fundamentally ill-defined,
but needs to be extended with richer models.

IT). Image segmentation (or decomposition) is in-
deed a computing process and should not be treated as a
task by itself. Real images are intrinsically ambiguous,
and our perception changes dynamically, even in a very
short time duration, depending on our attention. Gen-
erally speaking, the more one looks at an image, the
more one sees. It seems narrow-minded to think that
a segmentation algorithm just outputs one final result.
Instead a segmentation (or decomposition) algorithm
should realize the intrinsic ambiguities characterized,
say, in a Bayesian posterior probability, and outputs
multiple distinct solutions dynamically and endlessly



so that these solutions, as samples, “best preserve” the
posterior density in a mathematical principle proposed
in this paper. For example, the particle filtering (Con-
densation) algorithm[6] represents such an idea in ob-
ject tracking. We argue that this should be realized in
generic vision system as well.

With the above motivation, we present a stochastic
computing paradigm called data driven Markov chain
Monte Carlo (DDMCMC) for visual inference. In this
paper, we focus on image segmentation problem as-
suming region process only. The DDMCMC paradigm
was tested in object recognition in a related paper[14],
therefore the compatibility of segmentation and recog-
nition is ensured.

The DDMCMC paradigm for image segmentation
proceeds in four steps.

Firstly, we analyze the solution space for segmenta-
tion and anatomize it in three levels. Level 1 is scene
space, where each point represents an interpretation of
the scene in terms of a number of regions. Level 2 are
region spaces, where each point includes variables for
describing one region. Level 3 are various cue spaces for
variables describing the boundaries, intensity models,
color models, texture models, and so on. Thus a solu-
tion space is a union of many scene spaces of various
dimensions, and a scene space is a product of a number
of region spaces, and a region space is a product of a
number of cue spaces.

Secondly, we design well balanced Markov chains to
explore the solution space. We engage two types of
dynamics to ensure ergodicity. The first is jump dy-
namics that simulate reversible split and merge, death
and birth, and model switching. The second is diffusion
dynamics that simulate boundary deformation, region
growing, region competition[12], and model adapta-
tion. We make the split and merge processes reversible
beyond the pixel labeling level and the algorithm is
able to explore globally optimal solutions independent
of initial segmentation conditions.

Thirdly, data driven techniques, such as edge
detection[2] and tracing, data clustering[5] are uti-
lized to compute heuristic information in various cue
spaces. The output are sets of weighted cue parti-
cles, which encode importance proposal probabilities in
non-parametric forms. These proposal probabilities are
composed to form proposal probabilities in region and
scene spaces, and thus drastically improve the Markov
chain speed.

Fourthly, a mathematical principle is proposed for
selecting and pruning a set of important and distinct
scene particles which encode an estimation to the pos-
terior probability. The multiple solutions are computed
to minimize a Kullback-Leibler divergence from the es-

timate posterior to the true posterior. Pruning is cru-
cial for working in a very large solution space, unlike
the particle filtering[6].

In summary, the DDMCMC paradigm is about ef-
fectively creating, composing, and pruning particles
at three levels of the solutions spaces to compute
the Bayesian posterior probability dynamically. The
DDMCMC paradigm unifies and reveals the roles of
some well-known segmentation algorithms. Split and
merge, region growing, Snake and balloon[7], region
competition[12], and PDEs can be viewed as various
MCMC jump-diffusion dynamics after minor modifi-
cation. Edge detection[2] and clustering[5] compute
importance proposal probabilities.

We report some results on both color and grey level
image segmentation with textures and refer to a de-
tailed report and a web site for extensive discussion.

2 Problem Formulation
2.1 The structures of solution space

In image segmentation, an image domain A is de-
composed into n disjoint regions R;,i = 1l..n, and
1 < n < |A]. Therefore a segmentation solution is
represented by a vector W.

W = (n; {(Fz; @z),l = 1727 "'7n})7

where ['; is the boundary of region R; and ©; an inte-
rior description of pixels in R;. As the number of re-
gion is unknown, the solution space is a union of many
subspaces of varying dimensions, which we called scene
spaces,

=ut o Qr=0rx...x Qg
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where Q7 is the subspace with exactly n regions. The
region space §dg is further decomposed into two cue
spaces: 1. wrp: the space for region partitions. 2. wy:
the space for parameters of region models.

QR:LT]F X wy.

In fact, the region model in wy can be further de-
composed according to motion, color, texture cues, and
each cue is a mixture family of models. We choose not
to unfold these details for clarity.

Such space structure is typical, and can become
more complicated when we deal with a variety of
stochastic patterns as the image decomposition task
formulates in section (1).

2.2 Image models

In image segmentation, we are not merely seeking
a partition of the image domain, but also a meaning-
ful interpretation of the image in a generative model,



in contrast to discrimination model based on feature
similarity[11]. Thus we formulate the image segmenta-
tion problem in the Bayesian framework,

W~ p(W ) o p(IIW)p(W), W € Q.

We follow the formulation in region competition[12],
and extend it by including richer models obtained in
recent statistical learning literature[13].

The prior probability p(WW) is the product of three
models.

1. A Poisson model for the number of regions p(n).

2. A general smoothness Gibbs prior for the con-
tours p(I';),i = 1..n.

3. A model of the size of regions p(A;) where
A; = size(R;),i = 1.n. Recently both empirical and
theoretical studies[1, 9] on the statistics of natural im-
ages indicates that the size of regions in natural images
follows, 1

p(A) < =7,

p(A) in image segmentation encourages large regions
to form and empirically plays a non-trivial role in our
experiments.

The likelihood model is a product of region models
p(Ig, i, 0;). IR, refers to all pixels jointly inside T';
which may include more than one connected compo-
nents. A region model can be chosen from one of the
following four families, and can switch among the four
families over time by a Markov chain jump process.

1. A Gaussian model assuming that pixels in a re-
gion are independently and identically distributed (iid).

2. A multinomial model assuming that pixels in a
region are iid according to a non-parametric intensity
histogram.

3. A texture model FRAME [13] with higher order
interactions captured by a set of Gabor filters of small
size. This model is formulated by a pseudo-likelihood
distribution for computational effectiveness.

4. A 2D spline model that account for global in-
homogeneous patterns, for example, shadows, shading,
sky, perspective textures which are not characterized
by models 1-3.

In experiments, we work on both color and grey level
images. In color cases, we adopt a (L, U, V) color space
and assume Gaussian or mixture of Gaussian models
in this color space. We refer to our long report and a
web site for detailed account.

We choose these four families of models based on
considerations of computational complexity and image
contents. We cropped various regions manually from
real images and tested our models. Figure 1 shows four
typical types of regions that appear most frequently
in real world images. For each region Ig, in the first

a~ 2.0.

column (regions i = 1..4) , we compute the per-pixel
coding bits L;; = —logp(Ig,|0F) for models j = 1..4
respectively, after fitting the parameters ©F by a max-
imum likelihood estimate (MLE) within each family.
The smaller L;; is, the better the model j is fit to
region i. We then draw a typical sample (synthesis)
from p(Ir|O©F) to visualize each model. The synthe-
sized regions are shown in columns 2-5 respective, and
the L;;’s are listed below the synthesized images. Ob-
viously better synthesis can be achieved if we can af-
ford computational costs of more sophisticated models.
Choosing the right set of models is essential for solving
segmentation problems.

original model 1 model 2 model 3 model 4

region 1 1.957 1.929 1.680 1.765

region 2 3.868 3.271 3.234 3.670
i

region 3 3.852 3.627

2.514 3.658
. -

]

i

region 4 3.121 3.050 1.259 0.944
Figure 1: Comparison study of four families of models.
See text for explanations.

3 Segmentation by DDMCMC

The posterior probability p(WI) not only have enor-
mous number of local maxima but is distributed over
subspaces of varying dimensions. Searching for a glob-
ally optimal solution in such a complicated space is
not a trivial task, but still tractable. In the literature,
we see three typical works. I). variational methods[1],
such as SNAKE/Balloon[7], PDEs[10], region growing,
and region competition[12], solve very well a diffusion
problem. That is, given a initial segmentation, evolve
the boundary to a locally optimal energy state. II).
Algorithms involving large operators, such as split and
merge, death and birth, model switching were not re-
versible. III). Algorithms such as clustering and edge
detection are effective, but lack theoretical assurance.



The DDMCMC method intents to unify them under a
common framework.

3.1 Designing ergodic Markov chain dy-
namics

The first requirement for designing a global search
algorithm is that the Markov chain must be ergodic.
That is, starting from an arbitrary initial segmenta-
tion, it should be able to visit any other state in the
solution space in finite time steps. This disqualifies
all greedy algorithms. It requires both jump-dynamics
which move between subspaces of varying dimensions
and diffusion dynamics which move within a subspace
of a fixed dimension. The second requirement is that
the Markov chain must have the posterior p(W|I) as
its invariant probability at equilibrium. This is of-
ten replaced by a strong condition of detailed balance
equations which also demands that every move be re-
versible, in particular for the jumps|[3].

We design five types of MCMC dynamics in the fol-
lowing.

Type I: Diffusion of region boundary.

Type II: Splitting of a region into two.

Type III: Merging two regions into one.

Type IV: Switching the family of models for a region.

Type V: Model adaptation for a region.

We discuss type I, II, and III briefly in the following,
and the other two are designed in similar ways.

Type I evolves the boundary to maximize the
posterior probability through a region competition
equation[12]. Let I';; be the boundary between R;, R;
Vi, j,

0
dt

(I(x(s),y(s

The first two terms are derived from the prior and data
directly which are forces along the contour normal 7i(s).
dB; is a Brownian motion and 7; s a temperature pa-
rameter. In region competition[12], a small window
was used to avoid being stuck in local pitfalls, this in
fact can be done through the above stochastic Langevin
equations in a principled way.

Types II and III are a pair of jump processes. Sup-
pose at a certain time step ¢, we propose to split a
region I; into two regions, denoted by R; and Ry, and
thus move the Markov chain from W to W',

W = (TL, @i,w) — (TL-l— 1,@]',ij,@k,’w) = W’,

where w is the remaining variables which do not change
during the move. In the Metropolis-Hastings method,
we need to have two proposal probabilities G(W —
dW') for the move and G(W' — dWW) for immediately

(. pI(x(s), y(s)|Ri) R
= (fprior(s)+log » )R;) +\/2_TtdBt)n(

moving back. Then the proposed move is then accepted
with probability

GW' = dW)p(W'D)dW'
G(W — dW'")p(W|I)dW

a(W — dW') = min(1, ).

The split proposal probability is

G(W — dW') = q(IT)q(i)q(Tjx|Ri)q(©, Ok |Tjx, Ri)dW',

where ¢(II) is the probability for choosing move type
I1, ¢(i) is the probability for choosing a region i. q(4) is
often decided by the goodness of fit in region R;, a re-
gion with bad fit has a higher chance to split. ¢(T';x|R;)
is the probability for selecting a candidate boundary
within R;, and ¢(©;, ©;|Tx, R;) is the probability for
choosing two new models for the new regions. The
merge proposal probability is,

GW' — dW) = q(I11)q(j, k)q(©:)dO;dw,

where ¢(II1) is the probability for choosing type I11,
q(j, k) and ¢(©;|4, k) are the probabilities to choose re-
gions j and k forming region 1.

The effectiveness of MCMC depends critically on
the design of the proposal probabilities, for example,
q(Tjx) and ¢(©;, ©|T k). Naive proposals have lower
chance to be accepted and result in exponential waiting
time. In the following two subsections, we discuss how
importance proposal probabilities are computed using
data driven methods.

3.2 Computing importance
probabilities in cue spaces

We use a simple color image as a working example
and assume only a Gaussian model for color in (L,U,V)
space for clarity. In experiments, we do the same im-
portance proposals in each of the four image models.

proposal
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Figure 2: Importance proposal probabilities in two cue
spaces and a region space.

The basic ideas of computing importance proposal
probabilities are shown in Figure 2. The DDMCMC
algorithm starts with some data driven methods for
computing a set of weighted particles in each of the cue



spaces, which are then composed into particles in the
region space. In this example, we have two cue spaces:
the boundaries wr and a color wy, within which we
compute two importance proposal probabilities respec-
tively.

wm = Y wGr—r), Y wf =1,
i i=1

0) = D wPGO-09), Y wl=1,
i=1 i=1

where n, and n, are the number of weighted particles.
G() is a Parzen window function centered at 0. An
example is shown in Figure 3 and Figure 4.
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Figure 3: Importance proposals for edges at three
scales of details. Obtained through edge detection and
simple tracing.

Figure 4: The first row shows color clusters in (L, U, V)
space, and the second row are six saliency maps corre-
sponding to the color clusters. (See text)

Figure 3.a shows a color image used in the region
competition algorithm[12]. Figures 3.b-d show three
edge maps obtained by a Canny edge detector fol-
lowed with a simple edge tracing method to form closed

boundaries. The three scales are generated with three
levels of thresholds. These edge maps represent a huge
number of possible partitions of the image domain,
and these partitions are organized in a hierarchy from
coarse-to-fine. Each possible partition encodes a num-
ber of cue particles in the space wr.

For this simple image, we use an iid Gaussian model
for the color 6 in (L,U,V) space. Therefore, A mean-
shift clustering algorithm[5] is used to compute color
clusters in wy. Several color clusters are shown in
Figure 4 (top row). Each cluster is associated with a
“saliency map” in the second row. Each saliency map
is obtained by multiplying the original input image by
the probability of each pixel belonging to this cluster.
This is, the clustering is a soft decision on the pixels.
For example, the cluster for the leftmost saliency im-
age in Figure 4 (the second row) is for the background,
and the second one is for the skin, and so on.

3.3 Computing importance proposal
probabilities in region space

With the cue particles and importance proposal
probabilities in the cue spaces, the DDMCMC
paradigm proceeds to generate region particles which
are large hypotheses in the region space. These re-
gion particles are assembled on-line during the Markov
chain Monte Carlo computing. It helps to imagine
that they are organized into various lists for the dif-
ferent jump-dynamics, such as model switching, split
and merge, as the right panel of Figure 2 shows.

adga map atizale 1 edgemapatmeale 2 wdgemapatecale
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Figure 5: The proposal for splitting a region 1.

We show one example for generating a split pro-
posal by revisiting G(W — W') in the MCMC design
subsection3.1,

GW — dW') = q(IT)q(i)q(Tjx |Ri)q(©, Ok |Tjx, Ri)dW',

Once a region R; is proposed to be split, for exam-
ple, region R; in Figure 5. The algorithm randomly,
with probability p(®), picks one out of three partition
maps generated by edge-based segmentation at differ-
ent scales. For example, it may choose the first scale
in Figure 5 (the first row). The proposed region R; is



then superimposed on this partition map. The bound-
aries in R; suggest a number of sub-regions, for exam-
ple sub-regions a, b, and ¢ in Figure 5. The algorithm
chooses 1 region from all sub-regions, or it may choose
a combination of 2, or 3 regions in case there are many
sub-regions. This proposes a boundary to split R;.

3
q(Tje|Ri) = ZP(S)P{E) (Rj, Ri|R:)

s=1

where piﬂs) (Rj, Ri|R;) is the probability for splitting
region R; at the partition map s € {1,2,3} into two
regions j and k, computed through a number of com-
binations. We allow a region to consist of multiple dis-
connected sub-regions to account for occlusion effects.

Given the proposed I'ji, we need to propose two
new models for the new regions R;, R respectively
by Q(ej; ®k|rjk7Ri) = q(@ |F]1€7 i)q (61€|F]1€7 i). To
compute ¢(0;|Tjx, R;), all the color cue particles (clus-
ters) accumulate a vote from all pixels (or a subsam-
pled set) in R;. The vote received from a pixel is the
probability in the saliency map corresponding to this
cluster.

2(8; [T, Ri)=1%

where v is the normalizing constant, and Smap,, is the
saliency map corresponding to the m-th cluster. The
same is done with ¢(©|T'jx, R;). This concludes the
split proposal. The merge proposal will follow other
heuristics, such as region similarity etc. We refer to
our report for details.

3.4 Computing multiple distinct solutions
— scene particles

As we argued at the beginning, image segmentation
is a process not a task. We shall compute multiple
distinct solutions from the posterior. Simply sampling
p(W|I) only generates solutions which are all from a
single mode with trivial differences. In this section, we
propose a mathematical criterion for preserving impor-
tant and distinctive solutions.

Let S = {(w;, W;) : i = 1..K } be a set of K solutions
(or scene particles) with weights w; oc p(WI),Vi. S
encodes a probability in a non-parametric form,

K K

Z%G(W—Wl), Zwi:w.

i=1 i=1

pWIL) =

by some Gaussian window function G. To best pre-
serve the posterior probability, we propose to compute
S so that p(W|I) approaches p(WI) in terms of mini-
mizing a Kullback-Leibler divergence D(p||p) under the

Yo TmG(O;—On), vmzzwvy)ERi Smap,, («,y)

constraint that |S| = K,

= arg min o p(WID
S* gl Join /p(W|I)1 gﬁ(W|I)dW' (1)

In practice, we can always express p(W|I) by a mix-
ture of Gaussian models like p , but just use a large
number N >> K of particles Il = {(aj,7;) : j = 1..N}
which are, theoretically available, through MCMC sim-
ulation.

2
2

p(WID) = 3~ GOV — 7)),

j=1 Jj=1

We denote the scene particles by m; with weight o;
to avoid confusion with the particles in S. Thus the
problem becomes to select and prune S from II during
the MCMC sampling process.

b). K=6

Figure 6: a). logp with N = 50 particles, b). logp
with K = 6 particles.

This idea is illustrated in Fig. 6. Fig. 6.a shows
log p for a distribution with N = 50 Gaussians, which
is approximated by p with K = 6 Gaussians in Fig. 6.b
through minimizing D(p||p).

For two mixtures of Gaussians, some simple expres-
sion is available for D(p||p) under reasonable conditions
and simplifications.

Proposition In the above notations, with mild
assumptions for the posterior probability, we have
D(pl||p) approximated by

frj = Weip
log +Z logwc(]])+ j 20;(]) . (2

c:{l.n} = {1. K} is a mapping of index. W,(j) is
the closest particle in S to 7; in II.

Equation (2) has very intuitive meanings. Because
the probability sums a and w in both II and S are
dominated by the best particles in the sets respectively
(because they are exponentially distributed), the first
term suggests that the globally optimal solution should
be included in S. This proves that eqn (1) general-
izes the traditional (mazimum a posteriori) estimator
W* = argmaxweq p(W|I) as K = 1. The second term



suggests that each selected scene particle W should
have large weight while the third term keeps the parti-
cles in S apart from each other. In the solution space,
the distance between two solutions |m; — W, | is de-
fined to reflect some perceptual differences, for exam-
ple, the minimum work to move m; to W;).

We use a greedy algorithm to minimize D(p||p),
which we called the K-adventurer algorithm. Suppose
we have a set of K particles S at step t. At time ¢ + 1,
we obtain new particles by MCMC. We augment set S
to St by including these new particles. Then we treat
S+ as II and choose K particles by eliminating some
particles in S, . The algorithm updates the particles in
the set stepwisely to minimize the divergence.

4 Experiments

Figure 7: Simulating three Markov Chains with differ-
ent initial states.

The DDMCMC paradigm was tested extensively on
many grey level, color, textured images, and this sec-
tion shows a few examples. More are available in our
web site.

We first show an simple working example to illus-
trate the DDMCMC steps. Following the importance
proposal probabilities for the edges in Figure 3 and
for color clustering in Figure 4, we simulated three
Markov chains with three different initial segmenta-
tion shown in Figure 7 (top row). The energy changes
( —logp(W|I°Ps)) of the three MCMCs are plotted in
Figure 7 against time steps. All Markov chains con-
verge very quickly to a nice solution in a few min-
utes on a Pentium IIT PC. Figure 7 shows two differ-
ent solutions obtained by a Markov chain. To verify
the computed solution W*, we synthesized an image
by sampling from the likelihood p(I|T¥*). Obviously,
some highlight color and facial expression are missing
as they are not included in the models. This is also a
way to exam the sufficiency of models in segmentation
(see section (2)).

Figure 10 shows some multiple segmentation results
on a gray-scale zebra image. The results are obtained

by the K-adventurers algorithm. Note that these re-
sults are very intuitive and capture distinct interpreta-
tions of the image.

Figure 8 and Figure 9 displays some other color and
grey level images using the same algorithm. We show
the input (left) and a segmentation (middle) starting
with arbitrary initial conditions and a synthesized im-
age (right) drawn from the likelihood I ~ p(I|W).
Obviously the segmentation results will improve if we
integrate other stochastic models. For example, in the
first row of Figure 8. The music band in a football
stadium forms a point process some other images may
have line processes. Including these patterns will ex-
tend the system from image segmentation to image de-
composition and parsing.

input segmentation

synthesis

Figure 8: Color image segmentation by DDMCMC.
Left: input images, middle: segmentation results W,
right: synthesized images I™ ~ p(I|W) with the seg-
mentation results w.

In our final example, we examed the sensitivity of
DDMCMC to three conditions: 1). the initial segmen-
tation, 2). the importance proposal at wrp, 3). the
importance proposal at wy. In figure 7 we can see that
the selection of different initial states makes difference
at burn-in period. Three MCMCs quickly converge to-
gether after a few hundred iterations which is a small
portion in the overall time spent by MCMC processes
that requires several thousand iterations to converge.
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e). synthesis I} ~ p(I|IW;)
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f). synthesis IY" ~ p(I|W>)

c). segment Wo d). segment W3

g). synthesis IY"p ~ p(I|W3)

Figure 10: Experiments on a gray-level zebra image with three solutions, e.g., the background is segmented into
a couple of regions with spline models which capture the global shading effects and the zebra is a texture model.
The synthesized images could be improved if more filters are used.

synthesis

segmentation

Figure 9: Gray level image segmentation by DDM-
CMC. Left: input images, middle: segmentation re-
sults W, right: synthesized images I¥™ ~ p(I|W) with
the segmentation results w.

5 Discussion

In future work, we should look for analytic results
that link the DDMCMC convergence rate to the good-
ness of the set of heuristics. We should also inte-
grate the segmentation algorithm with other stochas-
tic models, such as texture, point, curve processes, and
object recognition[14] under the same computational
paradigm.
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