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Abstract

Many vision tasks can be formulated as partitioning an
adjacency graph through optimizing a Bayesian posterior
probability p defined on the partition-space. In this paper
two approaches are proposed to generalize the Swendsen-
Wang cut algorithm[1] for sampling p. The first method
is called multigrid SW-cut which runs SW-cut within a se-
quence of local “attentional” windows and thus simulates
conditional probabilities of p in the partition space. The
second method is called multi-level SW-cut which projects
the adjacency graph into a hierarchical representation with
each vertex in the high level graph corresponding to a sub-
graph at the low level, and runs SW-cut at each level. Thus
it simulates conditional probabilities of p at the higher level.
Both methods are shown to observe the detailed balance
equation and thus provide flexibilities in sampling the poste-
rior probability p. We demonstrate the algorithms in image
and motion segmentation with three levels (see Fig.1), and
compare the speed improvement of the proposed methods.

1. Introduction: graph partition and coloring

Many vision tasks, such as image segmentation, perceptual
grouping, and object recognition can be formulated as graph
partitioning (labeling or coloring) problems. A common ob-
jective is to partition (or label) an adjacency graph so that
the subgraphs represent coherent regions, parts, or objects.

To formulate the problem, we denote by G =< V, E >
an adjacency graph where V = {v1, v2, ..., vN} is a set of
image elements (pixels, edgels, regions, parts, etc.) to be
grouped and E is a set of links e =< vi, vj > represent-
ing the spatially adjacency relations between the elements.
An n-partition (or coloring) of the elements is a mapping
function,

πn : V → {1, 2, ..., n}N .

We denote it by πn = {V1, V2, ..., Vn} where vertices
in each subset Vk share the same color and are supposed
to form a coherent visual structure depending on the vision

tasks. The partition (coloring) space is defined as the set of
all possible partitions,

Ωπ = ∪|V |
n=1Ωπn (1)

with Ωπn being the space of all possible n-partitions.
In vision the earliest algorithm for graph partition

is perhaps the relaxation labeling method[8] for solving
constraint-satisfaction problems. The well-known Gibbs
sampler[7] extends the relaxation labeling method by re-
placing the hard constraints with “soft” Gibbs energies,
and thus samples π from a posterior probability p(π) =
p(π|Data) defined over the entire partition space,

π ∼ p(π) over Ωπ. (2)
Both the relaxation labeling and Gibbs sampling methods
flip the label for one vertex at a time, and thus are extremely
slow when the elements are strongly coupled.

In the recent vision literature, there were three popular
methods for graph partition. One is the normalized cut[14]
using graph spectral analysis to optimize approximately a
discriminative criterion

Another method is belief propagation[6] which can find
a local maximum of the MAP estimate.

The other is the minimum-cut[13, 9] which maps an en-
ergy minimization problem to a maximum flow algorithm.
Recently the graph cuts algorithm[4] finds minima that are
very close to the global minimum for energies with pair and
semi-metric potential priors.

Despite their usefulness, these methods can only be ap-
plied to limited cases. For example, the maximum flow
problem[9] can only be applied when the Gibbs energies
satisfy a monotonicity criterion while the graph cuts[4] only
works for pair potential priors.

Most recently, a Swendsen-Wang cut method is
proposed[1] which generalizes the Swendsen-Wang (1987)
method to sampling general posterior probabilities on ar-
bitrary graphs. The SW-cut can flip a coupled subgraph,
suggested by bottom-up heuristics, at a single step while
observing the detailed balance equations. It is shown[1] to
mix rapidly even at low temperature with hundreds of times
speedup over the single site Gibbs sampler.
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In this paper, we extend the SW-cut in two aspects and
thus provide more flexibilities in algorithm design.

1. multi-grid SW-cuts. Given a partition πn =
{V1, ..., Vn}, at each step the SW-cut seeks a candidate sub-
set Vo ∈ Vi ∈ πn whose label will be flipped. It is costly to
select Vo over the entire adjacency graph when G is rather
large (e.g. an image lattice has (105) vertices). The multi-
grid SW-cut first selects a “attentional window” of arbitrary
shape and size at each step, and then runs the SW-cut within
this window. It is shown to sample the conditional proba-
bility of p for labeling the vertices within the window given
the labels at the rest of the graph. By selecting multi-grid
windows (see Fig.4) over time, we observe speed improve-
ments.

Figure 1. Multi-level SW-cut for image and mo-
tion segmentation.

2. Multi-level SW-cuts. Because objects are composed of
parts in a hierarchy[2], it is natural to represent them with
multiple levels of graphs where each vertex (node) at one
level corresponds to a subgraph of smaller elements at the
level below. For example, Fig.1 shows an example for par-
titioning a cheetah image by a hierarchical representation
with four levels. The image lattice at level 1 is first par-
titioned into small regions with nearly constant image and
motion and thus form a smaller graph with each region be-
ing a node. This graph is further grouped into larger re-
gions with coherent image intensity and coherent motion at
the third level. The latter are in turn grouped into a smaller
number of moving objects at the fourth level.

The algorithm runs SW-cut at each level, and thus flip-
ping the labels of vertices at one level corresponds to flip-
ping the labels of the corresponding subgraphs (parts) be-
low. This way it samples from the conditional probability

of p given the current subgraphs (parts) on the lower levels.
The label change at high levels may correspond to more
meaningful moves with larger structures.

The main contribution of the paper is to show that both
multigrid and multi-level SW-cuts still observe the detailed
balance equations and can be computed easily due to smart
cancelation in the probability ratios. The overall algorithm
consists of a sequence of multigrid and multi-level SW-cut
moves in a cascade, and samples the posterior probability p.

In what follows, we first review the basic ideas of
Swendsen-Wang and SW-cut to set the background in Sec-
tion (2). Then we study the multigrid and multi-level SW-
cuts in Section (3). Then we demonstrate the application
of the method in a motion segmentation problem in Sec-
tion (4).

This work was sponsored by NSF SGER grant IIS-
0240148.

2. Background: SW and SW-cuts

The original SW-algorithm was proposed in 1987[16] for
simulating the Ising and Potts models in statistical mechan-
ics. Unlike the single site Gibbs sampler, SW flips the label
of a subgraph at a single step and is known empirically to
mix rapidly even near the critical temperature. Recently it
has been proven[5] that its mixing time is polynomial in
|V | = N for graphs of constant connectivity (i.e. the num-
ber of neighbors of each vertex does not grow with size |V |).

Unfortunately, the SW method was not very useful for
vision tasks for three reasons. Firstly, it is only valid
for Ising and Potts models, while posterior probabilities
in vision tasks are of much more complex forms. Sec-
ondly, it assumes that the number of labels (colors) n is
pre-determined, while n is unknown in most vision tasks.
Thirdly, it is inefficient in the presence of external fields
(data), as it does not utilize data in selecting the subgraph to
flip.

These limitations were overcome by the SW-cut method
proposed in (Barbu and Zhu, ICCV03)[1]. We briefly intro-
duce the SW-cut and its analysis in the following to set the
background.

Let G =< V, E > be an arbitrary adjacency graph with
p(π) being a general probability governing its partition. For
each edge e =< s, t >∈ E in the adjacency graph, we are
specified a discriminative probability qe based on local fea-
ture dissimilarity, which measures how likely the two sites
s and t belong to different objects, like a boundary detector.

The SW-cut is an iterative algorithm which describes a
Markov Chain. Suppose π = {V1, ..., Vn} is the current
partition at a certain step, where each subset Vi is the sub-
graph of nodes with the same color i. The edges between
these subgraphs are removed and edges within each subset
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are kept. Then for each step the SW-cut proceeds in two
phases.

Phase I: For each edge e within a subgraph Vi, i.e.
e =< s, t > with s, t ∈ Vi, SW-cut turns “off” (removes)
at random e with probability qe. Thus Vi is broken into
a number of sub-subsets – the connected components of
the remaining graph. They are subgraphs with same label
and are connected by the edges remaining “on”. We de-
note by ccp(π) the set of all connected components from
V1, V2, ..., Vn. Obviously there are a combinatorial number
of ccp’s for a given π due to the random procedure.

Then SW-cut randomly selects a component Vo ∈
ccp(π) (with uniform probability). Suppose Vo ∈ Vi is se-
lected from Vi, then the edges between Vo and Vi −Vo must
have been turned off in the procedure. We denote them by

Cut(Vo, Vi) = {e = (s, t) : s ∈ Vo, t ∈ Vi, t /∈ Vo}, ∀i.
Fig. 2 illustrates two partitions πA and πB of a lattice

which differ in the labeling of a set of vertices Vo within the
polygon. In πA, Vo is selected from V1, and in πB , Vo is
selected from V2. Then Cut(Vo, V1) and Cut(Vo, V2) are
shown by the crosses in two states respectively.

state A state B

V0 V0

V1

V2

V1

V2

Figure 2. Flipping the labels of a component
Vo at a single step between two states πA and
πB . See text for explanation

Phase II. SW-cut decides the new label of Vo probabilis-
tically (see eqn. (3)). Let �new(Vo) = j ∈ {1, 2, ..., n + 1}
be the new label, then we obtain a new partition

π∗
j = {Vk : k �= i, k �= j} ∪ {Vi − Vo, Vj ∪ Vo}, ∀j.

If Vo = Vi, i.e. the whole subgraph Vi is selected by chance,
then one label is reduced |π∗| = n − 1, and conversely if
j = n + 1 then one label is introduced |π∗| = n + 1.

The main contributions of the SW-cut[1] are given in the
following two observations.

Observation 1. Let πA and πB be any two consecutive
states in the SW-cut (see Fig.2). We denote by Q(Vo|πA)
and Q(Vo|πB) the probabilities that the random procedure
selects Vo at states πA and πB respectively. The probability
ratios can be computed easily due to cancellation.[1]

Theorem 1 The probability ratio for proposing Vo as the
candidate subgraph at two states πA and πB is

Q(Vo|πA)
Q(Vo|πB)

=

∏
e∈Cut(Vo,V1)

qe∏
e∈Cut(Vo,V2)

qe
.

This is not a trivial conclusion because there are combina-
torial number of ways for connecting Vo and the rest of the
graphs in the random procedure.

Observation 2. Suppose that π∗
j , j = 1, 2, ..., n +

1 are the possible new states from π, and SW-cut se-
lects the new label j according to its posterior probability
p(π∗

j ) like the Gibbs sampler, but with a rectifying factor∏
e∈Cut(Vo,Vj)

qe, then we have the following conclusion.

Theorem 2 At state π, if the new label of Vo, i.e. the next
partition state π∗

j is selected according to probability

Q(�new(Vo) = j|Vo, π) =
1
C

∏
e∈Cut(Vo,Vj)

qe · p(π∗
j ), ∀j

(3)then the proposed move will always be accepted.

In the above formula, C is a normalizing constant for the
n + 1 probabilities.

For a special case, the reversible move between πA and
πB in Fig.2 observes the following theorem.

Theorem 3 The proposal probability ratio between the two
states πA and πB is

Q(πA → πB)
Q(πB → πA)

=
Q(Vo|πA)
Q(Vo|πB)

· Q(�new(Vo) = 2|Vo, πA)
Q(�new(Vo) = 1|Vo, πB)

=
p(πB)
p(πA)

.

So, the acceptance probability in the Metropolis-
Hastings[11] step is

A(πA → πB) = min(1,
Q(πA → πB)
Q(πB → πA)

· p(πA)
p(πB)

) = 1.

The SW-cut was shown to speed up the Gibbs sampler
by O(102) folds in image segmentation problems.[1]

3. Multigrid and multi-level SW-cut

The essence of the SW-cut is a Markov chain MC =<
ν,K, p > which visits a sequence of states in the partition
space Ωπ over time t,

π(0), π(1), ...., π(t) ∈ Ωπ.

The MC consists of three elements. (1). An initial prob-
ability ν(π) with π(0) ∼ ν(π). (2). A transition kernel
K(π, π′) which is a conditional probability for moving from
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Figure 3. Multigrid SW-cut: run SW-cut within an “attention” window Λ with the rest of the labels
fixed, and it realizes a reversible move between two states πA and πB by flipping the label of Vo ⊂ VΛ.

state π(t) = π to π(t + 1) = π′. (3). An invariance prob-
ability p(π) which is the Bayesian posterior probability for
the partitions in a vision task.

The three theorems in the previous section ensure that
the SW-cut design observes the detailed balance equations

p(π)K(π, π′) = p(π′)K(π′, π), ∀π′, π. (4)
This is a sufficient condition for p(π) being the invariant
probability of the kernel K,∑

π

p(π)K(π, π′) = p(π′). (5)

Once it converges, the SW-cut simulates fair samples from
p(π)

The SW-cut is characterized by three selections in its de-
sign.

(I). The discriminative proposal probabilities defined on
the edges of the adjacency graph G =< V, E >. q(π) =∏

e∈E qe is a factorized approximation to p(π) and it influ-
ences the formation connected components ccp, and thus
the candidate component Vo.

(II) The uniform probability for selecting Vo from a con-
nected component Vo ∈ ccp.

(III) The reassignment probability Q(�new(Vo)|Vo, πA)
for the new label of the connected component Vo.

We propose to extend the SW-cut for speed and gener-
ality by introducing the multigrid and multilevel SW-cuts
which provide more flexible means for selecting Vo’s and
q(π)’s.

In summary, the two extensions are new directions for
sampling p(π)

1. The multigrid SW-cuts simulates Markov chain
MCmg with kernel Kmg sampling the conditional
probabilities of p(π).

2. The multi-level SW-cuts simulates Markov chain
MCml with kernel Kml sampling the conditional
probabilities of p(π) at the higher levels, and the full
posterior at the lover level.

Both MCmg and MCml satisfy the detailed balance equa-
tions in (4), as it will be shown in the following sections.
The proofs are based on the following result.

Let p(x, y) be a two dimensional probability, and K be a
Markov kernel sampling its conditional probability p(x|y)
(or p(y|x)). Thus it observes the detailed balance equation,

p(x|y)K(x, x′) = p(x′|y)K1(x′, x), ∀x, x′. (6)

Theorem 4 In the above notation, K observes the general
detailed balance equations after augmenting y

p(x, y)K((x, y), (x′, y′)) = p(x′, y′)K((x′, y′), (x, y)).

Proof. If y = y′, then it is straightforward. If y �= y′ then
K((x, y), (x′, y′)) = K((x′, y′), (x, y)) = 0 because there
is no way to go from state (x, y) to state (x′, y′).

The conclusion of this theorem is that an algorithm
which is reversible when sampling from a conditional prob-
ability is also reversible for sampling the full probability.

3.1. SW-cuts at multigrid

We first study the multigrid SW-cut. Recall that in each
step the SW-cut turns off, probabilistically, the edges in the
entire adjacency graph, and this could be less effective espe-
cially when G is very large. The concept of multigrid SW-
cut is to allow us to select certain “attentional” windows and
run the SW-cut within the window. Thus it provides flexibil-
ity in designing a “visiting scheme” by selecting windows
of various sizes and locations over time. For example, Fig. 4
shows windows in a multigrid arrangement.

Let G =< V, E > be the adjacency graph, π =
{V1, ..., Vn} the current partition, and Λ an attentional win-
dow of arbitrary size and shape. Λ divides the vertices into
two subsets V = VΛ∪VΛ̄ for vertices inside and outside the
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Figure 4. Selecting windows in a multigrid
scheme

window respectively. For example, Fig.3 displays a rectan-
gular window Λ (in red) in a lattice G.

The Λ further removes some edges within each subset
Vi, i = 1, 2, ..., n, and we denote them by,

Cut(Vi|Λ) = {e =< s, t >: s ∈ Vi ∩ VΛ, t ∈ Vi ∩ VΛ̄}.
For example, in Fig.3 the window Λ intersects with three
subsets V1 (white), V2 (black), and V3 (grey), and all edges
crossing the (red) rectangle window are removed.

We divide the labeling (coloring or partition) of the ver-
tices V into two parts

π(V ) = (π(VΛ), π(VΛ̄)) (7)

We fix π(VΛ̄) as boundary condition, and sample the labels
of vertices within the window by SW-cut.

To summarize, the multigrid SW-cut iterates the follow-
ing three steps

1. it selects a window Λ of certain size and shape follow-
ing a probability Λ ∼ q(Λ).

2. For any edges within each subgraph inside the window,

e =< s, t >, s, t ∈ Λ, �s = �t,

it turns off edge e with probability qe. Thus it obtains
a set of connected components ccp(VΛ).

3. It selects Vo ∈ ccp(VΛ) as a connected component and
flips its label according to probability

Q(�new(Vo) = j|Vo, π) =
1
C

∏
e∈Cutj

qe · p(π∗
j ), ∀j

(8)
where π∗

j is the partition by assigning Vo to label j,
and Cutj = Cut(Vo, Vj) − Cut(Vj |Λ).

For example, Fig. 3 illustrates a reversible move by flip-
ping a connected component Vo (within the blue polygon)
between two states πA and πB . Cut1 and Cut3 are shown
by the blue crosses which are removed by the random pro-
cedure.

Following the same procedure as in the previous SW-cut,
we can derive the proposal probability ratio for selecting Vo

in the two states within Λ.

Theorem 5 The probability ratio for proposing Vo as the
candidate subgraph within window Λ at two states πA and
πB is

Q(Vo|πA, Λ)
Q(Vo|πB, Λ)

=

∏
e∈Cut(Vo,V1)−Cut(V1|Λ) qe∏
e∈Cut(Vo,V3)−Cut(V3|Λ) qe

.

The difference between this ratio and the ratio in theorem 1
is that some edges (see the red crosses in Fig.3) no longer
participate the computation.

Following the probability in eqn.(8) for the new labels,
we can prove that it simulates the conditional probability,

π(VΛ) ∼ p(π(VΛ)|π(VΛ̄)).
Theorem 6 The multigrid SW-cut within window Λ simu-
lates a Markov kernel

K(Λ) = K(π(VΛ), π′(VΛ)|π(VΛ̄)), (9)

p(π(VΛ)|π(VΛ̄))K(π, π′) = p(π′(VΛ)|π(VΛ̄))K(π′, π).

Following theorem 4, we have K(Λ) satisfies the general
detailed balance equation in eqn.(4).

3.2. SW-cuts at multi-level

Level 1 Level 2

Figure 5. Multi-level SW-cut: run SW-cut at
two levels.

Now we add a multi-level SW-cut mechanism. Suppose
at state π = {V1, V2, ..., Vn}, we “freeze” some subsets
Ak, k ∈ {1, ..., m} such that for any k, Ak ⊂ Vi for some
i. This way, the vertices in each Ak are locked to have the
same label. The subsets Ak can represent an intermediary
segmentation. For example, for motion segmentation, it is
useful to get an intensity segmentation A and group the in-
tensity regions Ak into coherently moving objects.

Thus G = G(1) is reduced to a smaller adjacency graph
G(2) =< U, F >. U is the set of vertices

U = {u1, ..., um}, uk = Ak, k = 1, 2, ..., m.

F is the adjacency relation between the subsets Ak in G.

F = {f =< ui, uj >: Cut(Ai, Aj) �= ∅}.
Fig.5 illustrates an example with m = 9. We run the SW-cut
on level 2 based on new discriminative heuristics q(2) which
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measure the similarity of Ai, Aj , q(2)(π(U)) =
∏

f∈F q
(2)
f .

In general, these heuristics are more informative than the
lower level, so the SW-cuts moves are more meaningful and
the convergence is faster.

The partition space for graph G(2) is a projection of Ωπ,

Ωπ(G(2)) = {π : �(s) = �(t), ∀s, t ∈ Ai, i = 1, 2, ..., m.}
Obviously, the SW-cut on level 2 simulates a Markov

chain with kernel K(2) which has invariant probability
p(π(U)|A), the probability of p(π) conditional on the re-
lations �(s) = �(ui) for all s ∈ Ai and all i.

Following theorem 4, we have that K(2) satisfies the gen-
eral detailed balance equation (4).

Summary. Suppose we design a visiting scheme for se-
lecting the windows Λ ∼ qw(Λ) and level σ ∼ ql(σ) over
time. Then the generalized SW-cut has a mixed Markov
kernel K =

∑
σ

∑
Λ

ql(σ)qw(Λ)K(σ)(Λ).

As each K(σ)(Λ) observes the detailed balance equations,
so is K. When the windows cover the entire graph, it is also
irreducible and its states follows p(π) at convergence.

4. Example: image and motion segmentation

We apply the multigrid and multi-level SW-cuts above to a
vision problem that integrate image and motion segmenta-
tion, and compare the speeds of various visiting schemes.

4.1. Representation and Bayesian formulation

The motion estimation[18, 3] and motion
segmentation[12, 17] problems have been intensively
studied in the vision literature. With the power of the
SW-cut above, we entertain a more general setting for the
problem by integrating both image and motion cues in a
three level representation (see Fig.1).

At level 3, a scene has M (3) moving objects
{(Oi, θi) : i = 1, ..., M (3)}

e.g. the cheetah and background, and each object has de-
formable motion of type rigid plus deformation (Markov
Random Field), specified by parameters θi , similar in na-
ture to [3]. An object Oi consists of a number of image
regions at level 2

{(Rij , Hij , H
p
ij) : j = 1, ..., M

(2)
i }, ∀i.

An image region has a coherent intensity model Hij and a
model for image intensity prediction by motion Hp

ij , both
modeled by non-parametric histograms. An image region
Rij in turn contains a number of atomic regions with con-
stant motion velocity (dx, dy) at level 1 and constant inten-
sity. {rijk : k = 1, 2, ..., M

(1)
ij }, ∀i, j.

Finally rijk contains a number of pixels in level 0. In this
way, we have three levels of adjacency graphs,

G(σ) =< V (σ), E(σ) >, σ = 1, 2, 3.

A vertex v ∈ V (σ) corresponds to a subset of vertices at
V (σ−1).

We formulate the problem as graph partition in the
Bayesian framework. Let I1, I2 be two consecutive im-
ages in a motion sequence, and G =< V, E >= G(1)

the image lattice. For computational efficiency, for each
pixel (x, y) ∈ V we discretize its velocity (dx, dy) to an
m × m grid. For example, if we assume the maximum
speed is 3 pixels with 1/2 pixel accuracy, we have 13 × 13
possible velocity. Thus each pixel has a composite label
� = (i, j, k = (dx, dy)) indexing the object Oi, image re-
gion Rij and its velocity rijk respectively. Thus a partition
π represents, in a hierarchical structure, a velocity field �V ,
an image segmentation R and a motion segmentation O. We
maintain an accretion map A such that A(�x) = 0 represents
the accreted pixels (that were occluded in the first frame),
and model them by the image models Hij , not by the in-
tensity models Hp

ij of prediction by motion. We assume the
pixels in A are independent and we can assign each pixel
A(�x) = 0 if and only if P (A(�x) = 0)/P (A(�x) �= 0) > 1.

The graphs at each level are updated online, at each
move. For level 1 we maintain a ”graph sparse histogram”
which is a hash table containing the pairs of atomic region
indices which have non-zero boundary, and the boundary
length. When the boundary length becomes zero, the entry
is erased from the table. The other levels have much fewer
nodes and they can be updated online, with or without hash
table. There is a lot of overhead in maintaining the graphs,
especially the atomic region graph. An alternative would be
to update the whole graph more rarely and run more steps
at the higher levels consecutively, but we didn’t try this yet.

The posterior probability is defined as p(π|I1, I2; θ) ∝
p(I2|I1, π, θ)p(π, θ). More exactly

P (I2 |I1, π, θ}, {Hp
ij}, A) =∏

i,j

∏
�x∈Rij ;A(�x) �=0

PH
p
ij

(I2(�x) − I1(�x − �v(�x)))

·
∏
i,j

∏
�x;A(�x)=0,�x∈Rij

pHij (I2(�x)) (10)

where �v(�x) is the velocity of pixel �x, as obtained from the
current pixel label in the partition π.

The prior p(π, θ) = p(π|θ)p(θ) assumes a uniform prob-
ability on the motion parameters θi and on the image mod-
els Hij and Hp

ij and has a MRF probability on the velocity
field and a Gaussian probability to measure the deformation
of the velocity field from the rigid motion model behind.

p(π|θ) ∝ ∏
i
exp

(
− α

∑
�x∈Oi

[
(1/2σ2

i )|�v(�x) − �vi(�x)|2

+β
∑

�x′∈∂�x
(|�v(�x′) − �v(�x)|

])
(11)

∏
i,j

e−γ len(∂Rij)
∏

i,j,k
e−δ len(∂rijk)−η var(rijk)
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The SW graph edges at the pixel level between two pix-
els i, j are obtained by finding the best motion �v = (u, v)
that fits both pixels at the same time. Then

q(i, j) = 0.1 + 0.9 ∗ e−d(i,j,�v)/7−|I2(i)−I2(j)|/10 (12)

d(i, j, �v) = |I2(i) − I1(i − �v)| + |I2(j) − I1(j − �v)| (13)

At the atomic region level, the edge weights between two
adjacent atomic regions is based on the KL divergence be-
tween the intensity histograms, as in [1].

At the region level, we maintain 2d motion histograms
for each region (histograms of the motion (u, v) of all the
pixels of a region). Then the edge weight between adja-
cent regions is based on the KL divergence between these
histograms.

Given the posterior probability p(π) above, it is straight-
forward to run the various SW-cuts sampling p(π). For clar-
ity, we omit the details in estimating the model parameters
θ.

4.2. Experiments

We run the multigrid and multi-level SW-cut on a num-
ber of synthetic real world motion images. We show four re-
sults in Fig.6. The first image shows two moving rectangles
– a case discussed in [17], where only the 8 corners pro-
vide reliable local velocity (aperture problem) and the im-
age segmentation is instrumental in deriving the right result.
For the other three sequences, the SW-cuts obtain satisfac-
tory results despite large motion and complex background.
The cheetah image in Fig.1 is another example.

For comparison of the different SW-cut sampling meth-
ods, we plot in Fig.7, the energy vs time of the SW-cut
multi-grid and multi-level presented in this paper, for a
simple image segmentation problem (histogram intensity
model with boundary length prior) on two levels (atomic
regions of constant intensity and image segmentation). We
also plot the behavior of the SW-cut algorithm running on
atomic regions obtained from edge detection, and on a big
random window, comparable to the whole image (almost
like the SW-cut working on all the pixels in the image at the
same time, but slightly more efficient). The initial partition
π(0) is random.

Even though the SW-cut on atomic regions is extremely
fast (5 sec), it cannot reach the same energy minimum as the
other methods, because the atomic regions cannot be bro-
ken. The multigrid method is the fastest among the methods
that work directly on pixels. On the other hand, the conver-
gence behaviour of the multi-level SW-cut is almost linear.
Even though it seems to be slower that the multi-grid, actu-
ally the energy level attained with the multi-level after 600s
is slightly smaller than all of the other methods.
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Figure 7. Convergence comparison of multi-
grid and multi-level SW-cuts. (see text for ex-
planation)

5. Future work

In an ongoing project, we are extending the SW-cuts to seg-
menting long motion sequences where the adjacency graph
is 3-dimensional with spatial and temporal relations. Thus
each step of the SW-cut will flip the labels of a 3D sub-
graph (volume). In this way, we shall segment and track
the motion both forward and backward in time for optimal
Bayesian solutions. At the same time, we try to improve the
motion priors to be better suited for our hierarchical repre-
sentation and computation approach.
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