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Abstract

In this paper, we study a perceptual scale space by con-
structing a so-called sketch pyramid which augments the
Gaussian and Laplacian pyramid representations in tradi-
tional image scale space theory. Each level of this sketch
pyramid is a generic attributed graph – called the primal
sketch which is inferred from the corresponding image at
the same level of the Gaussian pyramid. When images are
viewed at increasing resolutions, more details are revealed.
This corresponds to perceptual transitions which are repre-
sented by topological changes in the sketch graph in terms
of a graph grammar. We compute the sketch or percep-
tual pyramid by Bayesian inference upwards-downwards
the pyramid using Markov Chain Monte Carlo reversible
jumps. We show two example applications of this percep-
tual scale space: (1) motion tracking of objects over scales,
and (2) adaptive image displays which can efficiently show
a large high-resolution image in a small screen (of a PDA
for example) through a selective tour of its image pyramid.
Other potential applications include super-resolution and
multi-resolution object recognition.

1. Introduction

In this paper, we study a perceptual scale space by augment-
ing the traditional image scale space representations[5, 6,
9], i.e. the Gaussian and Laplacian pyramids with a multi-
level sketch pyramid illustrated in Fig. 1. LetI0, I1, ..., In

be discrete levels of the Gaussian pyramid with increasing
resolutions.Ik is a smoothed version ofIk+1 by an isotropic
Gaussian kernel or equivalently by running a heat diffusion
process. For clarity of notation, in this paper we omit the
down-sampling step and thus assume that all images are de-
fined on the same lattice. The difference (band-pass) images
I+
k = Ik+1 − Ik for k = 0, 1, ..., n − 1 form the Laplacian

pyramid. When images are viewed at increasing resolutions
in the Gaussian pyramid, more semantic content will be re-
vealed. This evokes quantum jumps in visual perception
amid continuous intensity changes (diffusion).

In the literature of multi-scale image representation and
wavelet coding[8, 10], an image is modeled by a linear addi-

+ +

+
1I

+

+
0I+

2I

0I1I2I3I

+ + +
0S1S2S3S

2R

image scale space 

perceptual scale space 

Gaussian 
pyramid

Laplacian 
pyramid

sketch
pyramid

graph 
grammar

)
�

;g(SI nnn =

0R
1R

Figure 1: Augmenting the image scale space to perceptual
scale space which includes a sketch pyramid and a series of
graph grammars for perceptual transitions.

tion of independent image bases. According to this model,
a new set of image bases (such as Gabor or Laplacian of
Gaussian) are added when the resolution is refined. Some-
times, a Markov tree structure is assumed for the wavelet
coefficients at different levels.

In this paper, we adopt a primal sketch representation
studied in [2]. It divides an image into (i) structural parts
(sketchable) for object boundaries and (2) textural parts
(non-sketch) for stochastic textures. The structural parts are
represented by a dictionary∆ of occluding image primi-
tives (textons). Each primitive has a number of landmarks
(anchor points) and includes attributes for the photometric
changes and geometric warpings. It is similar to the AAM
model for faces but is low dimensional and more generic.
These primitives are aligned through the anchor points to
form a graph representation. The texture area is summa-
rized by some histograms of filter responses. This will yield
a hidden sketch representationSk which constructs the im-
ageIk with dictionary∆k at each level.

Ik = g(Sk;∆k), k = 0, 1, ..., n. (1)

where g is the generative process from sketch to image. The



perceptual transitions (jumps) over scales are represented
by a set of context sensitive grammar rules which expand
the graph with increasing resolution.
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Figure 2: An example of a 4-level sketch pyramid and cor-
responding graph grammar for perceptual transitions.

Fig. 2 illustrates a four-level sketch pyramid
S0,S1,S2,S3 and a series of graph grammarR0,R1,R2

for the graph expansion. EachRk includes production rules
γk,i, i = 1, 2, ...,m(k) and each rule extends a subgraphg
(could beg = ∅) conditional on its neighborhood∂g.

Rk = { γk,i : gk,i|∂gk,i → g′k,i|∂gk,i }. (2)

The expansion of a graph is realized through a series of
rules,

Sk

γk,1···γk,m(k)−→ Sk+1. (3)

In this paper we study the following three issues for the
perceptual scale space.

(1) Inferring of the sketch pyramid so that the graphs
over scales are optimally matched and have consistent cor-
respondence. We adopt a Bayesian framework and use
Markov Chain Monte Carlo reversible jumps to compute the
optimal representation upwards-downwards the pyramid to
ensure consistency.

(2) Studying three categories of perceptual transitions in
Rk. (i) Sharpening of image primitives without structural
changes, i.e.∆k → ∆k+1. See Fig. 3 for examples. (ii)
Graph grammars for the graph topological changes. See
Fig. 2 for examples. (iii) Catastrophic changes from texture
to structures with explosive births of image primitives. See
Fig. 4 for examples.

(3) Studying the criterion and mechanisms for the transi-
tions in the context of model selection in minimum descrip-
tion length or maximum posterior probability.

We demonstrate two applications of the perceptual scale
space.

(A) Motion tracking of objects over scales, e.g. a car
driving towards the camera. Traditional motion tracking
relies on fixed structures (such as contours), but tracking
over scales requires the ability to account for the increasing
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Figure 3: Image primitives in the dictionary are sharpened
with 4 increasing resolutions from top to bottom.

Figure 4: Catastrophic changes with explosive births of im-
age primitives from one scale to another.

details of the object’s representation. The MCMC gram-
mar inference algorithm we describe explains the percep-
tual changes occurring, and computes a consistent sketch
pyramid without flickering effects.

(B) Adaptive image display. The goal is to show a large
high-resolution image within a small screen where differ-
ent areas are shown at different resolutions to maximize the
information in limited space/time. The display resolution
for an area is chosen so that its sketch sub-graph no longer
expands (or expands little) when the image is refined. The
graph transition provides a measure (description length) of
perceptual information gained from top to bottom in the
pyramid. The display is stopped at a level when no new
semantic content is revealed even though the image may
continually be refined.

Other potential applications include super-resolution and
multi-resolution object recognition[7, 4].

The perceptual sketch space should also help clarify
many concepts and phenomena in vision. For example, it is
known in the literature that certain image features/structures
only exist within a small range of scales[13]. This is clearly
demonstrated in Fig. 2 by the limited lifespan of the “dot”,
“cross”, and “L-junctions”. The ability to explicitly rep-
resent this phenomena is important for multi-scale object
recognition.

The paper is organized as follows. We first introduce



the perceptual pyramid representation in Section 2, and the
algorithm for inferring the sketch pyramid in Section 3. We
show a number of results and applications in Section 4, and
conclude the paper with a discussion in Section 5.

2. Perceptual Pyramid Representation
The perceptual scale space representation includes a pyra-
mid of multi-level sketches (S0,S1, ...,Sn), and a se-
ries of graph grammar rules for perceptual transitions
(R0,R1, ...,Rn−1) between adjacent levels. As there are
multiple paths fromSk to Sk+1, both the optimal sketches
and the transitions have to be computed together by maxi-
mum a posterior probability upwards-downwards the pyra-
mid to form a consistent perceptual pyramid.

2.1 The primal sketch representation

We adopt a primal sketch model studied in [2] as a generic
and parsimonious representation in early vision as Marr
conjectured. When we talk about the perceptual transitions,
we mean the changes of this generic representation with-
out involving the concept of objects, although object tem-
plates can be represented as deformable graphs as part of
the sketch.

Given an input imageI on a latticeΛ, the primal sketch
model divides it into two parts: the “sketchable” partIΛsk

for structures and the “non-sketchable” partIΛnsk for tex-
tures.

I = (IΛsk , IΛnsk), Λ = Λsk ∪ Λnsk. (4)

The structural part assumes an occlusion model whereΛsk

is divided into a number of disjoint domains,

Λsk = ∪Nsk
i=1Λsk,i, Λsk,i ∩ Λsk,j = ∅, i 6= j.

Each domain is covered by a patch from the dictionary of
image primitives∆.

I(u, v) = Bk(u, v), (u, v) ∈ Λsk,i, i = 1, ..., Nsk. (5)

This is an occlusion model in contrast to linear additive
model, andk indexes the primitives in dictionary∆ for
translationx, y, rotationθ, scalingσ, photometric contrast
α and geometric wrapping~β,

k = (xi, yi, θi, σi, αi, ~βi).

Each primitive has a center plus 0-4 anchor points (see
Fig. 3 for examples) for connections with other primitives
and these points are aligned to form a sketch graph struc-
ture with attributes specifying the photometric and geomet-
ric properties. The remaining texture areaΛnsk is clustered
into Nnsk = 1 ∼ 5 homogeneous stochastic textures areas,

Λnsk = ∪Nnsk
j=1 Λnsk,j .

Each follows a MRF model (FRAME) with parametersλj

using the structural part as boundary condition. For details
of the primal sketch model, please refer to [2].

Insk,j ∼ p(IΛnsk,j
|IΛsk ; λj), j = 1, ..., Nnsk. (6)

In summary, the sketchSk at each layer includes all the
above representation including the attributed graph and tex-
tures which we summarize as a generative model,

Ik = g(Sk;∆k), k = 1, 2, ..., n. (7)

Given Ik, Sk is inferred by maximizing a posterior proba-
bility,

S∗k = arg max p(Ik|Sk;∆k)p(Sk), k = 0, 1, ..., n. (8)

The key component inSk is the sketch graphGk =<
Vk, Ek > whereVk is the selected image primitives and
Ek is the connections between adjacent primitives whose
anchor points are aligned. This graph follows an inhomoge-
neous Gibbs model enforcing some Gestalt properties such
as smoothness, continuity, and canonical junctions. Com-
pared with the image pyramid representation with linear ad-
ditive models[8], the sketch representation has two evident
advantages: (1) The number of sketches used to reconstruct
an image is much fewer due to hyper-sparsity of the dic-
tionary learned from images. (2) The sketch graph topol-
ogy captures properties of human perception in contrast to
the independent additive image bases (wavelets). Conse-
quently, it is more meaningful to use the sketch graph to
study the perceptual transitions due to scale change.

2.2 Sketch pyramid and graph grammar

Because of the intrinsic uncertainty in the posterior proba-
bility, the sketch pyramidSk, k = 0, 1, ...n will be inconsis-
tent if each level is computed independently from Eqn. (8).
For example, the graphsGk, k = 0, 1, ..., n may not have
good correspondence, and this may cause a “flickering” ef-
fect when we view the sketches from coarse-to-fine (see
Figs 6.b and 7.b). Therefore we must enforce steady and
monotonic graph transitions over the sketch pyramid. This
is realized by computing the graph grammars.

We denote the discrete Gaussian pyramid byI[0, n] =
(I0, ..., In) and the sketch pyramid byS[0, n] =
(S0, ...,Sn). The transition fromSk to Sk+1 is a genera-
tive model with a sequence ofm(k) production rulesRk,

Rk = (γk,1, γk,2, ..., γk,m(k)). (9)

The order of the rules matters and they constitute a path
in the space of sketch graphs fromSk to Sk+1. Each rule
is applied to a subgraphgk,i with neighborhood∂gk,i and
replaces it by a new subgraphg′k,i. So it is context sensitive.
gk,i may be empty for some “birth” grammar, for example,
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Figure 5: Scale-space of a 1D signal. (a) A 1D signal (marked as a black line) from the toaster image. (b) Trajectories of
the 2nd derivative zero-crossing of the 1D signal [13]. The finest scale is at the bottom. (c) The 1D signal at different scales.
The black segments on the curves correspond to the primal sketch primitives. (d) Symbolic representation of the sketch in
scale-space with three types of transitions.

in which case it will add a new element to the graph. As the
graph is expanding, we requestg′k,i is no less thangk,i.

γk,i : gk,i|∂gk,i → g′k,i|∂gk,i, |g′k,i| ≥ |gk,i|. (10)

Some generic and common grammar rules are

Σgram = {T∅, Tbn, Tbj , Text,

Trec, Tspt, Tcspl, Tbcata, ...}

They stand respectively for null operation (no topology
change), birth of a node, birth of a junction, extending a
node, splitting a ridge terminator into a pair of step-edges
with a set of corners, splitting a ridge into a pair of step-
edges, split of cross to L-junctions, catastrophic birth event,
and catastrophic death event, etc.

Each rule is associated with a probability depending on
its attributes,

γk,i ∼ p(γk,i) = p(gk,i → g′k,i|∂gk,i). (11)

Therefore we have a probability for the transition fromSk

to Sk+1,

p(Rk) = p(Sk+1|Sk) =
m(k)∏

i=1

p(γk,i) (12)

These probabilitiesp(γk,i) were obtained by maximum
liklihood estimate. Seven graduate students with and with-
out computer vision background labeled graph transitions
in 50 images from the Corel database. Some examples of
learning stochastic graph grammars can be found in [12].
We now briefly discuss the three types of graph transitions,
as Figs. 2 and 5 illustrate.

(i) Sharpening of image primitives without structural
changes|gk,i| = |g′k,i|. Only replace the image primitives
from a blurred dictionary∆k to a dictionary∆k+1. Fig. 3
illustrates some examples of the continuous sharpening of
primitives (edges, bars, junctions). This could be used for
image enhancement and super-resolution with limited scale
changes. Fig.5.c also shows the continuous increase in con-
trast of the step edges in the 1D profile.

(ii) Graph grammars for mild changes in the graph topol-
ogy. Fig. 2 shows the examples of switching from a blob to
a cross, then the split of a bar to double step-edges, and ter-
minators to two L-junctions, etc. Each time the expansion
reveals more details. This part is crucial for formulating a
robust super-resolution framework that moves beyond sim-
ple sharpening to hallucinating generic topological struc-
tures.

(iii) Catastrophic changes from texture to texton with ex-
plosive births of image primitives. Fig. 4 shows two ex-
amples where increasing the scale evokes the perception of
many blobs/stripes which cannot be seen at a lower resolu-
tion.

In Fig.5.c the four bars in the toaster are born at one
scale and each bar is further split into two step edges. The
tree structure remains unchanged afterwards with only edge
sharpening with increasing resolution.

In summary, our goal is to infer the sketch pyramid to-
gether with the optimal path of transitions by maximizing a
Bayesian posterior probability,

(S[0, n],R[0, n− 1])∗

= arg max p(S[0, n],R[0, n− 1]|I[0, n])



Figure 6: A church image in scale-space. (a) Original im-
ages over scales. The largest image size is241 × 261. (b)
Initial sketches computed independently at each level by
algorithm[2]. (c) Improved sketches across scales. The dark
dots indicate end points, corners and junctions. (d) Synthe-
sized images by the sketches in (c). The symbols mark the
perceptual transitions denoted in Section 3.

= arg max
n∏

k=0

p(Ik|Sk; ∆k) · p(S0)
n∏

k=1

m(k)∏

j=1

p(γk,j).

Figs. 6.c and 7.c show examples of the inferred sketch
pyramids, and we compare them with the initial sketches
(b) where each level is computed independently. The im-
proved results show consistent graph matching over scales.
We discuss the algorithm shortly.

2.3 Sketch transition as model comparison

A central issue for computing the sketch pyramid and the
perceptual transitions is to decide which structure should
appear at which scale. In other words, we should study the
criterion or mechanism for the transitions. This is a typi-
cal model comparison problem, and can be handled in the
Bayesian framework.

By induction, supposeSk is the optimal sketch fromIk

computed from level0 to k. At the next level, imageIk+1

has increased resolution due to the addition of the Lapla-
cian band imageI+

k . Let S+
k be the new structures intro-

duced (including the three types of transitions). Therefore

we compare the ratio of the posterior probabilities overSk

and(Sk,S+
k ).

δ(S+
k |Ik+1) = log

p(Sk,S+
k |Ik+1)

p(Sk|Ik+1)

= log
p(Ik+1|Sk,S+

k )
p(Ik+1|Sk)

+ log p(S+
k |Sk).

The first term above (log-likelihood ratio) is usually pos-
itive for a good choice ofS+

k because an augmented
generative model will fit the image better, and the prior
term log p(S+

k |Sk) is negative to penalize complex mod-
els. ThereforeS+

k is accepted ifδ(S+
k |Ik+1) > 0. Thus a

new feature is introduced at levelk + 1 if and only if the
following is true

δ(S+
k |Ik+1) > 0 and δ(S+

k |Ik) < 0. (13)

At the top levelk = 0, each pixel summarizes thousands
of pixels at the bottom, by the central limit theorem, we
assumeI0 to be an iid Gaussian model andS0 has an empty
sketch.

3. Upwards-downwards Inference
In this section, we briefly introduce the algorithm that infers
the sketch pyramid upwards-downwards across levels.

The original sketch pursuit algorithm in [2] is not de-
signed to generate sketches across a wide range of scales, so
the consistency of the sketch pyramid was not considered.
In the results shown in Figs. 6.(b) and 7.(b), we observe
some inconsistency in the sketch graph over scales. We use
the original sketch pursuit algorithm to obtain initial sketch
graphs, and then adopt the MCMC reversible jumps[1] to
track and edit the sketch graphs both upwards and down-
wards iteratively in scale-space across scales.

Our Markov chain consists of six pairs of reversible
jumps as follows. They correspond to the grammar rules
in Σgram.

1. Tbn/Tdn: birth/death of a node (denoted by∇),

2. Tbj/Tdj : birth/death of a junction (denoted by∇),

3. Text/Tshr: extending/shrinking a node (denoted by♦),

4. Trec/Tecr: splitting a ridge terminator into a pair of
step-edges with a set of corners, and its reverse opera-
tor (denoted by¤),

5. Tspt/Tmrg: splitting a ridge into a pair of step-edges,
and its reverse operator (denoted by©),

6. Tbcata/Tdcata: catastrophic birth/death a large number
of nodes (denoted by4).

Each pair of reversible jumps is selected probabilistically
and they observe the detailed balance equations. These
steps simulate a Markov chain with invariant probability
p(S[0, n],R[0, n− 1]|I[0, n]) in Eqn.(8).
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Figure 7: Car tracking sequence. (a) Sample frames from the observed sequence. The largest image size is352 × 240.
(b) Corresponding initial sketches from bottom-up algorithm[2]. (c) Corresponding tracked car sketches. The tracked car
sketches are in black. The background sketches are in grey.

4. Two applications

We show two applications of the perceptual scale space with
the sketch pyramid.

1. Multi-scale object tracking. Most work in motion
tracking assumes certain object structures (like a contour[3]
or small Markov graphs [15]) appear in a narrow range of
scales. When the object motion occurs in a wide range
of scales, we observe significant structural changes in the
graph representation. This has always been considered a
challenging problem in the motion tracking literature. Here
we choose the example of tracking a car driving towards the
camera. The results are shown in Fig. 7. The sketches for
the car and background are shown in two different colors.

Scaling is one type of motion different from the tradi-
tional tracking task, as it involves a lot of photometric and
topological changes. Additionally, since our sketch graphs
are inferred upwards-downwards in the pyramid to maintain
consistency, we can even “hallucinate” the detailed sketches
of the car at a far distance. Furthermore, the background
sketches are also stabilized through frames.

Before computing, the car sketches are manually labeled
in the first frame of the video sequence. Then the tracking is
performed by estimating the scale change of the foreground
and, in the mean while, inferring the perceptual transition
grammar rules. We assume the camera is at a fixed position,
thus the background is still.

2. Adaptive image display. This task has recently
emerged from the growing need to display large digital im-
ages (say latticeΛ = 2048 × 2048 pixels) using a small
screen (sayΛo = 128×128 pixels), such as in PDAs, cellu-
lar phones, and digital cameras[14]. Normally a user has to
manually browse through an image by selecting a location
and zooming to the desired level. This is inconvenient for
very large images especially with today’s shrinking screens.
It is desirable then to present the user with a “tour” of the
image that summarizes its informational content in as few
frames as possible. Each frame would then be at a different
location and resolution.

The problem formulation naturally leads to the sketch
pyramid if we interpret informational content as sketch con-
tent. The solution then is to associate each subregion of an
image with a scale such that any further zooming would not
expand its sketch graph, i.e. there is no perceptual gain to
further zooming. A tour would then consist of visiting these
subregions at their identified scales.

For this task, we adopt a quad-tree representation with
the root node representing the top level image of the sketch
pyramid. As shown in Fig.8, when a node in the quad-tree
is split, its 4 children represent 4 sub-images displayed at
the next higher resolution. A node should not be split if no
more perceptual information is available at finer scales. For
example, in Fig.5.c the tree for the toaster does not change
after seeing the step edges, and therefore zooming-in this
part of the image is less desirable.
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Figure 8: The image is partitioned using a quad-tree. A
quad-tree node is expanded to the next level in the sketch
pyramid if and only if the sketch graph expands, i.e. ad-
ditional semantic/structural information appears at the next
higher resolution.

A key to these tasks is to measure the “information gain”
when we split a node. In the perceptual pyramid, a nodev
at levelk corresponds to a sub-graphSk(v) of the sketch,
and its children at the next level correspond toSk+1(v+).
The information gain for this split is measured by

δ(v) = − log2 p(Sk+1(v+)|Sk(v)). (14)

That is the number of new bits needed to describe the graph
expanding. As each node in the quad-tree has an informa-
tion measure, we can expand the node in a sequential order
until a thresholdτ (or maximum numberM ) is reached,

δ(v1) ≥ δ(v1) ≥ · · · ≥ δ(vM ) ≥ τ. (15)

Fig.10 shows results of the quad-tree decomposition and
multi-scale image reconstruction. The reconstructed images
show that there is little perceptual loss of information if each
region is viewed at its determined scale.

The information gain measure in Eqn.(14) is more mean-
ingful than calculating the power of the bandpass Laplacian
images. For example, as shown in Fig.11, a long sharp edge
in an image will spread across all levels of the Laplacian
pyramid, and thus demands continuous refining in the dis-
play if we use the absolute value of the Laplacian image
patches. In contrast, in a sketch pyramid, it is a single edge
and will stop at certain high level. In future work, we plan
to integrate more meaningful information measures on sub-
graphs. For example, faces and texts could be emphasized
more since human vision pays more attention to them.

5. Summary and Future Work
In this paper, we formulate the perceptual scale space rep-
resentation and develop inference algorithms with two ap-
plications. In future research, we will further study two is-
sues: (i) Learning a large set of graph grammars and dic-
tionaries for natural images and objects in addition to mak-
ing a richer connection to the grammar work in the 1980s

Figure 9: Visiting the nodes of a quad-tree decomposition of
a sketch pyramid is an efficient way to automatically convey
a large image’s informational content.

literature[11]. Such grammars and dictionaries are needed
for applications such as super-resolution and defining se-
mantic image metrics, and (ii) studying the hierarchic repre-
sentation of object models for multi-scale feature detection
and object recognition[7, 4].
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