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Abstract

In this paper, we present a two-layer generative model
that incorporates generic middle-level visual knowledge for
dense stereo reconstruction. The visual knowledge is repre-
sented by a dictionary of surface primitives including var-
ious categories of boundary discontinuities and junctions
in parametric form. Given a stereo pair, we first compute
a primal sketch representation which decomposes the im-
age into a structural part for object boundaries and high
intensity contrast represented by a 2D sketch graph, and a
structureless part represented by Markov random field on
pixels. Then we label the sketch graph and compute the
3D sketch (like a wire-frame) by fitting the primitive dic-
tionary to the sketch graph. The surfaces between the 3D
sketches are filled in by computing the depth of the MRF
model on the structureless part. These two levels interact
closely since the MRF is used to propagate information be-
tween the primitives, and at the same time, the primitives
act as boundary conditions for the MRF. The two processes
maximize a Bayesian posterior probability jointly. We pro-
pose an MCMC algorithm that simultaneously infers the 3D
primitive types and parameters and estimates the depth of
the scene. Our experiments show that this representation
can infer the depth map with sharp boundaries and junc-
tions for textureless images, curve objects and free-form
shapes.

1. Introduction

Stereo matching is an intensively studied problem, and
recently there is major interest in studying it using effec-
tive algorithms such as BP[11] and graph cuts[4] based on
Markov random field models and splines [8]. However, the
representations (models) used in these methods are still very
limited. As a result, they often produce unsatisfactory re-
sults when the images have textureless surfaces, such as in-
door walls, or when the images have curve structures which
do not fit to the pixel-based MRF representation. Fig.13 dis-

plays two such results using the state-of-the-art graph cut al-
gorithm. For such images, one could see that just matching
pixels using Markov Random Field priors is not enough. It
is desirable to incorporate some visual knowledge into the
surface representation. In the stereo literature, the 3D re-
construction of curves was studied in [14], but the depth
was obtained only at the location of curve boundaries and
the algorithm does not provide a dense depth estimation. A
pure generative model using primitives for the entire scene
was developed in [5]. We argue that using such paramet-
ric models for the entire scene limits the generality of the
model. Instead, we propose to use parametric models only
for the places of interest in the image, the rest being mod-
eled by a MRF.

In this paper, we present a two-layer generative model
that incorporates generic middle-level visual knowledge for
dense stereo reconstruction. The overall data flow for the
algorithm is illustrated in Fig. 1. Given a pair of stereo
images, we first compute a primal sketch representation[7]
which decomposes the image into two layers. (i) A struc-
tural layer for object boundaries and high intensity contrast
represented by a 2D sketch graph, and (ii) a structureless
layer represented by Markov random field on pixels. The
sketch graph in the structural layer consists of a number of
isolated points, line segments, and junctions which are con-
sidered vertices of different degrees of connection.

Figure 1. The flow diagram of our algorithm.

We then study the 3D structures for these points, line
segments, and junctions and develop a dictionary for dif-
ferent configurations. The boundary primitives correspond
to places where the depth map is not smooth, namely the
boundaries between objects in the scene (first order discon-
tinuities) and the places where the surface normal experi-



ences large changes in direction (second order discontinu-
ities). The curve primitives describe thin curves of different
intensity from the background, and usually represent wire-
like 3D objects such as thin branches of a tree or electric
cables, etc. The point primitives represent feature points
in the image that have reliable depth information. The valid
combinations of these 3D primitives is summarized in a dic-
tionary of junctions. Figs. 4 and 6 shows the dictionaries of
line segments and junctions respectively. Each is a 3D sur-
face primitive specified by a number of variables. The vari-
able number is reduced for degenerated (accidental) cases.

There are three reasons for us to study these primitives.
Firstly, the primitive representation reduces the number of
variables (dimension reduction). For example, a bound-
ary primitive may have 11 pixels in width and 30 pixels in
length, and is described by 4-7 variables which can be more
reliably estimated from data. A similar idea was pursued in
motion boundary estimation in[2]. Secondly, these sketches
are the most informative parts in the images, and it is com-
putationally more effective to compute their 3D depth early
and then propagate the surface information to the textureless
layers. Thirdly, the dictionary of junction primitives limits
the search space by ruling out invalid configurations, like in
line drawing interpretation and perceptual organization[9].

We adopt a probability model in a Bayesian framework,
where the likelihood is described in terms of the matching
cost of the primitives to images, while the prior has terms
for continuity and consistency between the primitives, and
a Markov Random Field to fill in the depth information in
the structureless areas. This Markov Random Field together
with the labeling of the edges can be thought of as a Mixed
Markov Model [6], in which the neighborhood structure of
the MRF depends upon the primitive types, and changes
dynamically during the computation.

The inference algorithm simultaneously finds the types
of the 3D primitives, their parameters and the full depth
map. To make-up for the slowdown given by the long range
interactions between the primitives through the MRF, the
algorithm makes use of data driven techniques to propose
local changes (updates) in the structureless areas.

The paper is organized as follows. We present the repre-
sentation and dictionary of primitives in Section 2, and then
discuss the algorithm in Section 3. We show results in Sec-
tion 4, and conclude the paper by a discussion in Section 5.

2. A two layer representation

Given a stereo pair Il, Ir of images, we are required to
find the depth of all pixels in Il. Assuming that the cam-
era parameters are known, this is equivalent to finding for
each pixel, the horizontal disparity that matches it to a cor-
responding pixel in Ir . Let D be the disparity map that
needs to be inferred and Λ be the pixel lattice.

We assume the disparity map D is generally continu-
ous and differentiable, with the exception of a number of
curves Λsk where the continuity or differentiability assump-
tion does not hold. These curves are augmented with dispar-
ity values and are considered to form a 3D sketch Ds that
acts as boundary conditions for the Markov Random Field
modeling the disparity on Λnsk = Λ \ Λsk.

2.1. The sketch layer – from 2D to 3D

We assume that the places where the disparity is discon-
tinuous or non-differentiable are among the places of inten-
sity discontinuity. The intensity discontinuities are given in
the form of a sketch S consisting of a region layer SR and
a curve SC layer, as illustrated in figure 2. These sketches
can be obtained as in [7, 13]. The sketch edges are approx-
imated with line segments S = {si, i = 1, .., ne}. The seg-
ments that originated from the region layer si ∈ SR will be
named edge segments while the segments originating from
the curve layer si ∈ SC will be named curve segments.

(a) (b) (c)

Figure 2. Our algorithm starts from a two layer
sketch representation. (a) input image, (b)
region layer, (c) curve layer.

Each edge segment si ∈ SR from the region layer is
assigned two 5 pixel wide regions li, ri, on the left respec-
tively on the right of s, as shown in Figure 3. Each curve
segment s ∈ SC is assigned a region r(s) along the seg-
ment, of width equal to the width of the curve. Then all line
segments si ∈ S are augmented parameters to become 3D
sketch primitives, as shown in figure 4. Depending on the
type of segments they originated from, there are boundary
primitives and curve primitives.

Figure 3. Division of the image in Fig. 2 into
sketch primitives and 6x6 pixel regions. Re-
gion layer (left) and curve layer (right).
Because away from the places of discontinuity, the sur-

faces are in general very smooth and to reduce the dimen-
sionality of the problem, the pixels of Λnsk are grouped into
square regions of size 6×6 pixels, by intersecting Λnsk with



a 6 × 6 rectangular grid. Small regions at the boundary be-
tween the primitives and the rectangular grid are merged to
the primitives. This way, the entire lattice Λ is divided into
atomic regions that either are along the sketch S, or are on
the rectangular grid, as shown in Figure 3. This structure al-
lows the use of the thin plate spline model for the MRF and
also enables implementation of good boundary conditions
by the 3D primitives.
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Figure 4. Each sketch segment is augmented
to a primitive from the following dictionary,
order by generality.
Let
V1 = {πi = (si, [li], ri, ti, di, wi[, fi]), i = 1, .., ne} (1)
be the set of all primitives, where the parameters in

brackets might be missing, depending on the primitive type,
as described below:

1. an occlusion label ol
i, o

r
i for each of the regions li, ri,

representing whether they are occluded (0) or not (1).

2. a label ti = t(πi) ∈ {1, .., 8} indexing the type of the
primitive from the primitive dictionary with the restric-
tion that edge segments si ∈ SR can only be assigned
labels from {1, .., 6} while curve segments si ∈ SC

can only be assigned labels from {1, 7, 8}.

• Type 1 represents edges or curves that are on the
surface of the objects.

• Type 2 represents places where the surface is
continuous but the normal is discontinuous.

• Types 3, 4, 5, 6 represent occluding edges where
the occluded surface is on the left (types 3, 4) or
on the right (types 5, 6) of the edge.

• Types 7, 8 represent 3D curves, either connected
with one end to the surface behind, or totally dis-
connected.

3. a label pi specifying whether this primitive is a control
point (value 1) of the thin plate spline or not (value 0).
All horizontal edges have pi = 0 at all times.

4. the disparities di = d(πi) = (d0
i , d

1
i ) at the endpoints

of the segment.

5. the left and right control arm wi = w(πi) = (wl
i, w

r
i )

representing the slope of the disparity map D in the
direction perpendicular to the line segment.

6. for types 3-6, the disparity fi = f(πi) = (f0
i , f

1
i ) of

the occluded surface at the ends of the segment.

Each of the regions li, ri of a primitive πi =
(si, [li], ri, ti, di, wi[, fi]) is assigned a matching cost

c(ri, d) =

��
v∈ri
|Il(v)− Ir(v − dv(πi))| if or

i = 1

α else
(2)

where for each pixel v ∈ ri, dv(πi) is the linear interpo-
lation based on the disparity d at the endpoints of the region,
in the assumption that w = 0. Then the matching cost of
the primitive πi is

c(πi) =

�����
����

c(ri, di) if ti = 7, 8, 1(curve)

c(li, di) + c(ri, di) if ti = 2, 1(region)

c(li, fi) + c(ri, di) if ti = 3, 4

c(li, di) + c(ri, fi) if ti = 5, 6

(3)

Figure 5. A set of edge segments (black) and
their 3D primitives (gray). The primitives form
a graph by the adjacency of the segments.

The boundary primitives form a graph by the natural ad-
jacency relation between the underlying edge segments, as
can be seen in Figure 5. To further restrict the search space,
the junction points of two or more primitives are modeled.
Similar to [9] we will have certain types of possible junc-
tions depending on the degree (number of primitives) of the
junction, as mentioned below and illustrated in Fig. 6.

• junctions of 2 boundary primitives have three main
types: Surface junctions, beginning of occlusion and
occlusion junctions.

• junctions of 3 boundary primitives have three main
types: Surface junctions, Y-junctions and T-junctions.



• junctions of 4 or more boundary primitives are acci-
dental and are assumed to be all surface junctions.

• we assume there are no junctions between one or two
curve primitives and one boundary primitive

• junctions of 1 curve primitive with two boundary prim-
itives have three main types: curve beginning, Y-
junctions and T-junctions.

• junctions of 2 curve primitives have only one type.

• junctions of 3 curve primitives have only one type,
namely bifurcation.

• junctions of 4 curve primitives have two types, namely
curve crossing or curve overlapping. In both cases, the
opposite primitives can be seen as part of the same 3D
curve.
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Figure 6. These are the main types of junc-
tions between boundary and curve primitives.

Let J = {φi = (k, πi1 , ..., πik
), πi1 , ..., πik

∈ V1, i =
1, ..., nJ} be the set of junctions, each containing the list
of primitives that are adjacent to it. Each junction φi ∈ J is
assigned a prior model defined in terms of the junction type
and the directions of the 3D primitives πi1 , ..., πik

meet-
ing in this junction, as illustrated in Figure 7,b). This prior
model assigns a probability P (φi) to each combination of
primitive parameters at junction φi. This prior is composed
of a 3D geometric prior on the primitives and a 2D occur-
rence prior of each particular junction type. Thus

P (φ) ∝ P (φ3D|t, φ2D)P (t|φ2D) (4)
since the 2d geometry φ2D of the junction is fixed.
The prior P (φ3D|t, φ2D) is specific for each junction

type, and depends on the two continuity priors:

pc(πi, πj) ∝ e−βc|dφ
i −d

φ
j |2

ps(πi, πj) ∝ e−βc|dφ
i−d

φ
j |2−βs(|dφ

i −2d
φ
i +d

φ
j |2−|dφ

i−2d
φ
j +d

φ
j |2)

(5)

where di = (dφ
i , d

φ
i ) is the disparity of the primitive πi,

with dφ
j being the disparity at the junction φ endpoint. For

example, the surface junction from Fig. 7 has
P (φ3D|t, φ2D) ∝ pc(πj , πk)pc(πj , πl)pc(πk, πl) (6)
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Figure 7. The prior at each junction between
primitives, encourages 3D continuity of the
line and curve primitives.
while the curve overlapping junction from Fig. 7 has

P (φ3D|t, φ2D) ∝ ps(πi, πk)ps(πj , πl) (7)

2.2. The free-form layer

The primitives π ∈ V1 discussed in the previous section
are elongated primitives corresponding to line segments, so
they can be considered of dimension 1. Other sketch prim-
itives that are involved in the free form layer are the zero
dimensional primitives corresponding to feature points with
reliable disparity information, i.e. point primitives. These
primitives are a subset of the rectangular atomic regions,
and together with the one dimensional boundary primitives
are the control points of the thin plate spline. The curve
primitives are not involved in the MRF computation.

Let R be the set of all rectangular atomic regions.
For each region r ∈ R, we compute a saliency map

ρr(d) ∝ exp(−
∑

v∈r

|Il(v) − Ir(v − d))|/10) (8)

to all possible disparities d ∈ [dmin, dmax]
Then the rectangular regions

R = {ri = (di, si, µi, σ
2
i ), i = 1, .., nr} (9)

have the following parameters:

1. the disparity di = d(ri) of the center of the region

2. a label oi specifying whether this region is occluded
(value 0) or not (value 1).

3. a label pi = p(ri) ∈ {0, 1} representing whether the
region is a point primitive (i.e. control point for the
thin plate spline) or not.

4. the mean µi and variance σ2
i of the saliency map ρri .

Following [1] the occlusion labels are deterministically
decided. The matching cost for each region ri ∈ R is

c(ri) =

�
α if oi = 0�

v∈ri
|Il(v)− Ir(v − di))| if oi = 1

(10)



The set of point primitives is denoted by

V0 = {ri ∈ R, pi = 1}. (11)
In Figure 8 are illustrated the point and boundary primi-

tives that act as control points for the Λnsk part. The depth
and disparity maps obtained this way are shown in Figure
14, obtained from V1 andR by interpolation using the MRF.

Figure 8. Left image of a stereo sequence and
the control points (point and boundary prim-
itives) of the thin plate spline.

By using the boundary primitives to model the places of
discontinuity, the obtained disparity map has crisp discon-
tinuities at the object boundaries and is smooth everywhere
else, as shown in Figure 14.

2.3. Bayesian formulation

We formulate our model using the Bayes rule:

P (V1, R|Il, Ir)=P (Il|Ir,V1,R)P (R−V0|V0,V1)P (V0,V1) (12)

The likelihood P (Il|Ir, V1, R) is expressed in terms of
the matching cost c(πi), c(rj) of the sketch primitives.

P (Il|Ir , V1, R) ∝ exp[−
ne∑

i=1

c(πi) −
∑

rj∈R

c(rj)] (13)

The prior

P (R− V0|V0, V1) ∝ exp[−Ec(R) − βbEb(R, V1)] (14)

is defined in terms of the energy of the soft control
points:

Ec(R) =
∑

rj∈V0

(dj − µj)/2σ2
j (15)

pi

Figure 9. The region not covered by boundary
primitives has a thin plate spline prior, com-
puted on a rectangular grid that intersects the
wings (atomic regions) of the primitives.

and the thin plate bending energy:

Eb(R, V1) =
�

(x,y)∈G

[d2
xx(x, y)+2dxy(x, y)2+d2

yy(x, y)] (16)

which is computed on a 6 × 6 grid G containing
the centers of all the rectangular regions and neighbor-
ing grid points on the boundary primitives. For exam-
ple, if the point (x, y) ∈ G is the center of rj ∈ R and
rN , rNW , rW , rSW , rS , rSE , rE , rNE are the 8 neighbors
of rj , then

dxx(x, y) = dW − 2dj + dE

dyy(x, y) = dN − 2dj + dS

dxy(x, y) = (dNE + dSW − dNW − dSE)/4

Similar terms in the bending energy Eb(R, V1) can be
written for cases where one or many of the neighbors are
boundary primitives. However, there are no terms involving
the left and right atomic regions li, ri ∈ πi belonging to the
same edge primitive πi.

The prior P (V0, V1) = P (V0)P (V1) assumes a uniform
prior on V0 while P (V1) encourages continuity of the 3D
boundary primitives.

P (V1) =
∏

φi∈J

P (φi) (17)

where the junction prior P (φi) was defined in Sect. 2.2.

3. The inference algorithm

There are two types of variables that exist in this problem
formulation, discrete and continuous. The discrete variables
are

∆ = V d
1 ∪Rd (18)

consisting of V d
1 = {(t(π), ol(π), or(π), p(π)), ∀π ∈

V1} and Rd = {(o(r), p(r)), ∀ r ∈ R}. All other variables
are continuous, namely V c

1 = V1 \ V d
1 and Rc = R − Rd,

and can be divided into the boundary conditions

Γ = V c
0 ∪ {d(π), ∀π ∈ V1, p(π) = 1} (19)

and the fill-in variables
Ψ = {([w(π)], [f(π)]), ∀π ∈ V1}∪
{d(π), ∀π ∈ V1, t(π) = 1} ∪Rc − V c

0 .
(20)

The posterior probability can then be written as

p(V1, R|Il, Ir) = p(∆,Γ,Ψ|Il, Ir) (21)

In a MAP formulation, our algorithm performs three
tasks simultaneously:

• Reconstructs the 3D sketch to infer the parameters Γ
of the primitives.

• labels the graph to infer the discrete parameters ∆, i.e.
associates the primitives with the appropriate types.
This represents the detection of surface boundaries and
of the feature points of the image.

• Performs ”fill in” of the remaining parts of the image,
using the MRF and Γ,∆ as boundary conditions, to
infer Ψ and obtain a dense disparity map D.



The system is initialized by using an approximation of
the posterior that only takes into account the matching cost
of the edge regions πi ∈ V1 and the junction prior.

P (V1|Il, Ir) ∝
ne∏

i=1

Lπi(ti)
∏

φi∈J

P (φi) (22)

The initialization algorithm contains three types of
moves:

• a single node move changing one variable di at a time.

• a move that simultaneously shifts all di at a junction φ
by the same value.

• a labeling move similar to the MCMC algorithm de-
scribed below, accepted based on the posterior proba-
bility from Eq. (22).

It quickly propagates the depth information along the
sketch and obtains a good initialization as seen in Fig. 10.

Figure 10. Initialization is obtained by propa-
gating the junction priors along the sketch.
The fill-in variables Ψ can be computed analyti-

cally, since for fixed ∆,Γ, the conditional probability
log(P (Ψ|∆,Γ)) is a quadratic function in Ψ. This implies
that Ψ can be regarded as a function on ∆,Γ, Ψ = ψ(∆,Γ).
This restricts the problem to maximizing the probability
P (∆,Γ, ψ(∆,Γ)|Il, Ir), of much smaller dimensionality.

Figure 11. The fill-in can be restricted to re-
gions bounded by control point boundary
primitives. In a few steps, the initial 3D recon-
struction before graph labeling is obtained.
However, minimizing− log(P (Ψ|∆,Γ)) analytically in-

volves finding the inverse of a n×n matrix where n = |Ψ|.
This can be computationally expensive if all Ψ is updated,
since Ψ is on the order of |Ψ| ∼ 4000. But since inside each

of the regions bounded by the control point sketch primi-
tives, the variables depend only on the control points inside
and on the boundary of this region, the computation can be
localized to each of regions independently, as shown in Fig-
ure 11, and the computation demand will be much lower.
Shown in Fig. 11 are the 3D reconstructions after 0,1,4,5
connected components have been updated. The horizontal
edges change the disparity at the same time with the interior
lattice, because they are not control points.

T-junction

Y-junctionocclusion edge Y-junction

p p pp

Figure 12. Each graph labeling move changes
the types of a set of primitives in a consistent
manner in a growing process. Illustrated is
the left side of the umbrella image.

After the initialization, the depth of the sketch primitives
{d(π) ∈ Γ} will be fixed.

To maximize P (∆,Γ, ψ(∆,Γ)|Il, Ir) we will use a
Markov chain Monte Carlo algorithm that will sample
P (∆,Γ, ψ(∆,Γ)|Il, Ir), and this way obtain the most prob-
able solutions.

Based on the matching cost, for each primitive we com-
pute a likelihoodLπ(π) toward the different primitive types.
Using this intensity-driven likelihood, we construct a likeli-
hood, driven simultaneously by the image intensity and the
geometry (relative position of primitives), for each junction
φ = {π1, ..., πk}:

Lφ(t) = P (φ)Lπ1(t1)...Lπk
(tk) (23)

These likelihoods are used to propose a coherent set of
primitives in each MCMC move.

At each step, the algorithm proposes, as shown in Figure
12, new types for a set of primitives N and junctions J in
one move, as follows:

1. Grow a set N of primitives as follows:
1. Choose a random non-horizontal primitive π
2. Initialize N = {π} and J = {φ1, φ2} where φ1, φ2 are the

two junctions adjacent to π.
3. Sample the primitive type t(π) from the likelihood Lπ(t).
4. Sample the type of φ ∈ J from Lφ(t), conditional on the

primitive type t(π). This determines the types of all primitives
of Nn = {π′ �∈ N, π′ ∼ φ for some φ ∈ J},where π ∼ φ
means π is adjacent to φ.

5. Set N ← N ∪Nn.
6. Initialize Jn = ∅.
7. For each π ∈ Nn, pick the adjacent junction φ �∈ J .

If π changed its type at step 4, set Jn ← Jn ∪ {φ},
else set Jn ← Jn ∪ {φ} with probability 0.5.

8. Set J ← J ∪ Jn.
9. Repeat steps 4-8 for each π ∈ Nn and each φ ∈ Jn, π ∼ φ.

2. Update the fill-in variables Ψ(∆, Γ) where it is necessary.
3. Accept the move based on the posterior p(V1, R|Il, Ir).



4. Experimental results

The experiments are presented in Fig.14 where five
typical images for stereo matching are shown. The first
two have textureless surfaces and the most information is
from the surface boundaries. The fourth image has curves
(twigs). For these three images, it is not a surprise to see that
the graph cut method with simple MRF models on pixels
produce unsatisfactory results (see Fig.13 for comparison).
The third and fifth images have free-form surfaces with or
without textures from [8]) and [10].

(a)

(b)

(c)

Figure 13. Two comparison examples using
the graph cuts algorithm on scenes containing
textureless surfaces and thin curve struc-
tures. (a) left image, (b) disparity map, (c)
3d map. Our results are shown in Fig.14.

We have also shown the interactions of the two layers
and the effects of sketch labeling in Fig. 11.

5. Discussion

In this paper we presented a two-layer generative rep-
resentation for dense stereo reconstruction. By studying a
dictionary of boundary and junction primitives, we incor-
porate some generic middle level visual knowledge to ob-
tain accurate depth at object boundaries, junctions, and to
handle 3D curves structures such as twigs, cables etc., thus
our method being applicable on a broad range of images.
The two layers of Markov random field models– one on the
sketch layer and one on the pixel layer work collaboratively

in optimizing a Bayesian posterior probability. Our method
achieve satisfactory results in comparison to the state of the
art graph cut method.

We would like to aknowledge support from NSF grants
IIS-0222967 and IIS-0244763.
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(a) (b) (c) (d)

Figure 14. Results obtained using our method. (a) left image of the stereo pair, (b) 3D sketch using
the primitives, (c) 3D depth map, (d) disparity map.


