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Abstract. This paper presents a Bayesian inference algorithm for im-
age layer representation [26], 2.1D sketch [6], with mixed Markov random
field. 2.1D sketch is an very important problem in low-middle level vi-
sion with a synthesis of two goals: segmentation and 2.5D sketch, in
other words, it is to consider 2D segmentation by incorporating occuli-
sion/depth explicitly to get the partial order of final segmented regions
and contour completion in the same layer. The inference is based on
Swendsen-Wang Cut (SWC) algorithm [4] where there are two types
of nodes, instead of all nodes being the same type in traditional MRF
model, in the graph representation: atomic regions and their open bonds
desribed by address variables. These makes the problem a mixed ran-
dom field. Therefore, two kinds of energies should be simultaneously
minimized by maximizing a joint posterior probability: one is for region
coloring/layering, the other is for the assignments of address variables.
Given an image, its primal sketch is computed firstly, then some atomic
regions can be obtained by completing some sketches into a closed con-
tour. At the same time, T-junctions are detected and broken into ter-
minators as the open bonds of atomic regions after being assigned the
ownership between them and atomic regions. With this graph represen-
tation, the presented inference algorithm is performed and satisfactory
results are shown in the experiments.
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1 Introduction

This paper presents a Bayesian inference algorithm for image layer representa-
tion [26], that is 2.1D sketch [6], with mixed Markov random field. The general
goal of 2.1D sketch is to resume the occluded structure part of object and find
the occlusion relation (partial order) of all objects in a scene. 2.1D sketch is a
very important issue in low-middle level vision tasks and remains a challenging
problem yet in the literature. Solving 2.1D sketch is a critical step for scene
understanding in both still images and video, such as foreground/background
separation, 2.5D sketch, motion analysis, etc.
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Layer representation is firstly presented by Wang and Adelson for motion
analysis [26]. Based on this idea, the concept of 2.1D sketch was then proposed
firstly by Nitzberg and Mumford [6]. In their works, T-junctions detected on
region’s boundaries provide the cue information of occlusion relation, and an
energy function is minimized to get 2.1D sketch with experiments on some simple
images.

Fig. 1. Illustration of the 2.1D sketch. (a) is the original image, Kanizsa figure. (b) is the
sketch graph computed by the primal sketch model after interactively labeling. there
are 8 atomic regions and 12 terminators broken form T-junctions. (c) is the 2.1D sketch.
There are 4 layer and the contour completion is performed using Elastica rules. (d) is the
Hasse diagram for partial order relation, such as < 7, 1 > means region 7 occludes region
1. (e) is the graph representation with mixed Markov random field. Each big circle
denotes a vertex of atomic region, each blue bar denotes one terminator, each little circle
denotes a vertex of open bound described as address variable. Each region may have two
or more terminators. The blue line segments connect the two neighboring regions. The
red two-way arrows connect two terminators and each terminator is assigned another
terminator’s address variable.

As Fig.1 shown, it is an illustration of the 2.1D sketch for the well known
Kanizsa figure. The final layer representation with contour completion is shown
in Fig.1(c). There are 8 atomic regions in total as shown in Fig.1(b), denoted by
0, 1, ..., 7 in Fig.1(d) for showing the diagram of the partial order and x0, x1, ..., x7

in Fig.1(e) for showing the the graph representation with mixed random field.
There are 12 T-junctions in total and they are break into terminators a, b; c, d;
e, f ; g, h; i, j; k,m as shown in Fig.1(b). These terminators are called open
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bonds described as address variables for corresponding atomic regions, denoted
by ya, yb; ...; yk, ym in Fig.1(e). Both the atomic region vertices and the corre-
sponding address variables vertices yield the graph representation and address
variables would reconfigure the graph structure. And it is these address variables
that make the problem a mixed random field:

(1) The vertices are inhomogeneous with different degrees of connections and
should be inferred from the images;

(2) The neighborhood of each vertex is no longer fixed but inferred as address
variables, which yields and would reconfigure the graph structure.

The compatibility between any two terminators is a function defined on dif-
ferent cues such as appearance, geometric properties (eg. Elastic rules), etc. The
compatibility function is then used as the weight of edge in the graph represen-
tation. For the simple case shown in Fig.1, Fig.2 shows the inferential computing
procedure using Gibbs sampler with anneal simulating starting from initial tem-
perature T = 20.

In the literature, there are some related works on 2.1D sketch. Stella [8] etc
proposed a model for Figure-Ground segregation based on hierarchical Markov
random field. They used clique potentials in MRF to encode local logical deci-
sion rules and demonstrated a system that automatically integrating sparse local
relative depth cues arisen from T-junctions over long distance into a global or-
dering of relative depths. Eseddoglu and Riccardo March [7] proposed to segment
image with depth but without detecting junctions. They described a technique
in the variational formulation of minimizing Mumford-Shah’s energy function
that avoided explicit detection/connection of T-junction. These works did not
consider the the problem of address variable explicitly.

In contrast, this paper formulates 2.1D sketch using mixed random field, and
presents a Bayesian inference algorithm based on Swendsen-Wang Cut algorithm.
According to the authors’ knowledge, this is the first time to solve 2.1D sketch
problem inferencing based on mixed random field.

Given an image, its primal sketch is firstly computed using the primal sketch
model [2], then some atomic regions can be obtained by completing some sketches
into a closed contour using some interactive operations for the time being as
shown in Fig.3 and other results in experiments. From sketch to atomic region
is not the main issue of this paper, so, currently we use some interactive op-
erations, and this is also a common assumption in the literature. At the same
time, T-junctions are detected using a method developed in the author’s group
recently [14] as shown in Fig.3 and other results in experiments. T-junctions are
then broken into terminators as the open bonds or address variables of atomic re-
gions after being assigned the ownership between them and atomic regions. Each
address variable should be assigned with another one to make contour comple-
tion to get larger segmented regions consisting of some atomic regions. Then
a graph representation can be obtained and consists of two kinds of vertices:
atomic regions and its corresponding address variables. So there are two kinds
of energies that should be minimized at the same time: region coloring/layering
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and address variable assignment, by maximizing a joint posterior probability.
Some results are shown in Section 2 and Section 3.

The remainder of the paper is organized as following. Section 2 formulates
the problem under Bayesina framework and defines some used concepts and
variables. Section 3 presents the inference algorithm based on Swendsen-Wang
Cut algorithm with experiments in Section 4. Some conclusions and discussions
are come at in Section 5.

2 Problem Formulation of the 2.1D Sketch

2.1 Graph Representation

Given an image defined on lattice Λ with occlusion relations among the objects in
it, eg. Fig.1 and other examples in this paper, its sketch graph is computed using
the primal sketch model [1, 2], followed by some manually interactive operations
to get initial partition of the image domain with some atomic regions. Because
the step from primal sketch to initial atomic regions are not the main issue of
this paper and it is another research subject in the literature, we simplify this
step by using manually interactive operations, and this is a common assumption
in dealing with 2.1D sketch for the time being. These atomic regions are one
kind of vertex in the graph. For each atomic region, there are some open bonds,
described as address variables, which are obtained by breaking the T-junctions.
Each T-junction is broken into a line segment and a terminator, and the ter-
minator is described by address variable treated as the other kind of vertex in
the graph. Address variables should be assigned to another one, inferring from
the image. Some examples are shown in Fig.3, etc. With this graph representa-
tion, 2.1D sketch can be formulated as graph partition problem. Swendsen-Wang
Cut(SWC) is a recently developed algorithm to solve general graph partition
problem. In the following, some definitions of the problem domain are given,
bayesian formulation and the inference algorithm based on SWC are derived.

2.2 Definition of the Problem Domain

In this section, we define the elements in the 2.1D sketch representation. As
stated above, it is a mixed random field with two kinds of vertices in the graph
representation: a set of connected regions and a set of terminators broken from
T-junctions. The regions set are defined as:

Ωx = {R1, R2, · · · , Rn} (1)

the regions will be divided into an unknown number of K layers.

Ωl = {1, 2, · · · ,K},K ∈ |Ωx| (2)

each region Ri, i ∈ [1, n] has a label for its layer, lRi
∈ X defined below. The

terminators are also called open-bonds to be completed after inference, which
can be defined as:

Ωa = {a, b, · · · , N} (3)
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on Ωx we define the layer information:

X = (x1, x2, · · · , xn), xi ∈ Ωl,∀i ∈ Ωx (4)

region Ri is said to occlude Rj if xi < xj , region Ri and Rj are in the same
layer and can be connected into one region if xi = xj .

On Ωa, a set of address variables are defined for the contour completion
information of open bonds:

Y = {ya, yb, · · · , yN}, ya ∈ Ωa,∀a ∈ Ωa (5)

this will tell to whom the terminator a is connected. A terminator connects to
itself when the T-junction is not broken. An example is shown in Fig.1.

2.3 Bayesian Formulation

According to the above definitions, 2.1D sketch is then represented by a hidden
vector variable W , which describes the world state for generating the image I.

W = (X, Y ) (6)

The solution vector W includes the following information in two graphical
representation: (1) Partial orders represented by an Hasse diagram as shown in
Fig.1 (d), where each arrow indicates an occlusion relation. The arrow between
two nodes i, j often decide the ownership of the boundary (contour) between
regions Ri and Rj . For example, if region 2 occludes region 0, then region 2
owns the red boundary and consequently, it owns the two terminators c and d.
Similarly, if region 4 occludes region 0, then region 4 owns the green contour.
Thus region 4 own terminator g and i. This is not a trivial problem. In some
rare accidental cases, two regions may co-own the contour between them; and
(2) Graph representation with mixed Markov random field as shown in Fig.1 (e).

In a Bayesian framework, we make inference about W from input image I
over a solution space Ω:

W ∗ = (X, Y )∗ = arg max p(X, Y |I) = arg max p(I|X, Y )p(X, Y ) (7)

or preserving multiple interpretations, each with a probability:

W1,W2, · · · ,Wk ∼ p(I|X, Y )p(X, Y ) (8)

As we mentioned before, there are two kinds of energies that should be min-
imized simultaneously and described in the above joint probability distribution.

The prior probability p(W ) is a product of the following probabilities.
1. An exponential model for the number of layers p(K) ∝ exp{−λ0K} .
2. A model for the size of each ”larger” region R, A = |R|, consisted of some

atomic regions after contour completion in each layer. The prior encourage large
and connected regions. We take a distribution p(A) ∝ exp{−γAc}, where c = 0.9
is a constant in this paper.
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3. The prior for the layer of a region p(lR) is assumed to be uniform, and the
prior for the address variable is also uniform.

In this paper, we adopt a mixture of Gaussians for generative region model,

J(x, y) =
∏
v∈R

[
m∑

i=1

(αiG(Iv − µi;Σi))]. (9)

The image likelihood p(I|X, Y ) is defined as:

p(I|X, Y ) ∝ exp{−
K∑

i=1

∑
(x,y)∈Di

|I(x, y)− J(x, y)| −
K∑

i=1

N∑
m=1,n=1

T (m,n)} (10)

where K is the total number of layer, Di is the domain of region in the layer i
,I(x, y) is color value in RGB space for any (x, y) ∈ Λ. N is the total number of
open bonds, T (m,n) denote the link energy of terminator m and terminator n
when the edge between the two terminators are ’on’.

3 Inference

The presented inference algorithm is based on Swendsen-Wang Cut algorithm
[3, 4, 23] which generalized a well accepted cluster sampling algorithm for solving
graph partition problem. Generally speaking, there are three steps in performing
a SWC algorithm: (1) initialization of an adjacency graph by computing local
discriminative probabilities for each edge based on image data and the prior;
(2) graph clustering under a given partition by removing all edges between ver-
tices of different labels, probabilistically turning on/off of each of the remaining
edges according to its weight; (3) graph flipping of the label for a selected con-
nected component with a probability driven by the posterior. Details of the SWC
algorithm are referred to reference [3, 4]. In the following, how to design the dis-
criminative probabilities as weights of edges is given firstly, then we describe the
inference algorithm for 2.1D sketch.

3.1 Discriminative Probabilities on Edges

After being broken from T-junctions, terminators or open bonds need to find a
match by testing the compatibilities on different cues such as appearance (eg.
profile matching), geometric properties (eg. smoothness), etc. These cues define
the discriminative probabilities as the weights of edges in the graph. By sampling
these probabilities, we can get new configurations of the graph.

Given an adjacency graph, for each open bond of each atomic region (vertex
in initial graph), we extract a patch from the terminator and compute a 3D
histogram with 15-bin in each dimension then normalize the histogram. For
each edge e =< vi, vj >, we assign a binary random variable µe ∈ {on, off} and
define the discriminative probability on edge as following:
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qe = p(µ)e−Eterminator (11)

Eterminator = α0Eprofile + α1Eelastica (12)

Where α0 and α1 are constant, they will be adjusted in experiments.

Eprofile = (KL(pi||pj) + KL(pj ||pi)/2 (13)

Eelastica =
∫

Γ

(ν + αk2)ds (14)

Where ν and α are constant, Γ is the boundary. By minimizing the energy, the
Elastica function considered the orientation consistency as well as the shortest
pathway.

3.2 Algorithm

We summarize the presented algorithm in the following table.

Bayesian Inference for 2.1D Sketch

Input an image and set the parameters (α0, α1, ν, α, sweep number and
temperature value for anneal simulating):
1. Computing primal sketch for input image and interactively completing
the sketches into close contour to get atomic regions
2. T-junctions detection and obtaining the open bond for each atomic region.
3. Initialization of adjacency graph.
4. Computing the discriminative probabilities on edges.
5. Select a region and select a layer(label) to it as in SWC algorithm;
6. Sample the open bonds according to the edge probabilities in each layer;
7. Connect terminators with curves according to open bonds’ link status and
generate new regions if some terminators and line segments can be combined into
contours;

Repeat 5-7 within given sweep number and at the same time reduce the
temperature every several steps.

At each step, the acceptance probability is:

α(A → B) = argmin{1,
q(B → A)
q(A → B)

· p(B)
p(A)

} (15)
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Where A and B are the two different states in node flipping process. q(B →
A) is the posterior probability from state B to state A and q(A → B) is from A
to B, let π denote state A or B, then the likelihood is in equation 10.

the transition probability is:

q(A → B) = q(A → B)layer ∗ q(A → B)connect (16)

and

q(A → B)layer =
p(B → A)
p(A → B)

=
nA + 1
nB + 1

(17)

q(π) = exp{−
K∑

i=1

∑
(x,y)∈Ai

|I(x, y)− J(x, y)| −
K∑

i=1

N∑
m=a,n=a

T (m,n)} (18)

where Ai is the terminator’s patch domain. all pixels’ profile can get from the
primitive’s photometric attributes. I(x, y) is the profile getting from the primi-
tive dictionary, J(x, y) is the color value from a color model, here we use gaussian
model. N is the total number of open bonds, T (m,n) denote the link energy of
terminator m and terminator n when the edge between the two terminators is
’on’.

Fig.3 is an experiments result for the algorithm. The image is divided into
3 layers: the foreground layer, middle layer and background layer. The gaps be-
tween terminators are filled by curves which come from minimizing the Elastica
function. The area are filled with a kind of color, the initial boundaries condition
are from the corresponding primitive patch , the primitives are selected from a
primitive dictionary.

4 Experiments

The presented inference algorithm is tested on a variety of natural images.
As shown in Fig.3, the boundaries of the plate in the image are occluded

by a chopstick and the chopstick is still occluded by another chopstick and
the plate and chopstick’s regions can be cut into several atomic regions. The
algorithm connects these regions in each layer with some curves cued by the
terminator’s boundaries’ information and completed with boundaries’ profile
using heat diffusion. The background sketchable also are filled with some curves
and the area was completed using colors.

More results are shown in Fig. 4.

5 Discussion

This paper presents a Bayesian inference algorithm for image layer represen-
tation with mixed Markov random field. We conducted several experiments to
demonstrate the algorithm by satisfactory results. The key contribution of this
paper is that it is the first time to formulate the 2.1D sketch using mixed ran-
dom field and present an inference algorithm to solve region coloring/layering
and assignments of open bonds simultaneously.
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Fig. 2. Illustration of inferential Computing procedure. Each red node denotes a region,
black line segment denotes terminator and the green line segment shows the inferred
connection or assignment of address variable. Inference starts from a initial temperature
T = 20, (a) ∼ (h) are the results in different temperatures. After T = 1, the result is
right as in the figure.
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Fig. 3. One running example. There are three layers in the original image (a). (b) is
atomic regions obtained by completing some sketched into a close contour; (c) shows
the T-junction detection results based on the primal sketch.(d) shows the contour
completion result after inference and (e)is the final layer representation.
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