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Abstract

Image patches are fundamental elements for object mod-
eling and recognition. However, there has not been a
panoramic study of the structures of the whole ensemble
of natural image patches in the literature. In this article,
we study the structures of this ensemble by mapping nat-
ural image patches into two types of subspaces which we
call “explicit manifolds” and “implicit manifolds” respec-
tively. On explicit manifolds, one finds those simple and
regular image primitives, such as edges, bars, corners and
junctions. On implicit manifolds, one finds those complex
and stochastic image patches, such as textures and clutters.
On different types of manifolds, different perceptual metrics
are used. We propose a method for learning a probabilistic
distribution on the space of patches by pursuing both types
of manifolds using a common information theoretical crite-
rion. The connection between the two types of manifolds is
realized by image scaling, which changes the entropy of the
image patches. The explicit manifolds live in low entropy
regimes while the implicit manifolds live in high entropy
regimes. We study the transition between the two types of
manifolds over scale and show that the complexity of the
manifolds peaks in a middle entropy regime.

1. Introduction

Image patches at multiple resolutions are fundamental
elements for object recognition. Recently, a number of
patch-based methods have been proposed in the literature
[5, 6, 8, 13]. Meanwhile, different theories have been devel-
oped for modeling natural image patches, including sparse
coding models [12] and Markov random fields [15]. How-
ever, there has not been a panoramic study of the struc-
tures of the whole ensemble of natural image patches, ex-
cept some recent attempts to calculate the statistics of3× 3
patches in natural images [7, 3]. Such a panoramic point of
view is useful because it enables us to view different models
simply as different manifolds in the space of image patches,
so that these models and concepts can be pursued in a com-
mon framework.

To be more specific, we argue that the two classes of
models – the generative sparse coding models and the de-
scriptive Markov random fields [15] are two different ways
of representing and mapping natural image patches with dif-
ferent metrics for different purposes.

Sparse coding models for geometric primitives[12]:
These models represent image patches by an image gener-
ating function parameterized by a small number ofhidden
variablesindexing the photometric and geometric proper-
ties of the image patches. By varying the values of these
variables, the model generates a set of image patches that
span a low-dimensional manifold in the space of image
patches. We call this manifold theexplicit manifold, be-
cause the image patches on this manifold can be accurately
mapped and reconstructed explicitly by the corresponding
values of the variables in the model. On explicit manifolds,
we usually find simple and regular image patches such as
edges, bars, corners, junctions, and other geometric primi-
tives. The left picture of Fig.2 illustrates the explicit mani-
folds, where each image patch is a point. An explicit mani-
fold can be a zero-dimensional point, one-dimensional line,
or a two-dimensional surface etc. Two image patches are
considered similar if their values of hidden variables are
close to each other.

Markov random fields for stochastic textures[15]: These
models represent image patches by a small number offea-
ture statisticsindexing the texture properties of the image
patches. Two image patches have similar texture properties
as long as the values of their feature statistics are close to
each other, even though they may differ greatly in image in-
tensities. The set of image patches that share the same value
of feature statistics form animplicit manifold, because these
image patches cannot be explicitly reconstructed by the fea-
ture statistics, which only impose some constraints. On im-
plicit manifolds, we usually find complex and stochastic im-
age patches such as textures and clutters.

In the space of image patches, implicit manifolds have
higher dimensions and often submerge explicit manifolds.
By analogy to cosmology, the distribution of natural image
patches is similar to the distribution of mass in the universe
as shown in Fig.1. The image patch space has many low



Figure 1. The distribution of natural image patches is similar to the
distribution of mass in universe, where there are high density and
low volume stars as well as low density and high volume nebulae.

dimensional explicit manifolds with high densities, they are
like the bright stars in Fig.1. For example, a step edge is
a low dimensional manifold in the image space [7]. There
are also many high dimensional implicit manifolds, they are
like the nebulae in Fig.1. For example, the texture patches
of sky, wall, floor, foliage etc. live on high dimensional
implicit manifolds.

The mixing of these manifolds make the clustering and
learning tasks difficult. Recently, there has been some work
on clustering data by generalized PCA [9], which assumes
linear subspaces, which are explicit manifolds. In the liter-
ature of vision and machine learning, there has been no pre-
vious work that learns the explicit and implicit manifolds si-
multaneously. Although some models like Mumford-Shah
[11] incorporate both Markov random fields and edge prim-
itives, there is neither theoretical justification for suchmod-
els nor information theoretical principles for learning them.

From the panoramic point of view, different image mod-
els correspond to different manifolds in the same space
of image patches. Thus, we can pursue different models
in a common framework of selecting manifolds to model
the ensemble of natural image patches by minimizing the
Kullback-Leibler divergence. This gives a theoretical justi-
fication why we need hidden variables and feature statistics
to characterize natural image patches.

We also study the connection between the two types of
manifolds in terms of scale or resolution. We show that
image patches corresponding to different scales or resolu-
tions should be fitted by different types of manifolds, and
the complexity of the manifolds peaks at medium resolu-
tion, which is considered the most informative resolution
for object recognition.

2. Two types of manifolds and image modeling

2.1. Explicit and implicit manifolds

Consider image patchesI defined on a domainD (e.g.,
20 × 20 lattice) with|D| pixels. LetΩ = [1, L]D be the set
of all image patches, where the grey levels ofI take integer

values from1 to L. Ω is the space of image patches.

Figure 2. Illustration of explicit manifolds and implicit manifolds
in the space of image patches, where each image patch is a point.
In the left figure, an explicit manifold can be a low-dimensional
surface. In the right figure, the image patches are mapped to fea-
ture statistics such as marginal histograms that constrainimplicit
manifolds.

Definition: An explicit manifold is defined as

Ωex = {I : I = Φ(w), ∀w ∈ W}, (1)

whereΦ(w) is an explicit image generating function, and
I = Φ(w) means both sides are equal up to discretization
accuracy. w is a low-dimensional hidden variable taking
values in a setW . w usually includes both photometric and
geometric properties of the image patches. See Fig.2.(a)
for an illustration of the explicit manifolds.

An example ofΦ(w) is edge and bar model [2]. An edge
patch is modeled by a function whose profile is a step func-
tion blurred by a Gaussian kernel. The photometric compo-
nents ofw include the intensities on the two sides of the step
function, as well as the standard deviation of the Gaussian
kernel. The geometric components ofw include location,
orientation, and length of the function. A bar patch is mod-
eled by a function whose profile has three constant frag-
ments. The edge and bar model can be further composed
into corners, junctions and crosses etc [4].

There can be a large number of primitives, which cor-
respond to a large number of explicit manifoldsΩex

m , m =
1, ..., M .

Definition: An implicit manifold is defined as

Ωim = {I : h(I) = h}, (2)

where h(I) = 1

|D|

∑
x∈D Fx(I) is the feature statistics

pooled over the patch for some feature extractorF . Usu-
ally h(I) is the marginal histograms of filter responses or
local orientations, see Fig.2.(b) for an illustration.

An implicit manifold is indexed byh. Asymptotically,
the uniform distribution overΩim defined by (2) is equiva-
lent to the following Markov random field model [15]

p(I;h) =
1

Z(λ)
exp{〈λ,H(I)〉}, (3)



where Z(λ) is the normalizing constant, andH(I) =∑
x Fx(I). λ is calculated so thatEλ[h(I)] = h. The rea-

son for this asymptotical equivalence is that as|D| → ∞,
H(I)/|D| converges to a constant due to ergodicity, and p(I ;
h) is constant for all thoseI with the sameH(I).

There can be a large number of Markov random fields
or feature statistics, which correspond to a large number of
implicit manifoldsΩim

m , m = 1, ..., M .

2.2. Image modeling and KL divergence

Let f(I) be the frequency distribution of the whole en-
semble of image patches overΩ. The goal of visual learning
is to learn a statistical modelp(I) to approximatef(I), by
minimizing the Kullback-Leibler divergence

D(f ||p) = Ef [log
f(I)

p(I)
] = −Ef [log p(I)] + const (4)

within a classM of candidate distributions or models for
p. In Eqn. (4), Ef [log p(I)] is the population-wise log-
likelihood ofp. In practice, if we observe a training sample
Ij ∼ f , j = 1, ..., n, we can approximate

Ef [log p(I)] ≈
1

n

n∑

j=1

log p(Ij). (5)

So minimizing Kullback-Leibler divergence is asymp-
totically equivalent to maximizing log-likelihood. The
Kullback-Leibler divergence also measures the redundancy
of codingf based onp.

The learning can be a sequential process, which pursues
the model in a sequence of model spacesM0 ⊂ M1 ⊂
... ⊂ MK ⊂ ... of increasing complexities. At each step,
we augment the model by introducing new structures or fea-
tures to minimize the Kullback-Leibler divergence.

3. Manifold pursuit

There can be a large number of candidate sparse cod-
ing models or Markov random fields, which correspond to
different explicit and implicit manifolds. In order to pursue
these manifolds in a common framework, we need to build a
modelp(I) based on these manifolds, so that in the context
of this model, we can sequentially single out the manifolds
by minimizing the Kullback-Leibler divergenceD(f ||p) in
order to efficiently codef . The selected manifolds then give
rise to different models for image patches.

Specially, letΩk, k = 1, ..., K be theK manifolds to
be chosen from a large collection of candidate explicit or
implicit manifolds. LetΩ0 = Ω\

⋃K
k=1

Ωk, we use the fol-
lowing model to choose{Ωk}:

p(I; γ) =
1

Z(γ)
exp{

K∑

k=0

γk1Ωk
(I)}, (6)

where1Ωk
(I) is the indicator function, which equals 1 if

I ∈ Ωk, and 0 otherwise.Z(γ) is the normalizing constant.
This model can be considered a panoramic approximation
to f(I) based on{Ωk}. It is a special case of [1].

Model (6) seeks to match the frequencies of the mani-
folds in the ensemble of natural image patchesf . Specifi-
cally, let

fk = Ef [1Ωk
(I)] = Pr(I ∈ Ωk). (7)

fk can be estimated from the training examples by the corre-
sponding frequencies. If̂γ minimizesD(f ||p) over all pos-
sible values ofγ, then it can be shown thatEγ̂ [1Ωk

(I)] =
fk. Model (6) is the maximum entropy model in that among
all the probability distributionsp such thatEp[1Ωk

(I)] =
fk, p(I; γ̂) has the maximum entropy. This means that af-
ter matching the frequenciesfk, we leave the probability
distribution to be as smooth as possible withinΩk or their
interactions.

Recall that eachΩk corresponds to a sparse coding
model or a Markov random field, so model (6) can be con-
sidered a meta-model, or a model of models, because it is
built on {Ωk}. The pursuit of different types ofΩk reveal
the origins of different types of models.

In the context of model (6), we may pursueΩk, k =
1, ..., K by sequentially minimizing the corresponding
D(f ||p(I; γ)), i.e., at each step, we chooseΩk that leads
to the maximum reduction ofD(f ||p(I; γ)). Specifically,
let p(I; γ̂) be the currently fitted model, and we want to in-
troduce a new manifoldΩK+1 to augment the model to a
new fitted modelp(I; γ̂+), with γ+ = (γ, γK+1). Then we
can define the information gain ofΩK+1 as

D(f ||pγ̂) −D(f ||pγ̂+
) = D(pγ̂+

||pγ̂). (8)

If ΩK+1 is an explicit manifold, (8) measures the informa-
tion gain by adding a hidden variable or a new structure. If
Ωk+1 is an implicit manifold, (8) measures the information
gain by adding a feature statistics or a new set of feature
statistics.

If Ωk are non-overlapping, model (6) reduces to

p(I) =

K∑

k=0

fkU [Ωk], (9)

where U [Ωk] is the uniform distribution overΩk. This
model is often a reasonable approximation to model (6).

For model (9), the Kullback-Leibler divergence is

D(f ||p) = −

K∑

k=0

fk log
fk

|Ωk|
+ Ef [log f(I)], (10)

so we can measure the information gain ofΩk by

lk = fk[log fk − log(|Ωk|/|Ω|)], (11)



and pursuingΩk according tolk.
Pursuit of implicit manifolds: If Ωk = {I : Hk(I)/|D| =
hk}. Under the uniform distribution overΩ, Hk(I)/|D|1/2

converges to a multivariate Gaussian distributionN(h0, Σ0)
according to the central limit theorem, so approximately

log |Ωk|/|D| ≈ log L − (hk − h0)
′Σ−1

0 (hk − h0)/2, (12)

whereL is the number of grey levels. (12) is computable
and can be used with (10) and (11) to add new feature statis-
tics sequentially.
Pursuit of explicit manifolds: If Ωk = {I : I = Φk(wk)},
with wk = (wk,1, ..., wk,d), then

log |Ωk| =

d∑

i=1

log Li, (13)

whereLi is the number of discretization levels ofwk,i. (13)
can be used with (10) and (11) to add new variables sequen-
tially.

The explicit and implicit manifolds work along opposite
directions in the following sense. By augmenting new hid-
den variables, the explicit manifold increases its volume.
By augmenting new feature statistics, the implicit manifold
decreases its volume.

4. Experiment on manifold pursuit

4.1. Purpose and results

In this section, we describe an experiment for pursuing
the explicit and implicit manifolds by learning from a sam-
ple of training image patches. The purpose of this experi-
ment is to illustrate that the two types of manifolds, which
correspond to two different classes of models, can be pur-
sued together in the same framework, which gives us a sin-
glemixedsequence of two types of manifolds.

(a) image (b) sketch

Figure 3. Two of the 75 training images and their sketches used
for experiment. Image patches of structures and textures are taken
from these images as training examples.

We shall first describe the results before getting into de-
tails. The training image patches are taken from 75 images
like the two displayed in Fig.3. The 20 manifolds that are
pursued by our method are shown in Fig.4 in the order of
their selections. We can see that the first three manifolds are
implicit manifolds of textures, then the explicit manifoldof
edges is selected. After that the two types of manifolds are
selected in mixed order. Fig.5 shows the frequenciesfk

and information gainslk of the sequentially selected man-
ifolds. The information gains measure the significance of
these manifolds, therefore providing a statistical justifica-
tion for the corresponding two types of models.
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Figure 4. The prototypes of the manifolds sequentially selected,
and the instances of image patches on these manifolds. The two
types of manifolds are selected in mixed order.

4.2. Details

The training image patches are taken from 75 images,
consisting of indoor scenes such as meeting room, bedroom,
bathroom, etc., and outdoor scenes such as buildings, moun-
tains, farms, etc. These images are manually sketched and
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Figure 5. Frequencies and information gains of the 20 sequentially
selected manifolds.

labeled by artists. Two examples are shown in Fig.3. The
sketch of an image divides the image domain into struc-
ture areas that are around the sketched object boundaries,
and the texture areas that do not overlap with the sketched
boundaries. For each image, the image patches are taken in
such a way that the patches pave the whole image without
overlap.

The structured areas of the images are represented
by primitive functions. The two most basic primi-
tives are edges and bars. We use six parameters:
(u1, u2, w1, w12, w2, θ) to represent the edges, which re-
spectively denote the left intensity, the right intensity,
the width of the left intensity, the blurring scale over
the step transition, the width of the right intensity, and
the angle of rotation. Similarly, for bars, we use nine
parameters: (u1, u2, u3, w1, w12, w2, w23, w3, θ), where
(u1, u2, u3) and (w1, w2, w3) denote the intensities and
widths of the three segments of the profile respectively,
(w12, w23) denote the two blurring scales, andθ denotes
the angle of rotation.

For each of the labeled sketches, we collect all pixels
within 3 pixels of the sketch, creating a collection of 7 pixel
wide line segments. These segments are then cut into a sam-
ple of7×11 patches. The intensities of all the image patches
are normalized to have mean 0 and variance 1, and the im-
age patches can be rotated into a prototype form such that
they would lie horizontally and that the average intensity
value of the top half of the patch is less than that of the bot-
tom half. From there, all the patches would be clustered
into either edge manifold or bar manifold.

More complex primitives can be built on top of these
two simple primitives. Ordering by the degree of connec-
tivity, they are terminators, L-junctions, Y-junctions and
crosses. These primitives are compositions of one or more
edges/bars, and we may represent them by the combined
parameters of the constituent edges/bars. A terminator is
simply a bar that is connected to only one other edge or
bar, thus no simplification can be made for it. But for the
other three primitive types, we do not necessarily need all of

these parameters to code them. For example, an L-junction
is almost always made up of either two edges or two bars,
but almost never an edge and a bar. In addition, the two
edges or two bars that make up the L-junction almost al-
ways have the same parameter values (except the angles of
rotation). Therefore, we can reduce the coding length for
most of these L-junctions by nearly one-half. From there,
we can formulate two L-junction manifolds, edge/edge and
bar/bar. The same clustering procedure is also applied to
Y-junctions and crosses. Fig.4 shows some examples on
the explicit manifolds, including the prototypes and the in-
stances on the manifolds.

The textured areas of the images are represented by his-
tograms of filter responses. Our filter bank consists of 17
filters (3 Laplician of Gaussian, 2 Gradient and 12 Gabor),
none of the filters are bigger than7 × 7. We segment the
textured areas of each image into several irregularly shaped
regions, usually between 4 to 8 large regions are needed for
each image, plus a number of relatively small regions.

The intensities of each region is normalized to have mean
0 and variance 1, and they are represented by a group of
histograms. We collect the histograms for all regions in all
images, and cluster the regions by the following method.

1. Select the histogramh that has the largest variance. If
the variance is greater than a pre-defined valueǫ, then go to
step 2. Otherwise, go to step 4.

2. Clusterh using the k-means method,k is selected
by choosing the smallest value such that the variance ofh

within every cluster is smaller thanǫ.
3. For each cluster created, repeat step 1 within the clus-

ter.
4. Terminate.
Each cluster is an implicit manifold. Fig.4 shows some

examples of the implicit manifolds.
Here we assume that the manifolds are non-overlapping,

which is approximately true. Then we can select the mani-
folds sequentially according to the information gain defined
by (11), (12), (13).

5. Scale and manifolds

Image patches appear at different scales and resolutions.
In this section, we study the effects of scale on the competi-
tion between manifolds, as well as on the complexity of the
fitted manifolds.

5.1. Competition between manifolds

In the previous section, the structured patches and the
textured patches are manually separated out for learning.
For an image patchI, it can belong to both an explicit man-
ifold Ωex

k or an implicit manifoldΩim
k′ . The competition

between these two manifolds can be automatically carried



out by comparinglog |Ωex
k | and log |Ωim

k′ |, which measure
the coding lengths by the two manifolds respectively.

Such a competition depends crucially on the scale or res-
olution, which is an important physical dimension in the en-
semble of natural image patches. Image patches at different
resolutions can have different entropies, and they should be
coded by different manifolds.

Figure 6. A sequence of images of occluding squares. The resolu-
tion of each image is 1/2 of the previous image.

We conduct an experiment to compare the coding effi-
ciencies of the two types of manifolds at different scales.
The data we use are nine512 × 512 images composed
of many occluding squares, shown in Fig.6. In the first
scale, the length of the squaresr ∈ [64, 256], and the the
frequency distribution of the sizes is proportional to1/r3.
Each subsequent scale is a zoom-out version where the res-
olution is lowered by 1/2 from the previous image. The in-
tensity of each pixel(x, y) is the average of the four pixels
(2x − 1, 2y − 1), (2x − 1, 2y), (2x, 2y − 1), (2x, 2y) from
the previous scale. All nine images are then normalized to
have the same marginal mean and variance.

We compare the coding efficiency of the two manifolds.
For each scale, we code the image by a linear sparse coding
modelI =

∑d
i=1

wiBi, where the image basesBi are se-
lected from a bank of bases that consists of Haar and Gabor
bases by the matching pursuit algorithm [10]. The coding
length is computed according to (13). We also code the
same image by the implicit manifold based on their feature
statistics. The coding length is computed according to (12).

The coding length for the two manifolds are plotted in
Fig. 8. We can see that the coding lengths of both coding
methods increase as the scale increases, because the images
become more complex with higher entropy. But it is clearly
more efficient to use explicit manifold to code the high reso-
lution images, and use the implicit manifold to code the low
resolution ones. The two curves intersect between scales
4 and 5, indicating that the coding efficiencies of the two
manifolds are roughly equal for images at the medium res-
olution or medium entropy.

Figure 7. Coding length versus scale.

5.2. Complexity of fitted manifolds

Figure 8. Number of clusters versus scale.

Although the complexity of the image data increases
over scale, the complexity of the best fitting manifolds peak
at medium resolution, which is the most informative reso-
lution. This can be illustrated by the following experiment.
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Figure 9. Centers of clusters over scale.



In this experiment, we estimate the number of clusters
that can be reliably detected at each scale. From the pre-
vious experiment, we see that it is more efficient to code
images in scales 1-4 by explicit methods, and more efficient
to code images in scales 5-9 by implicit methods. There-
fore, we try to identify the number of explicit clusters in the
first 4 scales, and the number of implicit clusters in the latter
5 scales.

For explicit clustering, we sketch all the visible borders
of the squares of the first scale. For each of the subsequent
3 scales, we generate their sketches by scaling down the
labeled sketches from the first scale. If two line segments
in the sketch become too close (within 2 pixels), we would
allow the two lines to merge into one. Then for each of
the four sketches, we randomly select 40012 × 12 image
patches from each scale and cluster them based on the fol-
lowing 9 parameters: number of L-junctions, number of T-
junctions, number of crosses, number of non-intersecting
sketches, number of disjoint regions, and number of out-
going lines at each of the four sides of the patches. The
clusters with frequency greater than0.5% are included.

For implicit clustering, we also randomly collected 400
12×12 image patches from each scale, but instead of using
the original images, the clustering is done on the histograms
of filter responses using the same method described above.

A plot of the number of clusters identified in each scale
is shown in Fig.8. The centers of the clusters over scale are
shown in Fig.9. We can see that there are only a few clus-
ters at the two ends of the scale range, and the curve peaks at
scale 4. This means we only need very simple manifolds to
code very high or very low resolution images, but we need
more complex manifolds to code images of medium reso-
lution. This suggests that the medium resolution is most
informative for object recognition. Over the whole range of
resolution, the image patches change from simple regular-
ity to complex regularity to complex randomness to simple
randomness.

6. Conclusion

The contribution of this paper is to propose a method
for pursuing two different types of manifolds, which give
rise to two different classes of models. Moreover, we have
examined the relationship between models and scale.
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