Compositional Boosting for Computing Hierarchical Image Structures

Tian-Fu Wu' and Gui-Song Xia®
'Lotus Hill Institute for Computer Vision and
Information Science, Ezhou, 436000, China
{tfwu.lhi,gsxia.lhi}@lotushill.org

Abstract

In this paper, we present a compositional boosting al-
gorithm for detecting and recognizing 17 common image
structures in low-middle level vision tasks. These struc-
tures, called “graphlets”, are the most frequently occurring
primitives, junctions and composite junctions in natural im-
ages, and are arranged in a 3-layer And-Or graph repre-
sentation. In this hierarchic model, larger graphlets are
decomposed (in And-nodes) into smaller graphlets in mul-
tiple alternative ways (at Or-nodes), and parts are shared
and re-used between graphlets. Then we present a compo-
sitional boosting algorithm for computing the 17 graphlets
categories collectively in the Bayesian framework. The al-
gorithm runs recursively for each node A in the And-Or
graph and iterates between two steps — bottom-up proposal
and top-down validation. The bottom-up step includes two
types of boosting methods. (i) Detecting instances of A (of-
ten in low resolutions) using Adaboosting method through
a sequence of tests (weak classifiers) image feature. (ii)
Proposing instances of A (often in high resolution) by bind-
ing existing children nodes of A through a sequence of com-
patibility tests on their attributes (e.g angles, relative size
etc). The Adaboosting and binding methods generate a
number of candidates for node A which are verified by a
top-down process in a way similar to Data-Driven Markov
Chain Monte Carlo [18]. Both the Adaboosting and bind-
ing methods are trained off-line for each graphlet category,
and the compositional nature of the model means the algo-
rithm is recursive and can be learned from a small training
set. We apply this algorithm to a wide range of indoor and
outdoor images with satisfactory results.

1. Introduction

This paper presents a recursive algorithm called com-
positional boosting for detecting and recognizing 17 com-
mon image structures in low-middle level vision tasks, such
as edge detection[13], segmentation[16], primal sketch[S8],
and junction detection [2, 12, 7, 14]. These structures

Song-Chun Zhu'+?

2Statistics Department University of California,

Los Angeles, CA 90095, U.S.

sczhu@stat.ucla.edu

S O O . II:ZII %

[A=k = —

L AL O an
~ =/ S

FEOdY T T

Line
Segment

Figure 1. A hierarchic representation of 17 graphlets in a joint
And-Or graph (links are reduced for clarity). Large graphlets are
decomposed into smaller ones in multiple ways and share parts
between them. All graphlets are composed of line segments at the
lowest level.

are the most frequently occurring primitives, junctions and
composite junctions in natural images, and we call them
“graphlets” in this paper as they are represented in small
graphical configurations.

As Figure 1 shows, these graphlets are compositional
structures and can be arranged in a three-level And-Or
graph representation. We only show a few of the links
in Figure | for clarity. In this hierarchic representation,
large graphlets are decomposed into smaller ones in mul-
tiple ways and share parts between them. An And-node
(in solid circle) represents a decomposition and all of its
children must appear together under certain spatial relations
(collinear, parallel, proximity, and perpendicular), while an
Or-node (in dashed circle) represents a few most plausible
ways of decomposition and only one of its children may be

selected for each instance.

The study of this hierarchic representation is motivated
by three objectives.

Firstly, detecting junctions is, by itself, known to be a
challenging task in the vision literature [2, 12, 8, 13, 10, 7].
Local images are extremely ambiguous and yield multiple
interpretations. To resolve the uncertainty, one should not
only look at a larger scope, but also compute those compet-
ing configurations in an integrated manner, instead of de-
tecting them independently. In this paper, we first identify
the 17 most frequently occurring image structures and learn
their binding relations in the And-Or graph. We then infer
these graphlets from images in a common Bayesian frame-
work. The final result is a sketch graph consisting of a num-
ber of graphlets which has cleaner edges and junctions.

Secondly, in a broader view, we may consider the
graphlets as 17 small object categories, thus the repre-
sentation and algorithm presented in this paper should re-
veal some desirable design principles for multi-class ob-
ject recognition. More specifically, as compositionality and
part-sharing [5, 3, 11] are common principles in object mod-
eling and recognition, an effective inference algorithm must
explore the compositional structures. However, in the object
recognition literature, though there are recent works on joint
training and classification on multiple categories, such as
the JointBoosting[17], spatial boosting[1], mutual boosting
[6] and other multi-class boosting method[4], these meth-
ods do not explicitly decompose objects into parts. Conse-
quently their computation is based on raw image features,
though some features are shared by different categories.

In contrast, our method in this paper exploits the explicit
decomposition between the 17 classes. The algorithm runs
recursively for each node A in the And-Or graph and iterate
two steps — bottom-up proposal and top-down validation.
The bottom-up step includes two types of boosting methods.

1. Implicit boosting: detecting instances of A (often
in low resolutions) using Adaboosting through a se-
quence of tests on image features.

2. Explicit binding: proposing instances of A (often in
high resolution) by binding existing components (i.e.
children nodes of A) through a sequence of compati-
bility tests on their attributes, say angles, alignments,
and relative size etc.

The two methods generate a number of candidates for
node A which are verified by a top-down process in a way
similar to DDMCMC [18]. Both the Adaboosting and bind-
ing are trained off-line for each graphlet category, and the
composition and part sharing leads to smaller training sets
and a recursive algorithm.

Thirdly, objects appear in multiple resolutions, and a ro-
bust algorithm must account for the scaling effects. In the
literature of object detection and classification, images are

'-'.'::}Or-node L1A ‘
Topological Connection|

(OAnd-node LzILZSI""
[CLeaf -node >~ Co-linear
77 Parallel

(b)

Figure 2. (a) An And-Or graph representation for one graphlet
— the rectangle in two resolutions. The node A can either termi-
nate into a leaf node (square) or have two ways of composition
by nodes B and C. The dashed line between And-nodes or Leaf-
nodes represent the relations of them. (b)Three generic and most
prominent relations between any two line segments: co-linearity,
parallelism and topological connection. (c) The relations between
the 4 lines of the rectangle configuration.

often scaled to a certain regular window size, because the
features in the detection algorithm are learned in that par-
ticular scale. For example, all face images must be down-
scaled to around 20 x 20 pixels in Viola and Jones [19].
The down-scaling process loses information. In contrast,
we represent each graphlet in multiple resolutions, as Fig-
ure 2 illustrates. The terminal nodes are the low resolution
representation and are detected by tests on raw image fea-
tures. The non-terminal nodes are the high resolution repre-
sentation and are detected by tests on the attributes of their
parts. The latter may be further defined in two resolutions
as well.

The rest of the paper is arranged as follows. Section 2
presents the three-level generative model and learns a dic-
tionary of graphlets. Section 3 proposes the compositional
boosting algorithm and implements the pursuit of graphlets
with experiments in Section 4. The paper is concluded with
a discussion in Section 5.

2. Generative representation with graphlets
2.1. Learning the graphlets

In the first experiment, we collect a database of 200 im-
ages (many from the Corel dataset). To suit the low-middle
level tasks, we choose images which contain generic struc-
tures at relatively high resolutions instead of complex ob-
jects or clutter (such as tree, texture etc). These images
are manually segmented and sketched into graph represen-
tations, and we denoted these sketch graphs by

Training data set 1 : DG = {57, Sa, ..., S200 }-

Proportion Observed

ULT=0MNT LMY+ o+

Figure 3. The normalized frequency counts (vertical axis) for the
16 most commonly observed graphlets (horizonal axis) on sketch
graphs of natural images.

Starting with the edge element as the basic element, we
count the frequency of all the small subgraph configurations
(called graphlets) in the 200 graphs above. Some TPS (Thin
Plate Spline) distance is used in the counting process. The
frequency of the top 16 graphlets is plotted in Figure 3.(a).
This excludes the edge element itself and the two line seg-
ment shown in Figure 1. Other graphlets are very rare (less
than 0.2%) and thus are ignored.
We denote the graphlets and the frequency by

graphlets set : (Ag,h) = {(g:,h(g:)) : 1 =2,3,...,17}.
)]
We then learn the And-Or graph representation in Fig-
ure | automatically through a recursive binding process.
Suppose our goal is to build a good coding model for the
200 sketch graphs in DG. We start with a naive model
that codes each line segment independently. The learning
process then explores the dependency between the line ele-
ments (alignments). Take for example the rectangle in Fig-
ure 2.(a). This rectangle A can be expressed by two possi-
ble compositions of graphlets which occur with probability
p and 1 — p respectively. Written in a stochastic production
rule, it is,

A=b-blee pl1-p).
means alternative choice and is represented by an “Or-
node”. > means composition and is represented by an
“And-node” with an arc underneath. b and c are smaller
graphlets for parallel bars and L respectively.

Let h(A) is the frequency of A in Eq.(1), and p(A4) =
pp(D)p(b) + (1 — p)p(c)p(c) is the accidental probability
that A occurs through the b and ¢, then the following log-
likelihood ratio measures the non-accidental statistics and
thus the gain of coding length by binding the element into a
graphlet A.

<|s

SL(A) = log Z&‘;. @)

Multiplying it by the total frequency of A, we have the over-

all coding gain in adding the graphlet A in the ”codebook”,

. h(A)
Bind(A) = h(A) log o(A) 3)
where the larger Bind(A) is, the more significant A is.

In the next section, we shall use this coding length in the
Bayesian framework to search for the most parsimonious
representation.

Figure 1 shows the results we pursued from the image
database. Currently, we treat the 17 hierarchical structures
as a dictionary, denoted by A¢, augmenting the two-level
models in low level vision to a three-level model to bridge
low level and middle level representations.

Ag = AL UAZUAS “
2.2. Generative image model with graphlets

Given an image I defined on an image domain A, we first
convert it into a primal sketch representation S, following
[8]. Like the manually sketched graph above, S is an at-
tributed graph which can reconstruct the image through a
dictionary Agy of small image patches under the edges and
fill in the remaining areas by texture. As discussed above,
we further decompose this sketch graph into an unknown
number of N graphlets through the graphlet dictionary Ag
above.

G=(91(A),.....GN(BN)), o)

where 3;,7 = 1,2..., N are the parameters (5 (affine trans-
formations plus deformations) for each graphlet g; . That is,
we have a decomposition

S=Ul1gi U go
where g, is the remaining line segments in S.
Therefore we have a three level generative model,
G2% 585 ©6)
This is described in the following joint probability
p(L, S, G) = pI|S; Ask)p(S|G; Ag)p(G) (7)
where p(I]S; Agy) follows the primal sketch model [8], and
the joint probability of .S and G are:
p(S,G; Ag) ox exp{—L(g0) — L(G))}, ®

where L(g) is the coding length of a given graphlet g. Each

line segment in g, is coded independently (thus expensive).

The graphlets in GG are also coded independent of each other.
Therefore we have a Bayesian formulation,

(G, S)" = argmaxp(G, S|T) ©
=argmax p(I|S; Ask)p(S|G; Ag)p(G).
Maximizing this Bayesian posterior probability leads to a

improved sketch graph G which are decomposed into a
number of graphlets G = (g1, ..., gn)-

Implicit Composmon
ty | t | |tn — A

o

open list (weighted particles for hypotheses)

QP Q85

closed list (accepted instances)

QD ¢

Figure 4. (a)lllustration of compositional boosting for a generic
node A and (b) the data structure associated with each node for
hypothesis testing. See text for detailed interpretation.

Explicit Composition

A % A]_-Az'Ag

(b)

3. Compositional boosting

As the And-Or graph representation is recursive, our in-
ference computes the graphlets in a recursive manner. With-
out loss of generality, we only interpret the algorithm for
computing one node A in Figure 4, following the generic
representation in Figure 2.

The algorithm remains two data structures for each node
A:

e An Open List. It stores a number of weighted particles
(or hypotheses) which are computed in a bottom-up
process for the instances of A in the input image.

o A Closed List. It stores a number of instances for A
which are accepted in the top-down process. These
instances are nodes in the current parsing graph G.

The algorithm iterates over two processes: bottom-up
proposal and top-down validation. The bottom-up process
includes an Adaboosting and binding methods for generat-
ing a number of candidates for node A. These candidates
are verified by a top-down process in a way similar to Data-
Driven Markov Chain Monte Carlo [18].

Both the Adaboosting and binding methods in the
bottom-up detection are trained off-line for each graphlet
category, and the compositional model leads to small train-
ing set and recursive algorithm.

3.1. Bottom-up Proposals

The bottom-up process includes two types of boosting
methods.

(i) Generating hypotheses for A directly from images.
This bottom-up process uses Adaboosting [19, 9, 4, 15] for

L1y 1 +\Tr O JLIL [J-@ -] v

....
g

Figure 5. Positive examples of various graphlets and negative
training examples of background.

detecting the various terminals ¢4, ..., t,, without identifying
the parts. The detection process tests some image features.
This process is called implicit testing.

We train AdaBoost classifier [19, 9, 4] for each graphlet.
Features used include statistics of gradients, both magnitude
and orientation, differences between histograms of filter re-
sponses of the filter banks used by the primal sketch model,
intensity edge flow and texture edge flow [16] at multiple
scales over a local image patch A*. There are 4158 fea-
tures in total, denoted by F'(I,:). Some positive examples
of graphlets and negative examples from the background are
shown in Figure 5.

The particles generated by implicit testings are shown
in Figure 4.(b) by single circles with bottom-up arrows.
Figure 6 shows the proposal map for different kinds of
graphlets.

The weight of a detected hypothesis (indexed by ¢) on
image patch A* is the logarithm of some local marginal pos-
terior probability ratio,

pAFLY))
=~ | — = . 10
8 AFL) A 10

~—

where A represents a competing hypothesis. For compu-
tational effectiveness, the posterior probability ratio is ap-
proximated by posterior probabilities using local features
F(I,:) rather than the image I;.

(i1) Generating hypotheses for A by binding a number of
k(1 <K <n(A),n(A) = 3)parts A1, Ay, ... A, (4). The
binding process will test the relationships between these
child nodes for compatibility and quickly rule out the ob-
viously incompatible compositions. This is called explicit
testing.

There are three relations {7, 7,7} for perpendicular-
ity, parallelism, and co-linearity respectively. We associate
each relation type with a potential energy (U, , Uy, , U;.).

Tl
By considering a line connecting the midpoints of the
two segments, a and b, and denoting the smallest angles
each segment forms with this line as 6, and 6, respectively.

w1l
ol

(a)A running example

(b)Sketch probability map
r

(d)Final Sketch

—
Pt +t
A
[f’_ . J A . Ak -
T - T 4 v g P r:EJ_J-:':”TI' Pt Zx I+
_— - Ay S :'10'-]) Y ozod = - T T "!"n- L T
= - L E 4+ 4 = o |/ [a cq JHp T [T4 s
— F3r - e 5 S E L - E
j]’ | u A -l ¥} M)
R e I\ R L Vo Loy i T
(e)Colinear (f)L-junction proposals (g)Final L-junctions (h)T-junction proposals (i)Final T-junctions
= — L
Ol /f_] | . + . A ag o
%w + + 0" Y (gD
= } f
ML _ 0l ; e 2T uag

(j)Parallel (K)Y,Arrow,Cross proposal (l)Final Y,Arrow,Cross (m)U-junction (n)Rectangle
-L_\——J- £
— Al -
= ! T
] ar Aar r ; Frr J
ﬂmj]]] L L E 1,11- . T |:IJ riJ
£ rr s a0 0 M or
s 4 L e L rJ L,y o

(o)Joint rectangle (p)PI-junctions

(g)Double L-junction(1)

(r)Double L-junction(2) (s)Double L-junction(3)

Figure 6. A running example for the computing the graphlets using compositional boosting. (e)-(1) are the bottom-up proposals (particles)
for the graphlets respectively and (d) is the final sketch after verifying the graphlets. The final sketch is more concise and clean than the

Canny edge map, especial on the junctions.

we define (U, , Uy, U,) as follows

U, (ab) = L(a)*0, + L(b)*6, (11)
Uy (ab) = (0q—0b)* (12)
U’I‘L (a’b) - J(a)ga + J(b)éb (13)

where L(a), L(b) are the lengths of line segments a and b
respectively, ¢, and ¢, are the extended length of the two
line segments that intersect one another. J(a) = oo, if
{, > CL(a) with a constant C' favoring greater extensions
for longer segments, and .J(a) = L(” ; otherwise.

These potential functions are used as the attributes to test
explicit binding for graphlets.

The particles generated by explicit testings are illustrated
by a big ellipse containing n(A) = 3 small circles for its
children in Figure 4.(b). Some examples are shown in Fig-
ure 0.

The weight of a binding hypothesis (indexed by) is the
logarithm of some local conditional posterior probability ra-
tio. Suppose a particle A’ is bound from two existing parts
A% and A% with A% missing, and A’ is the domain contain-
ing the hypothesized A. Then the weight will be

; p(A'|AL, AS, 1))
w4 = lo
A ® p(ATA}, A} Ty0)
_ logp(1aAz27IA1 z)p<)
p(A17A231A1|A)p()
p(AL, A5|A)p(AY)
log — =Y. (14)
(A}, Ab|AD)p(A7) — 74

where A means competitive hypothesis. p(A}, A5| A?) is re-
duced to tests of compatibility between A% and A} for com-
putational efficiency. It leaves the computation of searching

for A% as well as fitting the image area I , to the top-down
process.

The two kinds of bottom-up tests generate hypotheses
for graphlets and place them into an open list.

Results of bottom-up proposals are shown in Figure 6
and Figure 8, and as we can see in the figures, there can be
more than one particle on the same patch, which is caused
by the local ambiguity and needs top-down verification to
be resolved.

3.2. Top-down verifications

The top-down process validates the bottom-up hypothe-
ses in all the Open lists and accepted hypotheses are placed
into a closed list, following the Bayesian posterior proba-
bility. It also needs to maintain the weights of the Open
lists.

(i) Given a hypothesis A’ with weight &, the top-down
process validates it by computing the true posterior proba-
bility ratio w stated above. If A’ is accepted, it is placed
into the Closed list of A. The criterion of the acceptance is
discussed below. In a reverse process, the top-down process
may also select a node A in the Closed list, and then either
delete it (putting it back to the Open list) or disassemble it
into independent parts.

(i1) The top down process must maintain the weights of
the particles in the Open Lists after adding (or removing)
a node A% It is clear that the weight of each particle de-
pends on the competing hypothesis. Thus for two compet-
ing hypotheses A and A’ which overlap in a domain A,,
accepting one hypothesis will lower the weight of the other.
Therefore, whenever we add or delete a node A, all the other
hypotheses whose domains overlap with that of A will have
to update their weights.

The acceptance of a node can be computed by a greedy
algorithm that maximizes the posterior probability. At each
iteration it selects the particle whose weight is the largest
among all Open lists and then accepts it until the largest
weight is below a threshold.

For the pursuit of graphlets, the top-down process veri-
fies and selects a subset G = {g1(51), g2(B2), ..., gn(Bn)}
that maximizes the joint probability of Eq. 8. We do this
with a process that maximizes a posterior (MAP).

(8*,G*) = argmaxp(G,S|I;Ap,Ag)
= argmaxp(G, S, I;Ap,Ag)
= argminL(go) + L(G) + L(I|S)
argmin Ly, + Lo + L5 (15)

Where L, is the coding length of the residual of the sketch
graph after encoding by GG, L¢ is coding length of the se-
lected graphlets, and L5 is the coding length of the sketch-
able region of the image I. The encoding of this region is
based on works in [8].

Compositional Boosting

Input: an image I and an And-Or graph.
Output: a parsing graph pg with initial pg = 0.
1. Repeat
2. Schedule the next node to visit A
3. Call the Bottom — Up(A) process to update A’s
Open lists
(i) Detect terminal instances for A from images
(ii) Bind non-terminal instances for A from
its children’s Open or Closed lists.
6. Call the Top — Down(A) process to update A’s

Dl

Closed and Open lists
7. (i) Accept hypotheses from A’s Open list to its
Closed list.
8. (ii) Remove (or disassemble) hypotheses from A’s

closed lists.
9. (iii) Update the Open lists for particles
that overlap with current node.
10. Until a certain number of iteration or the largest
particle weight is below a threshold.

Figure 7. Flow of compositional boosting algorithm

Results are shown in Figure 6, where we can see that
some particles appear in the proposal but do not appear in
the final results.

The algorithm described thus far is deterministic. As
an alternative, one may use a stochastic algorithm with re-
versible jumps. According to the terminology of data driven
Markov chain Monte Carlo (DDMCMC) [18], one may
view the approximative weight &%, as a logarithm of the
proposal probability ratio. For the stochastic algorithm, its
initial stage is often deterministic when the particle weights
are very large and the acceptance probability is always 1, so
this approach is generally only valuable when w is close
to 0.

We summarize the compositional boosting algorithm as
shown in Figure 7.

The key issue of the inference algorithm is to order the
particles in the Open and Closed lists. In other words, the
algorithm must schedule the bottom-up and top-down pro-
cesses to achieve computational efficiency. The optimal
schedule between bottom-up and top-down is a long stand-
ing problem in vision. A greedy way for scheduling is to
measure the information gain of each step, either a bottom-
up testing/binding or a top-down validation, divided by its
computational complexity (CPU cycles). Then one may or-
der these steps by the gain/cost ratio.

4. Experiments

In our second experiment, we apply the compositional
boosting algorithm to compute a sketch graph S and a se-
ries of graphlets G in a wide variety of indoor and outdoor
images as shown in Figure 6 and Figure 8 (Please refer
to the supplemental file for an animation of the composi-
tional boosting process and more results). As in our train-
ing set, we are targeting low-middle level generic structures
and thus avoid textures and clutter.

In Figure 8, we show the results of five images. For each
image, The “Canny” image is the Canny edge map which
are pixel level representation and has no concepts such as
corners, junctions and line segments. The “First layer” im-
age is the detection result of the first layer graphlets includ-
ing different kinds of junctions where parallel lines are in
red, L-junction in green, T-junction in blue, Arrow junction
in yellow and so on. The “Final sketch” image is the sketch
graph G which are graph level representation and more con-
cise than the Canny edge map. It has the concepts of differ-
ent graphlets. Many high-level vision tasks can be based on
this representation.

In these images, the junctions and composite junctions
are much improved in comparison to the Canny edge map.
It is also much improved in comparison to the primal sketch
method [8].

5. Discussion

In this paper, we present a compositional boosting al-
gorithm for detecting and recognizing 17 common image
structures in low-middle level vision tasks. We conducted
two sets of experiments: one on learning and binding the
graphlets from sketch graph, and the other on detecting the
graphlets from raw images. The key contribution of this pa-
per is a recursive compositional boosting algorithm which
explore the recursive decomposition structures in the rep-
resentation, in contrast to the literature on spatial boosting
[1] and JointBoosting [17], and mutual boosting[6]. It only
needs a small set of training examples and is easy to scale
when new nodes are added — all are desirable properties for
object detection and recognition. In ongoing projects, we
are applying this algorithm to object recognition by moving
up the hierarchy.

6. Acknowledgements

This work is done at the Lotus Hill Research In-
stitute and is supported by : National 863 project(No.
2006AA01Z121), National Science Foundation China(No.
60672162 and No. 60673198). The data used in this paper
were provided by the Lotus Hill Annotation project, which
was supported partially by a sub-award from the W.M. Keck
foundation, a Microsoft gift. The authors thank Di Lu for

his help in the preparation of training data.

References

(1]
(2]

(3]

(4]

(3]

(6]
(7]

8]

(9]

[10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

S. Avidan. Spatialboost: Adding spatial reasoning to ad-
aboost. In ECCV, 2006. 2, 7

D.J. Beymer. Finding junctions using the image gradient. In
MIT AI Memo, 1991. 1,2

H. Chen, Z. J. Xu, Z. Q. Liu, and S. C. Zhu. Composite
templates for cloth modeling and sketching. In CVPR, 2006.
2

P. Dollar, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries. In CVPR, 2006. 2, 4

S. G. E. Bienenstock and D. Potter. Compositionality,
mdl priors, and object recognition. In Advances in Neu-
ral Information Processing Systems 9, M.Mozer, M.Jordan,
T.Petsche, eds., MIT Press, 1998. 2

M. Fink and P. Perona. Mutual boosting for contextual infer-
ence. In NIPS, 2003. 2,7

G.Giraudon and R.Deriche. On corner and vertex detections.
In CVPR, 1991. 1,2

C.E. Guo, S. C. Zhu, and Y. N. Wu. Towards a mathematical
theory of primal sketch and sketchability. In /CCV, 2003. 1,
2,3,6,7

T. H. J. Friedman and R. Tibshirani. Additive logistic re-
gression: a statistical view of boosting. Annals of Statistics,
38(2):337-374, 2000. 4

D. Li, G. Sullivan, and K. Baker. Edge detection at junctions.
In Proc. Alvey Vision Conference, 1989. 2

B. Ommer and J. M. Buhmann. Learning compositional cat-
egorization models. In ECCV, 2006. 2

L. Parida, D. Geiger, and R. Hummel. Junctions: Detection,
classification, and reconstruction. [EEE Trans. on PAMI,
20(7):687-698, July 1998. 1,2

X. Ren, C. Fowlkes, and J. Malik. Familiar configuration
enables figure/ground assignment in natural scenes. Vision
Science Society, 2005. 1, 2

M. A. Ruzon and C. Tomasi. Edge, junction, and corner
detection using color distributions. [EEE Trans. on PAMI,
23(11):1281-1295, Nov. 2001. 1

R. E. Schapire. The boosting approach to machine learning:
an overview. In MSRI Workshop on nonlinear Estimation
and Classification, 2002. 4

B. Sumengen and B. S. Manjunath. Edgeflow-driven varia-
tional image segmentation: Theory and performance evalua-
tion. IEEE Trans. on PAMI, 2005. 1, 4

A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing fea-
tures: Efficient boosting procedures for multiclass object de-
tection. In CVPR, 2004. 2,7

Z. Tu and S. C. Zhu. Image segmentation by data-
driven markov chain monte carlo. IEEE Trans. on PAMI,
24(5):657-673, May 2002. 1,2, 4, 6

P. Viola and M. J. Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR, 2001. 2, 4

u

= = = =
LBl =T o —=
iESE e

First layer . —
— !

[

=

, f’ghﬂ[

|

Rectangle DL1
<
v £ g
A A — E7 N
Final Sket

)

1

P‘<

£

4

Final Sketch

——

e

Figure 8. More experiments on computing the graphlets.

