
Learning Deformable Action Templates from Cluttered Videos

Benjamin Yao and Song-Chun Zhu
Department of Statistics, UCLA Lotus Hill Research Institute

Los Angeles, CA Ezhou, China
{zyyao, sczhu}@stat.ucla.edu

Abstract

In this paper, we present a Deformable Action Template
(DAT) model that is learnable from cluttered real-world
videos with weak supervisions. In our generative model,
an action template is a sequence of image templates each of
which consists of a set of shape and motion primitives (Ga-
bor wavelets and optical-flow patches) at selected orienta-
tions and locations. These primitives are allowed to slightly
perturb their locations and orientations to account for spa-
tial deformations. We use a shared pursuit algorithm to au-
tomatically discover a best set of primitives and weights by
maximizing the likelihood over one or more aligned train-
ing examples. Since it is extremely hard to accurately la-
bel human actions from real-world videos, we use a three-
step semi-supervised learning procedure. 1) For each hu-
man action class, a template is initialized from a labeled
(one bounding-box per frame) training video. 2) The tem-
plate is used to detect actions from other training videos of
the same class by a dynamic space-time warping algorithm,
which searches a best match between the template and tar-
get video in 5D space (x, y, scale, ttemplate and ttarget)
using dynamic programming. 3) The template is updated by
the shared pursuit algorithm over all aligned videos. The
2nd and 3rd steps iterate several times to arrive at an opti-
mal action template. We tested our algorithm on a cluttered
action dataset (the CMU dataset) and achieved favorable
performance than [7]. Our classification performance on
the KTH dataset is also comparable to state-of-the-arts.

1. Introduction
Real-world actions occur often in cluttered, dynamic en-

vironments and actors can not easily be segmented from the
background due to distracting motion from other objects in
the scene. This poses a challenge for many approaches on
action recognition [1, 5, 23, 11] that assume the foreground
segmentation (silhouette) is available. Even a milder as-
sumption that requires actors to be tracked and aligned by a
bounding box [17, 6] is sometimes unrealistic. On the one

Frame 1

Frame 6

Frame 11

Figure 1. Deformable action template learned for a “jumping jack”
action. The 1st row displays 3 frames of the template, each com-
posed of 70 shape primitives and 30 motion primitives. Shape
primitives and motion primitives are illustrated by bars and col-
ored rectangles (see the color-plate above for explanation) respec-
tively. The leftmost column shows three training videos. The actor
in the 1st video is labeled with a bounding box (red rectangle), the
blue rectangles in the other two videos are automatically detected.
The 2nd and 3rd columns shows locally shifted versions of the
shape and motion primitives fitting to the corresponding training
images. Better to view on screen.

hand, it is a very hard task to automatically detect and track
humans in highly cluttered scenes (see the last row of Fig.1
for example). On the other hand, it is extremely tedious to
manually label human actions from real-world videos for
two reasons: 1) One bounding box each frame is required
to offset global motion; 2) Frame-to-frame correspondences

1

are required to synchronize actions.
In this paper, we try to solve a problem more practical

in real-world scenarios: Given one example for each action
class, can we automatically discover other similar actions
from a set of weakly supervised training videos and learn
a common action model from them? This can be boiled
down into two separate problems: Firstly, how to build an
action template, from aligned training examples, that is ro-
bust to variations (view-point, illumination, clothing, size,
age, gender, etc.). Secondly, how to effectively detect the
action from real-world videos using the learned template,
which is a similar task as object detection since the action
can be located anywhere in the scene (in both space and
time) and requires reliable detection in the presence of sig-
nificant background clutters.

To solve the first problem, we propose a Deformable Ac-
tion Template model extended from [22]. Fig.1 illustrates
the basic idea. The leftmost column displays 3 training
videos of a “jumping jack” action. We first assume these
actions are aligned by a bounding box per frame centered
at the actor (In fact, only the red bounding box is labeled.
Blue ones are automatically detected). Then the action can
be represented by a deformable action template consisting
of a sequence of image templates, each of which consists of
70 shape primitives (Gabor wavelets) and 30 motion primi-
tives (optical-flow patches). The first row of Fig.1 displays
3 frames of the learned template. Shape and motion prim-
itives are illustrated by a bar and a colored rectangle re-
spectively. The primitives are allowed to locally perturb in
position and orientation when they are linearly combined to
encode each training or testing example, as illustrated by
the 2nd and 3rd columns of Fig.1. The DAT model can
be learned from one or more aligned training videos by a
shared pursuit algorithm modified from [22].

To solve the second problem, we adopted a Dynamic
Time Warping (DTW) algorithm [15], which is widely used
in voice recognition domain, and modified it to suit our
case. The original DTW seeks to find a best match between
two one dimensional signals (e.g. voice signals) by dynamic
programming (DP). We extend this algorithm to find a best
match between an action template with an action located at
unknown position, scale and time inside a video clip, which
can also be solved efficiently by DP similar to DTW (Thus
we call it Dynamic Space-Time Warping (DSTW)). It is
worth mention that the DSTW not only detects the starting
and ending points of an action, but also establishes a frame-
to-frame correspondence between the template and the tar-
get (i.e. find a best time warping function that synchro-
nize the target action and the template). In this sense, our
model is deformable not only in space, but also in tempo-
ral domain. We use semi-supervised learning algorithm to
learn from one labeled and a set of weakly supervised train-
ing example (as illustrated in Fig.3). The algorithm can be

summarized into three steps: 1) A deformable action tem-
plate is initialized from one labeled training video. 2) The
DSTW algorithm is applied to detect the actions from other
unlabeled training videos and align them with the template.
3) The template is updated by a shared pursuit algorithm.
Step 2) and 3) iterate several times to arrive at an optimal
template.

1.1. Contribution and related work

The contributions of this paper are: (1) A generative
model of action with a likelihood defined directly on the
video image intensities and motion speeds (in stead of defin-
ing on features such as [13]), which enables efficient learn-
ing in that both the adaptive basis selection and spatial-
temporal alignment can be solved together in a unified max-
imum likelihood framework. (2) A semi-supervised learn-
ing approach for learning actions from cluttered videos that
is valuable to real-world use.

To credit past work, the deformable action template and
shared pursuit algorithm are mainly inspired by the active
basis model proposed by Ying-Nian Wu et al. [22], which
focus on building object shape models from static images.
Our work also has strong connections to the biological in-
spired vision systems proposed by Riesenhuber and Pog-
gio [16] and a recent work that extends the model to action
recognition by H. Jhuang et al.[6]. Following the same line,
Schindler et al. proposed an action snippets model study-
ing the minimum amount of frames required to recognize an
action [17]. Both Jhuang and Schindler, however, focus on
the classification problem and assume that the actions are
aligned by bounding boxes. Other work for action recogni-
tion and detection can be roughly divided into two groups.
One group represents actions using global models such as
motion history [1], spatial-temporal visual hull [5, 23] and
example-based model [3, 7, 19, 21]. Motion and/or shape
representation are used to be robust against appearance vari-
ations. The articulated skeleton models [4, 14] also fall in
this category. By representing the human action with kine-
matic models, skeleton representation grasped the intrinsic
structure of the human body, thus is able to encode the com-
positional structure and variations. But this intrinsic repre-
sentation is very hard to obtain from raw videos. Another
group represents actions as a distribution over local spatial-
temporal interest points [2, 13, 9]. While the sparsity and
resulting computational efficiency are appealing, the S-T in-
terest points cannot be reliably extracted from raw videos.
Among recent work, J. Liu et al. proposed to use page-
ranking algorithm to extract reliable features from video
and presented an action recognition method is able to detect
recognize realistic action from cluttered real-world videos
[10]. J. Yuan et al. proposed to use brand-and-bound al-
gorithm to speed up action detection [24]. Both these two
methods are tested on real-world datasets.

I(t)

F(t) sum 1 map of Gabor filters sum1 maps of flow filters

Figure 2. Shape and flow maps. Shape S1 maps are computed by
convolving Gabor filters of multiple orientations with video frames
(I(t)). Flow S1 maps are computed by projecting optical flow
(F (t)) within a window onto multiple directions. Both maps are
computed at multiple scales.

2. Deformable action template formulation

2.1. Shape and flow primitives

In this paper we adopt a design where shape and flow
primitives are defined on image and optical flow of each
frame as illustrated in Fig.2. This is a similar design as the
S1 (sum1) maps used in [6].

Shape. We use Gabor wavelets as the shape primitive
dictionary and use Bx,y,o,s to denote a wavelet located at
position (x, y), orientation o and scale s. The filter response
is the squared inner product between Bx,y,o,s and the image
patch IΛj (t) centered at (x, y):

rshape(I(t); Bx,y,o,s) = Sigmoid(|〈IΛj
(t), Bx,y,o,s〉|2)

(1)
where the sigmoid transformation saturates large responses.
A large value of rshape(I(t); Bx,y,o,s) indicates that there
is a strong shape element (edge or bar) of orientation o at
location (x, y, s). To suppress strong static edges detected
in the background (e.g. the corner of a wall), we subtract
the response |〈IΛj ,Bx,y,o,s(t)〉|2 by the average response at
(x, y, o, s) over all frames.

Flow. Flow primitives are obtained by first computing
the optical flow of the input image sequence using Lucas
& Kanade’s algorithm [12]. The optical flow computed
between I(t) and I(t + 1) is denoted as F (t). To ob-
tain a representation consistent with the shape primitives,
F is converted to a set of response maps for different “flow
primitives” each with different preferred flow direction. We
use fx,y,o,s to represent a flow primitive located at posi-
tion (x, y), orientation o and scale s. Let Λ(x, y, s) be the
domain of fx,y,o,s, which is a small window centered at
(x, y, s). The filter response is the sum of projection lengths
of all flow vectors within FΛ(x,y,s)(t) onto direction o (half-

wave rectified):

rflow(F (t); fx,y,o,s) =
∑

ij∈FΛ(x,y,s)(t)

|D(vij , θij , o)| (2)

D(θij , vij , o) = {1
2
[1 + cos(θij − o)]}2 ∗ vij

where (vij , θij) is the scale and direction of a flow vector
at point (i, j), o is the direction preferred by the filter. A
large value of rflow(F (t); fx,y,o,s) implies large absolute
speed of direction o inside FΛ(x,y,s)(t), which means our
model encourages flow primitives with hight speed. This
is slightly different from previous methods used in [6, 17],
where optical flow maps are computed according to grids
in both direction and speed. We find, through experiments,
that our method is more robust in presence of background
motions. The explanation is simple: high speed primitives
often locates on or close to foreground objects, whereas low
speed ones are more likely to be on the background.

2.2. Deformable template for image

The backbone of our action template model is the active
basis model [22], which can be summarized as following:

Im =
n∑

i=1

cm,iBm,i + εm, (3)

Bm,i ≈ Bi, i = 1, ..., n.

where {Im, m = 1, . . . , M} is a set of training images,
(cm,i, i = 1, ..., n) are coefficients, Bi ∈ Ω, Bm,i ∈ Ω,
Ω = {Bx,y,s,o,∀(x, y, s, o)}, Bm,i, is a slightly perturbed
version of Bi within range (dm,i, δm,i) such that dm,i ∈
[−b1, b1], δm,i ∈ [−b2, b2]. That is, we allow Bi to shift
its location along its normal direction, and we also allow Bi

to shift its orientation. b1 and b2 are the bounds for the al-
lowed displacement in location and turn in orientation (e.g.,
b1 = 6 pixels, and b2 = π/15). Therefore, the deformable
template is the active basis T = (Bi, i = 1, ..., n). The de-
formed template is Tm = (Bm,i, i = 1, ..., n). We may use
the least squares criterion to find the best set of primitives:

(T, c)∗ = arg min
T,c

M∑
m=1

‖Im −
n∑

i=1

cm,iBm,i‖2 (4)

This is equivalent to the maximum-likelihood estimation of
the following probability over training examples {Im} [22]:

p(Im|Tm) = q(Im)
n∏

i=1

[exp{λirm,i}z−1
i],

where q(Im) is the density of white noise model, rm,i =
Sigmoid(|〈Im, Bm,i〉|2), zi = Eq[exp{λirm,i}], is the
normalizing constant for the i-th term, λi is weight,.

Frame 15

Frame 10 Frame 26

train 0

T0

T1

Frame 50

Frame 55

Tn

train 1

train 2

train n

Annotation in the 1st video

Matched action

Pooling over aligned actions

Dynamic Space-Time Warping

(a) Semi-supervised learning steps (b) Dynamic Space-time Warping

Initialize template

Q

C

T

T0
S

T

T0

(i) DTW, match two 1D signals, equivalent to
search the optimal path in a 2D matrix

(ii) To match the
template of length
T0 with a image
sequence of length
T equivalents to
search the optimal
path in a 5D cube

Q

CFrame 5

Frame 45

Frame 23

Frame 20

Frame 40

Figure 3. (a)Semi-supervised learning, starting from a labeled action video (red bounding box), a template T0 is initialized. This template
is then matched to other video clips by dynamic space-time warping, a new template T1 is learned by pooling over matched videos. This
process iterates several times to generate an optimal template Tn. (b) An illustration of the dynamic space time warping algorithm.

The above formulation can be extended to a mixed tem-
plate of both shape and flow primitives, if we use Im to
represent either image I or optical flow F , use B to rep-
resent either shape primitive B or flow primitive f and
use rm,i to represent either rshape(I(t); Bm,i) in Eq.(1) or
rflow(F (t); fm,i) in Eq.(2). (see [20] for another example
of mixed template model with more details). For clarity, we
will use such representations for the rest of this paper and
stick with the least-square formulations (Eq.4).

2.3. Deformable template for action

The active basis model works on roughly aligned im-
ages of an object class. We can use the same model for
videos of a human action class if we find their spatial-
temporal alignments. Given a set of weakly supervised
training videos {Vm = Im[0, tm], m = 1, . . . , M}. We first
assume they are temporally aligned (i.e. actions are syn-
chronized). Therefore, we only need to consider position
(x, y) and scale s of the actor. (x, y, s) should be continu-
ous functions of time t. Vm can be interpreted as generated
from an underlying template process {T (t)} corrupted by
an additive white zero-mean Gaussian “noise” εm(t).

T (t,Sm) ≈ Tm(t,Sm) =
n∑

i=1

ci,m,tBi,m,t(Sm(t))

Im(t) = T (t,Sm) + εm(t), t ∈ [0, tm] (5)

where Sm(t) = [xm(t), ym(t), sm(t)] denotes the position
and scale of the actor at frame t, Tm(t,Sm) is the locally de-

formed template process at frame t, Bi,m,t and ci,m,t are lo-
cally deformed primitives and coefficients respectively. The
least squares condition in Eq.(4) can be rewritten as:

(T,S)∗ = min
T∈Ω,S∈Ψ

M∑
m=1

∫ tm

0

‖Im(t) − T (t,Sm)‖2dt (6)

subject to Eq.(5), where Ω = {T (t)} is the template pro-
cess, Ψ is a set of all possible trajectories, S∗ are the best
trajectories of all videos. Since this is an over-determined
problem, we must introduce regularizers [8], for instance of
the form φreg(S) =

∫ tm

0
‖�S‖dt. It enforces smoothness

of the trajectory. The RHS of Eq.(6) is now:

min
T,S

M∑
m=1

∫ tm

0

‖Im(t) − T (t,Sm)‖2 + λ‖�Sm‖dt (7)

where λ is a Largrange multiplier.
We now remove the assumption of synchronization. To

account for different temporal pattern of actors, we need
introduce a time warping function for each video. Consider
an arbitrary infinite-dimensional diffeomorphism w of the
interval [0, tm], so that Eq.(5) becomes:

Im(wm(t)) = T (t,Sm) + εm(t), t ∈ [0, tm] (8)

In order for w(t) to be a viable temporal index, it must sat-
isfy two properties: continuity and causality. The ordering
of time instants has to be preserved by the time warping.

This can be formalized by imposing that w be continuous
and monotonic. We define a set Γ = {w(t)} be all valid
time warping functions. Then we can rewrite Eq.(7) into:

min
T∈Ω,S∈Ψ,w∈Γ

M∑
m=1

∫ tm

0

‖Im(wm(t)) − T (t,Sm)‖2

+λ‖�Sm‖dt (9)

This equation defines the Deformable Action Template
(DAT) model studied in this paper. We will introduce an
algorithm to learn the model parameters in the next section.

3. Learning deformable action template from
cluttered videos

To minimize Eq.(9), we can decouple its parameters into
two groups. The first group contains the variable indicat-
ing the selection of action template T , which includes se-
lection of primitives Bx,y,o,s and weights cx,y,o,s at each
frame. This is shared by all training videos. The second
group includes the time warping functions w and trajecto-
ries S, and is different for each training video. In an ideal
supervised-learning setting, group 2 should be derived by
manual annotation. But it is extremely tedious to label hu-
man actions from real-world videos for two reasons: 1)
One bounding box each frame is required to offset global
motion; 2) Frame-to-frame correspondences are required to
synchronize actions. Therefore, the supervised learning ap-
proach is of limited practical use. Instead, we developed a
semi-supervised learning approach (see Fig.3 for an illus-
tration diagram): For each human action class, we annotate
one training video and use it to learn an initial action tem-
plate T0. The template is first used to detect actions from
other training videos by a dynamic space-time warping al-
gorithm, and is then updated by a shared pursuit algorithm
over all aligned videos. Our algorithm iterates several times
over these two steps to get an optimal template.

3.1. Dynamic space-time warping algorithm

Given T0, the objective function Eq.(9) can be solved
globally using dynamic programming. The procedure is
based on an technique call Dynamic Time Warping. The
original DTW solve the problem of finding a temporal
match between two 1 dimensional signal Q and C, as shown
in Fig.3 (b), the matching process is equivalent to finding an
optimal path in a [T1×T2] matrix, therefore could be solved
by dynamic programming, where T1 and T2 are the length
of signal Q and C respectively. The path is the warping
function w in our definition, which satisfies time continu-
ity and causality. We want to optimize S, which happens
to be a continuous function too, together with w. As il-
lustrated in Fig.3 (b), this problem can also be interpreted
as trying to find an optimal path in a 5 dimensional space

(x,y,s,ttemplate,ttarget). In Fig.3(b), we draw a 3D cube for
illustration purpose. In the original DTW algorithm [15],
the starting and ending points of two signals are aligned.
But we cannot assume the same thing for template and tar-
get videos. We solve this problem by searching the starting
and ending points on two surfaces of the cube (as illustrated
by shaded areas in Fig.3(b)).

3.2. Shared pursuit algorithm

As illustrated in the Fig.3(a), given a set of aligned
videos (i.e. S and w known), shape and motion primi-
tives are selected sequentially from a dictionary of Gabor
wavelets and flow filters for each frame. Primitives shared
by most examples are first selected, which equivalents to
minimizing the summed squared error. Each selected prim-
itive explains a small patch in either I(t) or F (t), and in-
hibits other primitives nearby to be selected again. We only
give a sketchy description of the shared pursuit algorithm
here as it is not a new point of our paper. Interested readers
please refer to [22, 20] for details about how to adaptively
select primitives and learn weights. The algorithm can be
applied on a single video and is used to initialize the tem-
plate of our semi-supervised learning procedure.

4. Experiments

Parameter values: The original size of Gabor wavelets
and optical flow filters are both 9 pixels, and the scale fac-
tor s = [0.8, 0.9, 1.0, 1.1, 1.2]. (x,y) is sub-sampled every
2 pixels. The orientation of Gabor filters takes 15 equally
spaced angles in [0, π], the direction of flow filters take 12
equally spaced angles in [0, 2π]. The shift along the normal
direction [−b1, b1] = [−4,−2, 0, 2, 4] pixels. The shift of
orientation [−b2, b2] = [−1, 0, 1] grades. The smoothness
constraint λ = 100 is set empirically, and proved to be good
for all categories.

Dataset: Our experiments mainly focused on the CMU
action dataset [7], which has approximately 20 minutes of
video containing 110 events of interest separated into 5
categories, namely “jumping jacks”, “pick up”,“push ele-
vate button”,“single hand wave” and “two handed wave”.
Videos were downscaled to 160 × 120 in resolution. Each
category contains a template video, which is used as initial-
ization to our learning algorithm. The templates are manu-
ally segmented using a bounding box typically 80×120×50
in size. Each category contains about 15 to 30 testing
events, which is annotated for performance evaluation.

Experiment 1: Learning deformable action templates
from semi-supervised dataset. We apply the iterative learn-
ing algorithm on the above mentioned dataset and learn a
separate deformable action template for each category. Be-
side the initialization video, we randomly select 10 clips
containing the action-of-interest as training data. Typical

Shape primitives

Motion primtives

Figure 4. Action template and deformed versions for “pushing button” action. Illustrations same as Fig.1.

Shape primitives

Motion primtives

Figure 5. Action template and deformed templates for “pick up” action. Illustration same as Fig.1.

examples of learned deformable action templates are shown
in Fig.(1,5, 4 and 9). The first row of these figures (except
Fig.1) illustrates the training videos, where the initializing
clip is marked out with a red bounding box. The second row
shows the shape primitives of the learned action template
and their deformed versions corresponding to each training
video. Similarly, the 3rd row shows the flow primitives and
their deformed versions. The learning algorithm stops after
three iterations. Difference in choosing unlabeled training
clips will slightly affect the results of learned templates, but
in most cases the iterations converge to a reasonable results.
(See next section for quantitative analysis).

In Fig.7, we illustrate one example of temporal defor-
mations generated by the DSTW algorithm. The left panel
displays frames both from the template and a target video.
The actual frame number of each column is marked on its
top. Temporal correspondences between template and tar-

get frames are illustrated by the red lines between them.
The right panel is a matrix representing the time warping
path, where T and T0 axis stand for the temporal domain of
the target video and template respectively. In side the ma-
trix, the white zig-zag line stands for the time warping path.
The dark area denotes the space of all possible time warping
paths. The gray area represents for impossible search range,
which is setup manually to save computation time. We can
find that the actor in the target video hold the bending-pose
longer than the template. Therefore, the time warping path
mainly goes horizontally in the area marked by the dotted
red rectangle (implies that one template frame is associated
with several target frames).

Experiment 2: Event detection. We use the learned tem-
plates from the experiment 1 to detect actions from all test-
ing videos from the CMU dataset. To save time, we use
the DSTW algorithm to detect multiple events at a single

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

two-handed wave

Our work
baseline

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

jumping jacks

Our work
baseline

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

pushing elevator button

Our work
baseline

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

one hand wave

Our work
baseline

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

pick up

Our work
baseline

Figure 6. Event Detection Precision Recall Curves. The red curve is the base line performance reported in [7]. The blue curve is the
detection performance averaged over 5 separate experiment with different random sample of unlabeled training examples. The error bonds
illustrate best and worst detection performance

15 20 25 30 35 40 45 50

T0

0 T

Figure 7. Illustration of temporal deformations, see text for details

search. The rationale is that although dynamic program-
ming only yields one optimal path at a time, paths that
are not overlapping heavily in space-time barely affect each
other. In specific, we collected all the paths with a higher-
than-threshold matching score (normalized by path length)
and eliminated paths that overlap more than 20% in time
(thanks to the factor that most actions in the dataset do not
happen together). Ideally, we can detect all actions from a
target video clip with a single run of the DSTW algorithm.
But because of memory limitation, we divided target video
clips into small clips of 100 frames each (overlapping 20%
with its neighbors) and tested separately. We generate the
precision-recall (P-R) curve of each action, which is illus-
trated by the blue curves in Fig.6, by changing the threshold.
The red curves are baseline detection algorithm reported in
[7]. To consider a detection, we use the same decision cri-
terion as in [7]. Our performance curve is computed by
averaging detection results from 5 separate runs with ran-
dom selection of training videos, error bounds illustrate the
best and worst cases when doing the random selection. The
computation time of each 100 frame clip is about 2-3 min-
utes on an Intel 2.5 GHz PC.

Experiment 3: Contribution of shape and flow primi-
tives. To analyze the contribution of shape and flow primi-
tives separately, we conducted the experiment 2 using only
one kind of primitives at a time. Fig.8 shows an intuitive
result of how shape and flow primitives work together. In
scene (a), it is very hard to separate the actor from back-
ground crowds using only shape primitives, which leads
to detection failure. With the help of flow primitives in
(c), it is easy to separate the vertical motion of the actor
from background motion, which is predominantly horizon-

(a) shape only (b) flow only

(c) both shape and flow

Figure 8. (a) and (b) show two failure detection results (red rectan-
gles) using only one kind of primitives. (c) shows correct detection
results (blue rectangles) by combining shape and flow primitives.

tal. In scene (b), the motion generated by the moving car
in the background confuses with foreground. However, the
actress is detected in (c) by integrating shape information.
Table.1 shows quantitative performance of separated chan-
nels in terms of average area under the P-R curve (AUC).
It shows that shape primitives are generally better than flow
primitives. But flow primitives are also crucial in classes
such as “jumping-jack” and “hand-waving”. We believe it
is because motion patterns in these classes are special.

Table 1. Average AUC of separated channels
Category Shape Flow Both baseline[7]
Pick up 0.53 0.21 0.58 0.47

One-hand wave 0.46 0.29 0.59 0.38
Push button 0.68 0.12 0.74 0.48

Jumping jack 0.34 0.31 0.43 0.22
Two-hand wave 0.44 0.27 0.53 0.64

Experiment 4: Action classification on KTH dataset. We
tested our algorithm’s ability in handling deformation by
performing classification the KTH human action dataset

Motion primitives

Shape primitives

Figure 9. Action template for walking. Illustration same as Fig.1.

[18]. This dataset has little background clutter but is richer
in variations (lighting, cloth, viewing angle, etc.). The com-
plete set of actions was recorded under 4 different condi-
tions (s1-s4) (see [18] for details). Since we only need
one repeat for each clip, we use a similar experiment set-
ting as in [17]: All sequences are trimmed to 30 frames
and flipped a same direction. All evaluations were done
with 5-fold cross-validations: 4 folders for training, 1 for
testing. The results were computed by averaging 5 permu-
tations. Table.2 (1st and 2nd columns) shows the average
correct recognition rates of our method, which is compara-
ble to state-of-the-art algorithms. Similar to [17], we also
conducted experiments separately under s1-s4. The results
are also shown in Table.2. Our method achieves better re-
sult on s2 (outdoors with scale variations) than [17], which
indicates the benefit of modeling scale variations explicitly.
Fig.9 illustrates the learned deformable templates of walk-
ing class and shows that our model is able to capture shape
deformations as well as scale and view point variations.

5. Conclusion
We present a generative model of action template com-

posed of deformable shape and flow primitives. We also
propose an efficient learning algorithm that both the adap-
tive basis selection and spatial-temporal alignment can be
solved together in a unified maximum likelihood frame-
work. We demonstrate experiments that show promising
results of our methods.

Table 2. Average recognition precision of on KTH
all s1 s2 s3 s4

Our method 87.8% 90.1% 84.5% 86.1% 91.3%
SNIPPET 7[17] 90.9% 93.0% 81.1% 92.1% 96.7%

JHUANG[6] 91.7%
NEIBLES[13] 81.5%

Acknowledgement We thank Prof. Ying-Nian Wu and
Qiongchen Wang for very helpful discussions and sugges-
tions. This work was supported by NSF grants IIS-0713652
and DMS-0707055, ONR grant N00014-07-M-0287, NSF
China grant 60832004 and 863 project 2008AA01Z126.

References
[1] A. Bobick and J. Davis. The recognition of human movement

using temporal templates. PAMI, 2001. 1, 2
[2] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior

recognition via sparse spatio-temporal features. In PETS05,
2005. 2

[3] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action
at a distance. In ICCV, pages 726–733, 2003. 2

[4] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. IJCV, 61, 2005. 2

[5] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri.
Actions as space-time shapes. PAMI, 2007. 1, 2

[6] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically
inspired system for action recognition. In ICCV, 2007. 1, 2,
3, 8

[7] Y. Ke, R. Sukthankar, and M. Hebert. Event detection in
crowded videos. In ICCV, pages 1–8, 2007. 1, 2, 5, 7

[8] A. Kirsch. An introduction to the mathematical theory of
inverse problems. Springer Verlag, 1996. 4

[9] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld.
Learning realistic human actions from movies. In CVPR,
2008. 2

[10] J. Liu, J. Luo, and M. Shah. Recognizing Realistic Actions
from Videos in the Wild. In CVPR, 2009. 2

[11] J. G. Liu, S. Ali, and M. Shah. Recognizing human actions
using multiple features. In CVPR, 2008. 1

[12] B. D. Lucas and T. Kanade. Optical navigation by the method
of differences. In IJCAI, pages 981–984, 1985. 3

[13] J. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing of human action categories using spatial-temporal words.
IJCV, 79(3):299–318, 2008. 2, 8

[14] D. Ramanan and D. A. Forsyth. Automatic annotation of
everyday movements. In NIPS, 2003. 2

[15] J. O. Ramsay and B. W. Silverman. Functional Data Analy-
sis. Springer, June 2005. 2, 5

[16] M. Riesenhuber and T. Poggio. Hierarchical models of object
recognition in cortex. In Nature:Neuroscience, 1999. 2

[17] K. Schindler and L. van Gool. Action snippets: How many
frames does human action recognition require? In CVPR,
08. 1, 2, 3, 8

[18] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: a local SVM approach. In ICPR, 2004. 8

[19] E. Shechtman and M. Irani. Space-time behavior-based cor-
relation - or - how to tell if two underlying motion fields are
similar without computing them? PAMI, 2007. 2

[20] Z. Si, H. Gong, Y. Wu, and S. Zhu. Learning mixed templates
for object recognition. In CVPR, 2009. 4, 5

[21] J. Sullivan and S. Carlsson. Recognizing and tracking human
action. In ECCV, 2002. 2

[22] Y. N. Wu, Z. Z. Si, C. Fleming, and S. C. Zhu. Deformable
template as active basis. In ICCV, 2007. 2, 3, 5

[23] A. Yilmaz and M. Shah. Actions sketch: A novel action
representation. In CVPR, pages I: 984–989, 2005. 1, 2

[24] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In CVPR, 2009. 2

