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Abstract

This paper presents a method learning mixed templates
for view invariant object recognition. The template is com-
posed of 3D and 2D primitives which are stick-like elements
defined in 3D and 2D spaces respectively. The primitives
are allowed to perturb within a local range to account for
instance variations of an object category. When projected
onto images, the appearance of these primitives are repre-
sented by Gabor filters. Both 3D and 2D primitives have pa-
rameters describing their visible range in a viewing hemi-
sphere. Our algorithm sequentially selects primitives and
builds a probabilistic model using the selected primitives.
The order of this sequential selection is decided by the infor-
mation gains of primitives, which can be estimated together
with the visible range parameter efficiently. In experiments,
we evaluate performance of the learned 3D templates on
car recognition and pose estimation. We also show that the
algorithm can learn intuitive mixed templates on various
object categories, which suggests that our method could
be used as a numerical method to justify the debate over
viewer-centered and object-centered representations.

1. Introduction and Related Works

In the literature, representations for view invariant object
recognition can be categorized to two alternatives: viewer-
centered representation [8, 15] and object-centered repre-
sentation [1, 14]. The two methods are usually studied sep-
arately. There were debates [2, 22, 5] arguing which one is
better, but researchers did not draw final conclusion.

This paper presents a model mixing both representations
via 3D and 2D primitives, and a method learning mixed
templates for view invariant object recognition. By auto-
matically selecting primitives, this method suggests a nu-
merical method to justify the best representations for differ-
ent object categories.

Images of desktop globe in Fig.1 serve as an example

3D primitive         2D primitive 

Figure 1. Illustration of learned templates of a desktop globe (Bet-
ter viewed in color). Templates have 3D primitives and 2D prim-
itives, which are denoted in red and gray respectively. Our algo-
rithm can automatically select 3D primitives to describe globe’s
base and handle, whose appearances vary across views, and 2D
primitives to describe the occlusion boundary of the globe, which
is a circular pattern across all views.

to illustrate our model. Our model chooses 2D primitives
to explain the images of the globe part, because it is 2D
circular shape across all views. For the handle and base of
the desktop globe, our model selects 3D primitives to form
their 3D shapes. This is because their image patterns change
across views, but are all projections of same 3D shapes.

Inspired by active basis model [25] and recent work on
learning both object texture and structure[18], we use tem-
plate containing both 3D and 2D primitives to represent im-
ages of an object category from different views. The 3D
and 2D primitives are stick-like elements defined in 3D and
2D spaces. To model object image variation, primitives are
allowed to perturb within a small location and orientation
range. We use a visible range parameter to model 3D prim-
itive occlusion and 2D primitives only seen on part of the
view space. On images, the appearance of these primitives
are represented by Gabor filters. Position and orientation
of Gabor filter for a 3D primitive change across different
views.

With the mixed representation, we build up our genera-
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Figure 2. Overview of our model (Better viewed in color). (a) Illustration of 3D and 2D primitives and how they are used to compose mixed
representation. The 3D primitives are shown on the lower-left part. A 3D primitive can be viewed as a stick with selected orientation and
rotation in 3D space, its appearance a Gabor filters placed at projected positions and orientations. The 2D primitives are stick-like elements
located at selected 2D positions and orientations. (b) When generating object images at a particular view ~ω, we project the learned 3D
primitives and transform the 2D primitives.

tive probabilistic model from object category images of dif-
ferent views. In our model, when primitive is visible, we
model the filter response of primitive following maximum
entropy principle [7, 16]. When it is not, we assume the re-
sponse follows the distribution of Gabor filtering response
on natural images.

Our model can be learned using a pursuit algorithm,
which sequentially select primitives using information gain
as pursuit index. The key issue in evaluating the informa-
tion gain of a primitive is to estimate its visible range pa-
rameter. Using the concavity of the information gain term
detailed in Section 3.1, we are able to avoid enumerating
all the possible visible ranges and apply an efficient algo-
rithm to simultaneously estimate the optimal visible range
and information gain for each primitive. Selected primitives
form intuitive templates as is shown in Fig.1, and can be
used in tasks such as object recognition and pose inference.
Also, learned templates from various object categories sug-
gest that our method could be used as a numerical way to
justify the debate over viewer-centered representation and
object-centered representation.

In recent literature, simultaneously learning 3D object
shape and appearance is successfully implemented in [9, 4]

for multi-view images, but only for a single object. For
images from different instances of a category, recent work
either take the 3D shape as granted and directly learn the
appearance model [6, 13] , or learn shape and appearance
one after another [26]. Our model is different from those
works since we can learn 3D shape as well as appearance
simultaneously.

Recent work on viewer-centered representation are usu-
ally based on existing single view object recognition meth-
ods. They proposed to link 2D features [23] or find shared
features [24] across views to build efficient model. Re-
searchers also proposed to build up image patches com-
posed of multiple feature points as an intermediate level
of object category representation, add links and transforma-
tions between these patches [10, 17, 21], or add hierarchical
models on them [20] to build better model. These models
successfully extended current work on single view object
recognition, but did not fully exploit 3D information of ob-
jects.

The main contributions of this paper are: i. We propose
3D primitive based object representation together with al-
gorithms to learn templates of view variant images from an
object category. ii. By using information gain as a crite-



ria to pursue both 3D and 2D primitives, our algorithm can
automatically select primitives from both representations,
which provides a numerical method to justify the debate
over object-centered and viewer-centered representation.

2. Representation and Model
As is shown in Fig.2, image is represented by primitives

chosen from a dictionary of 3D and 2D primitives. We use
Gabor filters as appearance of these primitives. In this pa-
per, Gabor filters at different position and orientation are
treated as different filters. Currently, we only use one scale
of Gabor filters in our implementation.

2.1. A dictionary of 3D and 2D primitives

(a) 3D primitives. To represent 3D shape of objects, we
propose stick-like 3D elements as primitives. We define its
geometric parameter in 3D space by its position (X,Y, Z)
and orientation ~Θ . Currently, we fix the length of 3D prim-
itives, which corresponds to the fixed size of Gabor filters.
With these parameters, the set of 3D primitives can be ex-
pressed as {BX,Y,Z,~Θ, ∀X,Y, Z, ~Θ}. For a 3D primitive,
the position and orientation of its Gabor filter is decided by
its 3D to 2D projection. Hence, as is shown in lower-left
part of Fig.2, the appearance of a 3D primitive will be dif-
ferent for different views.

In this paper, a view ~ω is expressed as a vector with its
elements pan, tilt, roll, scale and object image center offset
relative to the center of the whole image. By the definition
of view, the view space in this paper is the space spanned
by the elements in view vector.

We use orthogonal projection as our projection model.
When projecting primitives to object images, some of them
may be occluded. So we use a parameter Ω to denote the
views in which the corresponding primitive is visible. Ω is
defined as a collection of views in the view space. For ex-
ample, Ω = {~ωk, k = 1, 2, · · · ,K}, whereK is the number
of views.

(b) 2D primitives. The 2D primitives b used in this pa-
per are stick-like elements defined in 2D space. This set
of primitives can be expressed as {bx,y,θ, ∀x, y, θ}, where
x, y are indexes of 2D positions and θ is the index for ori-
entation. The 2D primitives are also associated with visi-
ble range parameter Ω, and is used to describe the views in
which a 2D primitive appears. This Ω has the same form as
the one for 3D primitives.

For both 3D and 2D primitives, we define primitive re-
sponse on image as the response of corresponding Gabors.
We allow the Gabors to locally move along its direction and
rotate among its neighboring directions, and take the maxi-
mum of filtering response as the response of current Gabor.
Gabor filter response is defined as the squared norm of inner
product between the Gabor filter and image.

In the following, we will first introduce definition of im-
age generating model, image probability model and learn-
ing algorithm for 3D primitives. We then will show that
this algorithm can also be applied to our 2D primitives,
and hence becomes a template learning algorithm mixing
object-centered representation and viewer-centered repre-
sentation.

2.2. Probabilistic Image Model

Consider the case that our object representation is com-
posed of only N 3D primitives {Bi, i = 1, · · · , N} with
corresponding visible range {Ωi, i = 1, · · · , N}, where we
use i instead of X,Y, Z, ~Θ to index the selected subset of
primitives. For a given view ~ω, the object image I can be
expressed as:

I|~ω =
N∑
i=1

αiBi · 1(~ω ∈ Ωi) + U, (1)

where αi is the coefficient associated with each primitive,
U is unexplained part of image, and 1(·) is the indicator
function.

Following the derivation of Active Basis model [25], the
target image distribution can be written as:

p(I|~ω) = q(I)
N∏
i=1

p(ri|~ω)
q(ri)

(2)

where p(ri|~ω) refers to the response distribution of i-th
3D primitive, q(I) is the distribution of reference images.
q(ri) is primitive response distribution on reference images,
which should be independent of ~ω. For readers unfamil-
iar with Active Basis model, a random collection of natural
images is used in the model and called reference images.
In practice, q(ri) should be the same for all primitives. To
save computation, we can pool a general q(r) over these
reference images and store it as a histogram.

Whether a 3D primitive is visible or not significantly
affects the distribution of its observed primitive response.
Hence, when modeling p(ri|~ω), we model the case of prim-
itive is visible and occluded separately.

When the primitive is visible, according to maximum
entropy principle [7, 16], the response can be modeled as
p(ri;λi) = Zi

−1 exp(λiri)q(ri). When it is not, the ob-
served response is assumed to follow reference distribution,
thus p(ri) = q(ri). Taking the visible range parameter into
account, p(ri) can be expressed as:

p(ri;λi,Ωi|~ω) =

{
1
Zi

exp(λiri)q(ri) ~ω ∈ Ωi
q(ri) ~ω /∈ Ωi

(3)

To ensure that Eqn. (3) fits target distribution, λi should
be estimated subject to constraints that given K visible re-
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Figure 3. The relationship of average information gain against µr .
This curve shows that the average information gain is an increas-
ing function of µr . The reason that why µr is in range [0, 6] is
explained in Section 5.1.

sponses {rik}Kk=1,

1
K

K∑
k=1

rik ≈
∫
ri

1
Zi

exp(λiri)q(ri)dri (4)

3. Learning Algorithm

At learning stage, given a collection of M view labeled
images {(Im, ~ωm),m = 1 · · ·M}, our goal is to find a set
of primitives together with parameters {λi,Ωi} that maxi-
mize the likelihood of Eqn.(2).

The learning algorithm first computes the responses of
all Gabor filters on all training images. Specifically, we
compute responses of these filters centered at each pixel of
an image, and at 15 equally spaced orientations. Follow-
ing [25], we call these filtered responses together as SUM1
maps. For each Gabor filter, we compute its maximum re-
sponses in neighboring locations and orientations, and save
these maximized responses in so called MAX1 maps.

As the same with learning tasks in [25, 16], this primitive
selection problem can be solved under the matching pur-
suit framework, which incrementally select primitives from
a large set of candidates to approximate the target distri-
bution. We will first explain the key steps of this learning
algorithm and then list all steps later.

3.1. Evaluate the Information Gain of a Primitive

Given a 3D primitive and M training images, the infor-
mation gain by updating i-th primitive’s distribution from

reference distribution to target distribution is
M∑
m=1

log
p(rim|ωm)
q(rim)

(5)

=
∑

~ωm∈Ωi

(λirim − logZi) +
∑

~ωm /∈Ωi

0 (6)

=
∑

~ωm∈Ωi

(λirim − logZi) (7)

If Ωi is given, parameter λi should be fitted such that

µ̂r ≈
1
M ′

M ′∑
m′=1

rim′ = Ep(ri;λi) (8)

Where µ̂r is the mean response of samples in view range Ωi,
and M ′ is the number of of these samples. To reduce com-
putation, one can compute a histogram of Ep(r;λ) indexed
by λ before learning starts. In learning stage, the best λ can
be get by searching the histogram and interpolate between
the nearest two bins.

In the above derivation, we assume Ωi is given, but our
objective is to maximize the information gain on both λi
and Ωi. Remember that we set Ωi as a collection of views.
So, given M training images, we can enumerate all the 2M

different Ωi, find the corresponding maximum information
gain for each one, and hence find the global optimal.

Though the method above gives correct result, the com-
putation is way too expensive. By re-arranging the elements
in Eqn.(7), maximizing Eqn.(7) is equivalent to:

max |Ωi|(λi · µ̂r − logZi) (9)

where |Ωi| is the number of training views in Ωi. Eqn.(9)
indicates that according to the number of views in Ωi, we
can put the 2M possible Ωis into M groups. Benefits of
grouping them are led by the following observations: 1.)
For Ωis in each group, |Ωi| is fixed, maximizing Eqn (9)
is reduced to maximize the average information gain (λi ·
µ̂r − logZi); 2.) For log linear model, it has been proved
that this term is an increasing function of µ̂r. The second
observation is proved in [25], and here we just show the
corresponding curve in Fig.3 as a validation.

According to these two observations, in a group of Ωis
having t views, optimal Ωi must be the one that leads to
largest µ̂r, which should be the mean of the t largest of
totally M responses.

In implementation, we can avoid enumerating 2M com-
binations and instead sort the primitive responses, induce
the optimal Ωi in each group and compare the best Ωis to
find global optimal. Int this way, we can reduce the 2M

computations to at most M . The corresponding algorithm
is shown in Algorithm (1). Note that the step 6 is done in
the similar way of computing λ. The break at step 11 is
because our objective function is a concave function, which
could be easily proved following chapter 3 of [3].



Algorithm 1: Evaluate information gain of a primitive

Input: {rim, ~ωm}Mm=1

Output: Estimated parameter λ̂i, logZi, Ω̂i,
Information gain IGi

IGmax ← 0, tmax ← 01

{r′im, ~ω′m}Mm=1← descending sort on rim2

for t← 1 to M do3

µt ← mean(r′i1, · · · , r′it)4

λt ← interpolate table Ep(r;λ), s.t.5

µt ≈ Ep(r;λt)
logZt ← search table logZ(λ) to get logZ(λt)6

IGt ← t · (λtµt − logZt)7

if IGmax < IGt then8

λ̂i ← λt, IGmax ← IGt, tmax ← t9

else10

Break;11

end12

end13

logZi ← logZ(λ̂i), Ω̂i ← {~ω′k}t
max

k=1 , IGi ← IGmax14

return λ̂i, logZi, Ω̂i, IGi15

Ωi

Figure 4. Illustration of how 3D primitives are learned from and
projected to images in different views. The learning step can be
interpreted as trying all possible locations and orientations of 3D
primitives and keep the independent ones with large projected re-
sponses. In testing stage, the learned 3D model is projected to each
possible view and check if the projected template matches testing
image.

3.2. Primitive Pursuit

Using the estimated information gain, we can start to
build up our statistical model by pursuit algorithm.

An Intuitive explanation of how primitive is selected is
shown in Fig.4. Before pursuit, we enumerate lots of pos-
sible primitives in 3D space. As is shown in Fig.2, we pro-
pose 3D primitives centering at evenly sampled positions of

a cuboid. For each sampled position, we place primitives at
evenly spaced orientations using code from [12].

We then compute each 3D primitive’s responses by ref-
erencing the projected Gabor responses on MAX1 maps.
After that, we can use Algorithm (1) to compute each prim-
itive’s information gain, and then select the primitive with
maximum information gain. At the same time, parameters
associated with primitive is also stored. We further locally
inhibit the selected Gabor responses, which serves to avoid
selecting similar primitives. Details of this inhibition step
can be found in [25].

After the first primitive is selected, we repeat the process
starting from updating the information gain of each primi-
tive so as to sequentially pursue a collection of primitives
from the enumerated primitive pool. The procecdure of this
algorithm is summarized in Algorithm (2).

Algorithm 2: Primitive pursuit
Input: M training images {Im, ~ωm}
Output: N selected primitives with parameter

[(Xi, Yi, Zi, ~Θi), λi, logZi,Ωi]
Compute SUM1 maps and MAX1 maps.1

Enumerate all the possible primitives.2

Project each primitive on to the MAX1 maps.3

for i← 1 toN do4

Retrive primitives’ responses from MAX1 maps.5

for each primitive do6

compute IGi, using algorithm 1.7

end8

Find the maximum IG, denote it as IGmax9

Retrieve and store parameters associated with10

IGmax

(Xi, Yi, Zi, ~Θi)← (Xmax, Ymax, Zmax, ~Θmax)11

Local inhibition.12

end13

Note that the during primitive pursuit, information gain
of a primitive is non-increasing, hence we only need to com-
pute IG for all primitives in the first iteration, and then
delete primitives whose IG are lower than a threshold, since
they will never been selected.

If we model the 2D primitive response in the same way
described in Eqn. (3), the algorithm proposed above can be
used to pursuit both 3D and 2D primitives. In fact, assuming
observed primitive response distribution on invisible views
to follow that on natural images is implicitly used in many
models such as [10] in reference and has at least explicitly
used in [19].

To implement the algorithm in learning mixed represen-
tation, the only step we need to further specify is how to
enumerate 2D primitives. Because object image scale and
offset changes across training images, we assume there is
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Figure 5. Convert Ω from a set to a 2 dimensional lookup table
(Better viewed in color). Left: red points represent the views that
are in Ω, gray ones are the rest. Middle: we segment the view
sphere in to several view bins. Right: each bin corresponds to an
entry of a 2D lookup table, where its value is set by the majority
of the training views in that bin.

an virtual image plane, and propose 2D primitives at each
position and orientation in this plane. To associate 2D prim-
itives with image responses, the projection step used in 3D
primitive is degenerated to scaling and translating the prim-
itives.

4. Inference Algorithm

In our formulation, Ω is defined as a collection of single
views. To ensure that our model can also detect views not
appeared in training set, we further convert this Ω into a 0-
1 lookup table. The conversion steps are shown in Fig.5.
Considering the fact that in orthogonal projection, image
center offset, scale, and roll angle do not affect primitives’
occlusion, we only need to set up a 2 dimensional lookup
table along pan and tilt angle. The entry value is set to 1 if
majority (> 50%) of training images in that bin is included
in Ω.

We formulate the inference problem as a hypothesis test-
ing problem. The testing score is defined as

score(I) = log
p(I|~ω)
q(I)

=
N∑
i=1

(λiri − logZi) · 1(~ω ∈ Ωi)

(10)
Where N is the number of selected primitives. Since Ω
has already been converted to a lookup table, the value of
function 1(~ω ∈ Ωi) can be easily computed.

To find the object instance from a testing image, we com-
pute the testing score for lots of view points. For recogni-
tion, we only perform coarse search at step width 10◦ in
pan, 5◦ in tilt and 2◦ in roll. For pose inference, we perform
fine search at step width 2◦ for both pan tilt and roll.

5. Experiments

5.1. Dataset and Image Pre-processing

To show the effect of our algorithm on uncontrolled im-
ages with relatively complex background, a multi-view car
dataset [17] is used. Since view labels are not provided, we
labeled them buy imposing 3D CAD models onto images.

To show our algorithm can learn intuitive templates for var-
ious categories, we use ETH80 dataset [11], which contains
8 categories with 10 object instances for each category. We
further use soda cans as an object category, and the desktop
globe images used in Fig.1. The last two sets of images are
taken from LHI dataset [27].

Pre-processing steps used in experiments are: 1.) We
normalize the responses on a SUM1 map by dividing them
with response variance on that image. 2)We use local nor-
malization with window size 32 pixels. 3) We further regu-
late responses using sigmoid function, that is:

r′ = sigmoid(r) = ξ[2/(1 + e−2r/ξ)] (11)

Where ξ is set to 6. Theoretical underpinnings of these pre-
processing transformations can be found in [25]. In exper-
iments on dataset [17], the location and orientation change
for computing MAX1 maps is ±4 pixels and ±1 orienta-
tions. In experiment on ETH80 dataset, these are ±3 pixels
and ±1 orientations.

5.2. Learning 3D Templates for Car Recognition
and Viewpoint Inference

First, we use our learning algorithm to learn 3D primi-
tives on the multi-view car dataset [17]. We use the first 5
instance as training images, and the rest 5 as testing.

We first take the experiment of object pose inference. In
this paper, it is defined as finding the most probable view
category given that the object image is in a bounding box.
For this part, we took the images in the given bonding box
as input, and search around views ~ω to find the one with
maximum score. The estimated view is then converted to
view category as output to compute the confusion matrix.
The result is shown in Fig.6 with both confusion matrix and
some of template matching results. 1

Since our algorithm’s output is view angles instead of
view category. It should be more informative in pose related
inference tasks such as license plate searching. Also, by
projecting the templates, results also approximately shows
the boundaries of objects, which can be used as a good ini-
tial state for tasks like image segmentation.

We also show object detection results on this dataset.
The detection task is done by finding the maximum score
defined in Eqn. (10) for each given bounding box, and we
use traditional sliding window and non-maximum suppres-
sion methods to propose detection result. For each given
bounding box, we search on different views, and select the
one with maximum score as the score of current bound-
ing box. Following the protocol of VOC detection task, we
evaluate our algorithm’s performance in terms of precision

1It should be clarified that this experiment is not completely the same
as in [20], since 1)We test not only on correctly recognized images, but all
testing images. 2) We are also testing scale 3 of the dataset.
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Figure 6. Results of pose estimation task. (a) Confusion matrix of
our method. (b) Confusion matrix from [20], which we use as a
reference. (c) projected templates on testing images from different
views.
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Figure 7. Performance of detection task in terms of PR Curve to-
gether with some detection results.

recall curve. The PR curve together with some detection
results are shown in Fig7.

5.3. Learning Mixed Templates

To demonstrate the effect of our mixed template learn-
ing algorithm, we show the learned templates for 10 cate-
gories in Fig.8. The categories are sorted by the proportion
of 3D primitives in the mixed templates, and are shown in
descending order.

From the figure, we can see that our model can auto-
matically find suitable representations for different object
categories. For object categories with stable 2D shapes, the
model automatically select 2D primitives to form the rough
shape of a category. For some portions of these objects,
such as the top of tomatoes, handle of cups and base of the
desktop globe, the algorithm will select 3D primitives, be-
cause these details are view specific and only appear in part
of the view sphere.

For categories with complex shapes, coding the general
shape for each view will be less efficient than coding the
general 3D shape using 3D primitives. So, the algorithm
automatically transit to select 3D primitives. With these
experiment results, one can see that our model can learn
templates of different mixing proportions, according to the
shape and appearance of different object categories. There-
fore, we propose that different object categories should be
represented differently, and the information gain serves as
an numerical answer to this representation problem.

6. Conclusion and Future Work
This paper presents a model mixing both representations

via 3D and 2D primitives, and a method learning mixed
templates for view invariant object recognition. The model
can automatically transit between and mix object-centered
and viewer-centered representations, which could provide a
numerical answer to justify the debate over the two types of
representation.

In the future, we will incorporate part level templates
as an intermediate level of our current representation, and
learn hierarchical models to better explain object categori-
cal images.
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Figure 8. Learned object templates for 10 object categories and their pursuit indexes (Better viewed in color). Row.1-Row.3: Learned
templates for different object images. Gray bars Represent 2D primitives and red ellipses are 3D primitives, intensity of those symbols
show the corresponding score of each primitive. Row.4: The primitive pursuit index of each object category. The horizontal axis represents
the pursuit order of each primitive, and vertical axis represents the information gain of each primitive. Again, red for 3D primitives and
gray for 2D primitives. Row.5: The ratio on the number of 3D primitive (red) over 2D primitive (gray), for each category.
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