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ABSTRACT
This paper presents an interactive image segmentation frame-
work which is ultra-fast and accurate. Our framework, termed
“CO3”, consists of three components: COupled representa-
tion, COnditional model and COnvex inference. (i) In repre-
sentation, we pose the segmentation problem as partitioning
an image domain into regions (foreground vs. background)
or boundaries (on vs. off) which are dual but simultaneously
compete with each other. Then, we formulate segmenta-
tion process as a combinatorial posterior ratio test in both
the region and boundary partition space. (ii) In modeling,
we use discriminative learning methods to train conditional
models for both region and boundary based on interactive
scribbles. We exploit rich image features at multi-scales,
and simultaneously incorporate user’s intention behind the
interactive scribbles. (iii) In computing, we relax the en-
ergy function into an equivalent continuous form which is
convex. Then, we adopt the Bregman iteration method to
enforce the “coupling” of region and boundary terms with
fast global convergence. In addition, a multigrid technique
is further introduced, which is a coarse-to-fine mechanism
and guarantees both feature discriminativeness and bound-
ary preciseness by adjusting the size of image features grad-
ually.

The proposed interactive system is evaluated on three
public datasets: Berkeley segmentation dataset, MSRC dataset
and LHI dataset. Compared to five state-of-the-art ap-
proaches including Boycov et al.[1], Bai et al.[2], Grady [3],
Unger et al.[4] and Couprie et al.[5], our system outperforms
those established approaches in both accuracy and efficiency
by a large margin and achieves state-of-the-art results.

Categories and Subject Descriptors
I.4.6 [Image Processing And Computer Vision]: Seg-
mentation; I.5.5 [Pattern Recognition]: Implementation-
Interactive systems
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1. INTRODUCTION
Interactive image segmentation has been studied widely

in the literature with a broad range of applications in the
field of multimedia. The objective of interactive image seg-
mentation is to segment objects of interest as perfectly and
yet quickly as possible, while requiring the least amount of
user’s effort in drawing the interactive scribbles. The main
challenges lie in the large variabilities of objects of inter-
est including inhomogeneous region appearance and ambigu-
ous object boundaries in nature images. In this paper, we
present an ultra-fast and accurate interactive image segmen-
tation system which consists of three components unified in
a general framework as illustrated in Fig.1.

(I) Coupled representation for segmentation. As illus-
trated in the middle panel of Fig.1, we pose image seg-
mentation problem as partitioning the image domain into
a coupled representation of region and boundary. Region
and boundary compete each other in a joint solution space.
Then, the segmentation process is formulated as a posterior
ratio test (foreground vs. background regions and on vs. off
boundaries) in the partition space and is described by an
energy function.

In the literature, representations for segmentation can be
roughly divided into three types: boundary-based, region-
based and graph-based methods. Region-based approaches
[6, 7] partition the image domain into several mutually ex-
clusive regions by learning a probabilistic model for each
region individually. Boundary-based methods [8, 9] detect
edges and boundaries by exploiting image gradient features
and then trace and connect boundaries to achieve a similar
goal of segmentation. From regions to contours, Paragios
et al. [10] introduce geodesic weight into the region com-
petition framework [6] to integrate region and boundary in-
formation. From contours to regions, Arbelaez et al. [11]
show that a more sophisticated boundary model improves
segmentation results largely. Graph-based methods [1, 2,
3] explore pair-wise connectivities with local image feature,
and define both region and boundary information in a sparse
graph structure.

(II) Conditional models for region and boundary. As il-
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Figure 1: A general framework of CO3.

lustrated in the left panel of Fig.1, we use discriminative
learning methods to train conditional models for both re-
gion and boundary based on interactive user’s scribbles.
The discriminative model for region (foreground vs. back-
ground) are trained online by exploiting rich image fea-
tures at multi-scales (such as local gradient histogram and
color histogram). The pixels around the user scribbles (fore-
ground and background) are treated as initial tranning sam-
ples (positive and negative). The discriminative model for
boundary (on vs. off) is trained off-line using a set of images
with ground-truth object boundaries manually labelled. In
addition, we incorporate user’s intention behind scribbles as
a prior model in our statistical framework.

In the literature, most state-of-the-art methods [1, 2, 3,
6, 12] define region models by some simple parametric gen-
erative forms using color or intensity, which can not cap-
ture the large variations in object appearance. Instead, dis-
criminative models directly learn a label posterior to classify
different regions in segmentation. SpatialBoost [13] firstly
introduces the discriminative learning to this task and in-
duces spatial relation as boosting features. Recently, Sant-
ner et al. [14] use the Random Forests to explore rich region
features and apply Primal-Dual algorithm to optimize TV-
norm, which achieves good performance on texture images
and fast converge property with a GPU implementation.

(III) Convex inference for fast global convergence. In or-
der to find the global solution of our energy function which
consists of conditional models of region and boundary, we
convert the energy function into a convex form by relax-
ing the constraint of discrete labeling of each pixel. Further,
we introduce a Bregman iteration method [15] to enforce the
coupling of region and boundary term. With this algorithm,
these two energy terms can be quickly optimized separately
and stepwise, and the cumulative errors from minimizing
computation for the two terms are mutually cancelled in
the Bregman iteration process. A multigrid scheme is fur-
ther developed to deal with the dilemma of high-order fea-
tures (subtle localization vs. discriminative power), and it
also greatly accelerates convergence.

In the literature, some traditional methods [16, 17, 18]

minimize energy functions by a gradient descent procedure
which often gets “stuck” at local minimum. Bresson et al.
[24] recently extended the active contour model into a con-
vex formulation, and obtained more reliable results by some
variational techniques, like Primal-Dual algorithm [4, 14,
24], Bregman iteration schemes [15, 19]. Also, benefiting
from the global convergence property, graph based optimiza-
tion algorithms draw wide attention, such as Graph Cuts [1],
Shortest Path [2], Random Walk [3]. However, this type of
algorithms is limited by using very local image features with
pairwise interactions, and it often leads to rough segment
boundaries (Fig.9).

The remainder of the paper is organized as follows. Sec.2
introduces the problem formulation with the coupled repre-
sentation for segmentation. Sec.3 presents the discrimina-
tive learning methods for region and boundary. Sec.4 pro-
poses the inference algorithm for solving the segmentation
process. Sec.5 shows a series of experiments and compar-
isons. Finally, Sec.6 concludes this paper.

2. PROBLEM FORMULATION
We consider the continuous image domain Λ as shown

in Fig.1. The interactive segmentation aims to decompose
the image domain Λ into “foreground” Λ+

R and “background”
Λ−R, meanwhile “boundary” Λ+

B and the rest Λ−B . The two
partitions are strictly coupled by Λ+

B = ∂Λ+
R. Thus we firstly

present a coupled representation of both region assignment
and boundary presence for this problem, and a solution is
denoted as two coupled partitions:

Π =

{
Λ = Λ+

R ∪ Λ−R
Λ = Λ+

B ∪ Λ−B
s.t. Λ+

B = ∂Λ+
R. (1)

Let u be the characteristic function 1(x ∈ Λ+
R) for region

label, which takes value 1 as foreground, and 0 as back-
ground, and v be the boundary characteristic function 1(x ∈
Λ+

B), which takes 1 as boundary, and 0 as non-boundary.
The discriminative probability test introduced is based on
the dual region/boundary representation, with the backbone
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Figure 2: Discriminative power of different image features for appearance model learned from Leopard image
(a). Probability ratio maps estimated by generative learning with Gaussian mixture model (c), discriminative
learning with gradient histogram (d), color histogram (e) and all features (f) (Higher color intensity means
higher probability), and their corresponding PR curves (b).

equation being:

E(Π) =−
∫
u log

PR(+|I, S)

PR(−|I, S)
dx− α

∫
v log

PB(+|I)

PB(−|I)
dx,

s.t. v = |∇u|.
(2)

The region test TR = − log{PR(+|I, S)/PR(−|I, S)} is
generalized from a region competition model [6] to a con-
ditional probability test, which directly induces inter-class
competition between foreground and background regions.
Given foreground scribbles S+ and background scribbles S−
as positive and negative training samples, the region appear-
ance model PR(+|I) is learned by an online discriminative
classifier considering multi-scale image features. Further, a
prior model PR(+|S) representing user’s intention behind
scribbles is also incorporated by a model calibration scheme
explained in Sect. 3.3.

The boundary test TB = − log{PB(+|I)/PB(−|I)} offers
a statistic explanation for the edge stop function (a decreas-
ing function of image gradient in Geodesic Active Contour
model [17]). It naturally embraces the state-of-the-art edge
detectors [8, 9], which are trained offline. The parameter α
serves as a weight between two tests.

In this way, the optimization problem is presented as search-
ing for the best answer of two hypothesis testing combined:
whether a specific pixel belongs to foreground, and whether
a specific pixel belongs to boundary. The models for com-
puting the region and the boundary representations are inde-
pendent, yet the processes for computing the dual represen-
tations are tightly coupled with both processes interacting
with and constraining each other by v = |∇u|.

3. DISCRIMINATIVE LEARNING
The conditional model p(Y |I) specifies the probabilities

of possible label sequences Y given an observed image I.
Therefore, it does not expend much effort to model the
observed image I. Meanwhile, the conditional probability
of the label sequence can depend on arbitrary, dependent
features (rich image features), which means we can model
the conditional probability of a pixel P (Y (x)|IΛ(x)) given a
large neighborhood IΛ(x), or even an entire image I. Our
conditional probability model combines discriminative im-
age features that essentially improve the predicting accuracy
as shown in Fig.2, and user’s intention that is helpful for the
extremely ambiguous data as illustrated in Fig.3.

3.1 Learning appearance models
For a two class problem, we express the probability in

an exponential family form P (+|I) = 1
Z

exp{−
∑

i λihi}.
Thus, the log-posterior ratio is expressed as a simple linear
form,

log
P (+|I)

P (−|I)
=

∑
i

λihi, (3)

where hi is an image feature, which we will refer to as a
weak classifier in boosting, and the sufficient statistics in
an exponential model. λi is its corresponding coefficient.
This simple formula is connected to a logistic regression by
fitting a binomial log-likelihood or equivalent to a Boosting
algorithm by optimizing an exponential criterion [20].

Region appearance model is learned from user’s scribbles.
We randomly draw 200-400 positive and negative training
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Figure 3: (a) Spatial prior indicates foreground pixels (such as red flag) located nearer to foreground scrib-
bles, while the background pixels are closer to background scribbles. (b, c) The prior model discriminates
foreground and background label by a large statistical divergence. With the spatial prior (e) incorporated,
some ambiguous appearances (d) (such as an undesirable flower on the right) were suppressed in the combined
model (f).

samples from pixels on foreground scribbles and background
scribbles respectively. The GentleBoost [20] algorithm is ap-
plied to additively pursue most discriminative features ro-
bustly. Boundary appearance model is trained offline on the
Berkeley dataset [21]. We apply a sigmoid transformation to
each feature response h(I) = sigmoid(r(I)) where the sig-
moid function maps the filter response r(I) to a real value
in [0, 1]. And we estimate the feature parameters λ by the
logistic regression.

3.2 Feature design
Informative features capture the essence of an image pat-

tern and greatly facilitate the learning stage of a discrim-
inative algorithm. In the region model, we use two types
of local histograms with different window sizes to character-
ize local image statistics around a specific pixel. They are
histogram of color (HoC) and histogram of oriented gradi-
ents (HoG) [22]. For HoC, we choose HSV color space with
12-bin Hue, 8-bin Saturation and 8-bin intensity Value. For
HoG, we first compute a local gradient for each intensity, and
then project all gradients around a specific pixel into 12-bin
histogram according to different orientations. In the bound-
ary model, we prepare 12-bin boundary features by applying
some gradient filters (4 different scales) to each color com-
ponent. In our implementation, by using an integral image
technique of histogram calculation [23], the computational
time for the feature preparation of a 500*500 image is gen-
erally less than 0.2 seconds on a desktop PC before the users
are involved.

3.3 Incorporating user’s intention
In this study, we notice that interactive scribbles imply

strong spatial prior to the user’s intention. Pixels on the
scribbles are deterministically labeled into corresponding re-
gions. Meanwhile the other pixels that are close to the scrib-
bles, are still preserving a high probability of belonging to
the corresponding regions. In order to embed this prior in-
formation, a model calibration scheme is applied by,

log
PR(+|I, S)

PR(−|I, S)
=log

PR(+|I)

PR(−|I)
−log

PR(+)

PR(−)
+log

PR(+|S)

PR(−|S)
. (4)

The above equation essentially updates the old label prior
PR(+) to PR(+|S). Since PR(+|I) is the posterior probabil-
ity learned from the discriminative classifier, the old prior
PR(+) only counts the frequency of labels without consid-
ering the prior behind scribbles. The new prior PR(+|S)
models user’s intention based on spatial closeness to scrib-
bles. As a result, the updated predictor is a combination
of both the image likelihood from the discriminative learner
and the prior on scribbles.

We define PR(+(i,j)|S) for each pixel (i, j) as its label
frequency f with respect to Euclidean distances d((i, j), S+)
and d((i, j), S−). The distance characterizes the closeness of
the pixel (i, j) to its nearest pixel on scribbles (i′, j′) ∈ S.

PR(+(i,j)|S) = f(+(i,j)|d((i, j), S+), d((i, j), S−)),

d((i, j), S) =
1

Dmax
min

(i′,j′)∈S
‖ (i, j), (i′, j′) ‖,

(5)

where Dmax is the maximum Euclidean distance of the im-
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Figure 4: (a) The dilemma of high-order features (subtle localization vs. discriminative power); (b) conver-
gence of energy with/without multigrid.

age (diagonal length). The prior is estimated in a non-
parametric form.

As illustrated in Fig.3, the prior model defined above dis-
criminates between foreground and background labels by a
large statistical divergence. Taking advantage of the strong
prior to the user’s intention, the ambiguous appearances of
the undesired flower on the right were thus suppressed in
the combined model.

4. CONVEX INFERENCE
For optimizing the proposed energy function in Eq. 2, the

Level Sets method [18] is a standard approach. However, it
is a slow technique, and it only determines a local minimum.
Fortunately, it is proved [24] that the energy in the form of
Eq. 2 has an equivalent convex formulation by relaxing the
discrete characteristic function u into a continuous interval
u ∈ [0, 1], and v = |∇u| ∈ [0, 1]. The optimal solution is
obtained by thresholding the u into {0, 1} given a simple
threshold µ.

Theorem 1: Call u∗ any minimizer of E(u) in Eq. 2
(which is a global minimizer by convexity), then the charac-
teristic functions,

UR(x) =

{
1 if u(x) > µ,

0 otherwise
µ ∈ [0, 1], (6)

are also global minimizers of Eq. 2. Minimizing the energy
with respect to u is equivalent to minimize a relaxed formula
which takes µ ∈ [0, 1]. [25]

4.1 Bregman iteration
In order to compute a minimizer of Eq. 2 with relaxed

target variable, T. Goldstein et al. [15] introduced a fast
and accurate minimization algorithm, Bregman iteration.
As reported in [19], this algorithm is much faster and more
accurate than the Primal-Dual algorithm used in [4, 14],
because of the quadratic convergence property rather than
the linear convergence of Projection’s algorithm, and it is
faster than Graph Cuts [1] algorithm as well.

The key of this algorithm is using Bregman iteration to
enforce“Coupling”of the region term TR and boundary term

TB of Eg. 2 by solving the following unconstrained problem,

(uk+1, vk+1)=arg min
u∈[0,1],v

|v|TB +uTR+
β

2
‖v−∇u−εk ‖22

εk+1 = εk +∇uk+1 − vk+1

(7)

where εk is the cumulative error in the iteration k, and it
can be mutually cancelled on the next iteration k+ 1 by the
Bregman iteration process.

Without any hard constrain, the solving of the two en-
ergy terms of region and boundary is separated, and it is
extremely fast. The minimizing solution for the region term
uk+1 is characterized by the optimality condition with a fast
approximation of “Gauss-Seidel” iteration:

µ∇u = TR + µdiv(εk − vk), u ∈ [0, 1]. (8)

And the solution of minimizing boundary term vk+1 is
given by soft-thresholding the “shrinkage” operator:

vk+1
i,j =

∇uk+1 + εk

|∇uk+1 + εk|max(|∇uk+1 + εk| − µ−1TB , 0). (9)

4.2 Solving with multigrid
The high-order features greatly improve the discrimina-

tive power of classification, as we showed in Fig.2. However,
it sometimes hurts the accuracy of localization. As shown
in Fig.4(a), the larger the range of the feature window, the
more information it carries to discriminate between different
image patterns. At the same time, it results in a weaker abil-
ity to localize a point. That is what we called the dilemma
of high-order features.

In our method, we deal with this problem by a simple
coarse-to-fine scheme. Firstly, we use the largest feature
window with strong discriminative power, and infer a coarse
partition with down-sampling. After that, we use the bilin-
ear interpolation to get an initial solution of the next scale,
and update the model with the finer features (smaller win-
dow) to predict a subtle probability for the uncertain pixels
(u ∈ [0.1, 0.9]). We keep changing the scale of domain and
the scale of the features until reaching the pixel level. This
scheme not only preserves high discriminative power but also
brings high precision of boundary localization. Moreover, it
accelerates convergence of the Bregman iteration dramati-
cally. The convergence rate is presented in Fig.4(b).
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Figure 5: Some segmentation results on MSRC [12] and Berkeley dataset [21]. (best shown in color)

Method Bai et al. [2] Grady [3] Couprie et al.[5] Boycov et al.[1] Unger et al.[4] Our method
IJCV2009 PAMI2006 ICCV2009 ICCV2001 BMVC2008

Region precision 0.50 0.56 0.58 0.69 0.73 0.79
Boundary precision 0.05 0.10 0.11 0.14 0.16 0.21

Average running time 0.52 s 1.58 s 0.73 s 0.65 s 0.84 s 0.12 s

Table 1: Quantitative evaluation on LHI dataset [26].

5. EXPERIMENTAL ANALYSIS
The proposed system is tested on several challenging im-

ages from Berkeley segmentation dataset [21], MSRC dataset
[12], and LHI interactive segmentation benchmark [26]. In
the experiment, an Intel Core 2 Duo E7300(2.67 GHz) CPU
and 2GB RAM PC is used as the experimental platform.

We firstly start with an evaluation of system performance
on large datasets and show its superiority over state-of-the-
art methods on both accuracy and efficiency. Then we ex-
plicitly analyze each component in our proposed system and
discuss their contributions.

5.1 Qualitative evaluation
Fig.5 presents some results of our algorithm on several

popular test images of Berkeley segmentation dataset [21]
and MSRC dataset [12].

In Fig.5 (a,b,d) with very few user scribbles (small training
set), the most discriminative patterns between foreground
and background are easily captured by discriminative learn-
ing. Even for some very ambiguous image patterns like Fig.5
(c), the algorithm still performs well after more scribbles be-
ing placed.

Fig.5 (e) is an extreme case in which there are overlap-
ping image patterns (eg. black and flat pattern) between
the foreground and background. In this situation, the al-
gorithm can’t tell any difference according to local features
only. Fortunately, spatial prior helps to give a reasonable
explanation for each image region in our system. Actually,
local ambiguous patterns are nontrivial and widely exist in
natural images, and spatial prior eliminates some obvious
false alarm around the scribbles.

5.2 Quantitative evaluation
Interactive systems are generally hard to evaluate quan-

titatively due to the subjectivity and variation of human
interference. In this paper, we evaluate our method on
the 3LHI interactive segmentation benchmark [26]. The
benchmark provides several natural images, corresponding
ground-truths and three users’ scribbles for each image.

We compare our system to 5 state-of-the-art approaches:
4Boycov et al.[1] (ICCV2001), 5Bai et al.[2] (IJCV209), 6Grady
[3] (PAMI2006), 7Unger et al.[4] (BMVC2008), 8Couprie et
al.[5] (ICCV2009). The quantitative results are presented in
Tab.1, some sample images are shown in Fig.10.

Accuracy Two evaluation criteria of accuracy are ap-
plied: (1) Region precision, Λ+

R(a) ∩ Λ+
R(b)/Λ+

R(a) ∪ Λ+
R(b),

measures an overlap rate between a result foreground and
the corresponding ground truth foreground; (2) Boundary
precision, 1/D(Λ+

B(a),Λ+
B(b)), calculates an inverse of Cham-

fer distance between a result contour and the corresponding
ground truth contour. According to performance compari-
son in Tab.1, our algorithm outperforms these methods in
both region precision and boundary precision by a large mar-
gin.

Efficiency We also compute the average running time for
these methods over all images on LHI database (Tab.1). Our
algorithm is many times faster than others. Then we used

3http://www.imageparsing.com/
interactivesegmentation.html
4http://vision.csd.uwo.ca/code/
5http://www.tc.umn.edu/~baixx015/example.htm
6http://www.cns.bu.edu/~lgrady/software.html
7http://gpu4vision.icg.tugraz.at/
8http://sourceforge.net/projects/powerwatershed/
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Figure 6: The contribution of discriminative learning on different image categories of LHI dataset [26].

the flower image (Fig.3) as a standard test image, and re-
sized it to different resolutions. The computational costs for
these algorithms with respect to different image resolutions
are illustrated in Fig.8. Besides that, we also compared our
system with a GPU implementation of Random Forests and
Total Variation algorithm, which is a recent improvement of
TVSeg [4]. Our algorithm achieves 50 times faster than the
GPU implementation on a 500×350 image.

5.3 Algorithm analysis
From the results mentioned above, our algorithm gener-

ally outperforms other state-of-the-art algorithms both on
accuracy and efficiency. This is owing to some major contri-
butions in this paper, including discriminative learning with
rich image features, spatial prior, and convex inference al-
gorithm we applied. Next, we will discuss the contributions
of each of these components.

Discriminative learning Based on 4 different categories
of LHI dataset [26], we test Gaussian Mixture Model (be-
ing popularly used in other algorithms) on the HSV color
space and discriminative learning of Boosting with rich im-
age features. We plot the PR curve for each category on
average as displayed in Fig.6. In artifact category, images
are almost flat color patterns without many complex tex-
tures. GMM model shows a good ability to estimate the
true color distribution, and Boosting achieves similar per-
formance. In the categories of plant, human, and animal,
it is hard to effectively separate the complex object from
the natural background by simple color intensities in GMM,
but boosting can still capture the distinct texture pattern
or shading effect by rich image features.

Spatial prior In Fig.7, we plot the segmentation preci-
sion curve with respect to the percentage of user’s scribbles.
With our proposed spatial prior, the interaction process is
accelerated, and the system achieves high precision quickly.
Even if a lot of user interactions are imposed, the prior still
helps to get a higher precision due to its ability to handle
some local ambiguities.

Inference algorithm Actually, our proposed energy form
can be solved by traditional Level sets method [18], TV op-
timization of Primal-Dual [4] and Bregman Iteration [15],
as well as some discrete graph-based optimization algorithm
(known as solving different norm of boundary regularization
[5]), such as Shortest Path (Geodesics) [2], Random Walker
[3] and Graph Cuts [1]. In Fig.9, we set the same input
energy terms for these algorithms, and then optimize the
energy by different algorithms. We can see that continuous
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Figure 7: The improvement on segmentation preci-
sion due to the combination of spatial prior.
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Figure 8: The computational cost of inference algo-
rithms with respect to image sizes.

Method Learning Inference Total

Santner et al.[14] (2009) 1.14 s 0.5 s 1.64 s
Our system 0.015 s 0.016 s 0.031 s

Table 2: The computational cost of our system (with
a common CPU) compared with the GPU imple-
mentation of Random Forests and TV optimization
reported in [14] on a 500×350 image.



methods (d-f) achieve better sub-pixel precision than the
discrete algorithms, and Level sets method will get “stuck”
in a local minimum, e.g. the front legs of fox image. Primal-
Dual algorithm used in [4, 14] suffers from some local noise,
which is also reported in [19].

6. CONCLUSION
In this paper, we define a coupled representation in the

form of a probability ratio test based on both region and
boundary information, and combine various discriminative
image features in a learning-based conditional model, as well
as spatial prior of user scribbles. By relaxing discrete solu-
tion of pixel labeling, the energy function can be transformed
into a convex form, and thus iteratively solved by a Bregman
iteration. We evaluate our algorithm on several datasets,
and our system outperforms current approaches with higher
precision, and distinct efficiency.

The latest demos/executables of CO3 are available at
http://www.stat.ucla.edu/~ybzhao/research/co3/.
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(1) (2)

(1a) Graph Cuts (1b) Random Walker (1c) Shortest Path

(1d) Level Sets (1e) Primal-Dual (1f) Bregman Iteration (ours)

(2a) Graph Cuts (2b) Random Walker (2c) Shortest Path

(2d) Level Sets (2e) Primal-Dual (2f) Bregman Iteration (ours)

Figure 9: Results of different inference algorithms under same energy setting.



Figure 10: Sample results on LHI dataset [26]. (This figure is best presented with scale 500% in color.)


