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Abstract

This paper presents a middle-level video representation
named Video Primal Sketch (VPS), which integrates two
regimes of models: i) sparse coding model using static
or moving primitives to explicitly represent moving cor-
ners, lines, feature points, etc., ii) FRAME/MRF model with
spatio-temporal filters to implicitly represent textured mo-
tion, such as water and fire, by matching feature statis-
tics, i.e. histograms. This paper makes three contributions:
i) learning a dictionary of video primitives as parametric
generative model; ii) studying the Spatio-Temporal FRAME
(ST-FRAME) model for modeling and synthesizing textured
motion; and iii) developing a parsimonious hybrid model
for generic video representation. VPS selects the proper
representation automatically and is compatible with high-
level action representations. In the experiments, we syn-
thesize a series of dynamic textures, reconstruct real videos
and show varying VPS over the change of densities causing
by the scale transition in videos.

1. Introduction
Videos of natural scenes contain vast varieties of motion

patterns. Fig.1 shows some examples of different compo-
nents in video. The simplest are sketchable and trackable
motions, such as trackable corners, lines, and feature points,
whose positions and shapes can be tracked during the move-
ment. The most complex are textured motions, such as
water, fire or grass. Essentially, these motion patterns can
be classified based on their complexities measured by two
criteria: i) sketchability[9], i.e. the possibility for repre-
senting a local patch by an explicit image primitive, and
ii) trackability[8], i.e. the uncertainty of tracking an image
patch using the entropy of posterior probability over veloc-
ities. Sketchable or trackable parts, defined as explicit re-
gion, are explicitly represented by primitives from a dictio-
nary while non-sketchable and intrackable parts, defined as
implicit region, are implicitly represented by pooling statis-
tics.
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Figure 1. The four types of local video phenomenon characterized
by two criteria, sketchability and trackability .

In the literature, there are two families of models for mo-
tion representations including trackable and intrackable mo-
tions respectively.

For trackable motions, there are mainly three types
of representations, i.e. contours tracking[12], kernels
tracking[5] and feature points (sparse[17] or dense[2]). Dif-
ferent primitives may be learned by generative models such
as sparse coding[15, 11].

For textured motions or dynamic textures, numerous
models have been studied, such as spatio-temporal auto-
regressive (STAR) model[18], auto-regression moving-
average (ARMA) model[7] or linear dynamical system
(LDS) model[4][16] and mixed-state auto-models[3]. Al-
though these models are successful in video synthesis, they
have to record large amount of information. For example,
the dynamic texture model[7] has to store a number of PCA
components for synthesis and each of them is as large as an
image frame. For a higher compression ratio, a parsimo-
nious model has yet to be found to model textured motions.

The representations above are often manually selected
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Figure 2. An example of Video Primal Sketch. (a) Input. (b)
Sketchability map represented by filters. (c) Trackability map
where heavier color means more trackable. (d) Reconstruction of
explicit regions. (e) Synthesis for implicit regions (textured mo-
tions). (f) Synthesized frame by integrating explicit and implicit
representations seamlessly.

for specific videos in different applications. There lacks
a generic representation that can automatically select the
proper models for different patterns of the video. Fur-
thermore, both sketchability and trackability change over
scales, densities, and dynamics, and thus a good video
representation must change continuously in a long time-
varying sequence.

In this work, we study a generic representation, called
video primal sketch, by integrating two regimes of repre-
sentations. Our goal is not only simply providing a parsi-
monious model for video compression and coding, but more
importantly, it may support high level tasks such as motion
tracking and action recognition. Fig.2 and Table 1 shows an
example. An input frame from a video in (a) is separated
into sketchable and non-sketchable areas by the sketchabil-
ity map in (b), and trackable parts and intrackable regions
by the trackability map in (c). Explicit regions including

Video Resolution 288×352 pixels
Explicit Region 31,644 pixels≈ 30%

Primitive Number 300
Primitive Width 11 pixels

Explicit Parameters 3,600 ≈ 3.6%
Implicit parameters 15×(11+12+5)=420

Table 1. The parameters in video primal sketch model for the water
bird video in Fig.2

sketchable or trackable parts are modeled by a sparse coding
model and reconstructed with motion primitives in (d), and
each implicit region of non-sketchable and intrackable parts
has a textured motion which is synthesized by a generalized
FRAME model in (e). The synthesis in (f) of this frame in-
tegrates the results from (d) and (e) seamlessly. The explicit
representations are modeled with 3,600 parameters and the
implicit representations are modeled with 420 parameters,
which shows the parsimonious property of the model.

In this paper, we make the following contributions.

1. We define textured motions by spatio-temporal
FRAME (ST-FRAME), which is a non-parametric
MRF and generalizes the FRAME model[22] of tex-
ture with spatio-temporal filters to match the his-
tograms of filter responses, which gives a much more
parsimonious representation than the literature.

2. We learn a generative dictionary of motion primitives
from videos, which is utilized for the reconstruction of
explicit regions via a sparse coding model.

3. The two models are integrated in a hybrid representa-
tion, video primal sketch (VPS), as a generic middle-
level representation of video. We will also show how
VPS changes over information scales affected by dis-
tance, density and dynamics and how it is compatible
and consistent with high level action representation.

Our work is inspired by [8], which studies the statisti-
cal properties of videos over scale transition and defines in-
trackability as the entropy of local velocities, but does not
give a unified model for video representation and synthesis.
The latter is the focus of our work.

The remainder of this paper is organized as follows. In
Section 2, we present the new framework of video primal
sketch. Then we explain the algorithms for explicit repre-
sentation, textured motion synthesis and video synthesis in
Section 3, which followed by a series of experiments. The
paper is concluded and discussed in Section 4.

2. Video primal sketch model
Marr conjectured a symbolic representation called pri-

mal sketch that should be parsimonious and sufficient to



reconstruct the original image without much perceivable
distortions[14]. A mathematical model was later studied in
[9], which successfully modeled hundreds of images by in-
tegrating sketchable structures and non-sketchable textures.
In this section, we introduce video primal sketch as a hybrid
generic video representation.

Let I[1,m] = {I(t)}mt=1 be a video defined on a 3D lat-
tice Λ ⊂ Z3. Λ is divided into explicit and implicit regions,

Λ = Λex

∪
Λim, Λex

∩
Λim = ∅. (1)

Then the video I is decomposed as

IΛ = (IΛex , IΛim). (2)

The explicit region Λex and the implicit region Λim are
modeled by sparse coding model and MRF model respec-
tively in the following.

2.1. Explicit representation by sparse coding

The explicit region Λex of a video I is decomposed into
nex disjoint domains (usually nex = O(102)),

Λex =

nex∪
i=1

Λex,i. (3)

Here Λex,i ⊂ Λ defines the domain of a “brick”. A brick,
denoted by IΛex,i , is a spatio-temporal volume like a patch
in images, eg. 11 × 11 pixels×3 frames for trackable do-
mains, or 11× 11 pixels×1 frame for intrackable domains,
which can be represented by a motion primitive Bi ∈ ∆B ,

I(x, y, t) = αiBi(x, y, t) + ϵ, ∀(x, y, t) ∈ Λex,i. (4)

Bi means the ith primitive from the primitive dictionary
∆B , which fits the brick IΛex,i best. Here i indexes the pa-
rameters such as type, position, orientation and scale of Bi.
αi is the corresponding coefficient. ϵ represents the residue,
which is assumed to be i.i.d. Gaussian.

It is worth noting that a minority of noisy bricks are
trackable over time but not sketchable; thus we cannot find
specific shared primitives to represent them. Then IΛex,i

is represented by recording the region in the video as Bi

for it. Therefore, ∆B is composed of two categories, com-
mon primitives ∆common

B for sketchable bricks and special
primitives ∆special

B for non-sketchable ones. Fig.3(a) shows
some examples from ∆B .

Based on the representation in eqn(4), the probabilistic
model of trackable parts in IΛex is defined as

p(IΛex ;B, α) =

nex∏
i=1

1

(2π)
n
2 σn

i

exp{−Ei}

Ei =
∑

(x,y,t)∈Λex,i

(I(x, y, t)− αiBi(x, y, t))
2

2σ2
i

.

(5)

where B = (B1, ..., Bnex
) represents the selected primitive

set and n = |Λex,i|.
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Figure 3. (a) ∆B is a dictionary of primitives with velocities (u,v)
( (u,v) is not shown), such as blobs, ridges, edges and special prim-
itives; (b) ∆F is a dictionary of spatio-temporal filters including
static, motion and flicker filters.

2.2. Implicit representation by spatiotemporal
FRAME

The implicit region Λim of video I can be segmented into
nim (usually nim = O(1)) disjoint homogeneous textured
motion regions,

Λim =

nim∪
j=1

Λim,j . (6)

According to the texture modeling literature[22], two
textures are perceptually equivalent if they share the same
histograms of a set of filters. Despite its success in modeling
textures as a technically sound framework, it has not been
applied to videos. We extend this concept to video by de-
signing a dictionary of spatio-temporal filters ∆F including
three types shown as examples in Fig.3(b) and mentioned



in section 3.1. Each homogeneous textured motion region
IΛim,j is defined by a Julezs ensemble which is an equiva-
lence class of videos,

ΩK(hj) = {IΛim,j : Hk(IΛim,j ) = hk,j , k = 1, 2, ...,K}.

where hj = (h1,j , ..., hK,j) is a series of 1D statistics char-
acterizing the macroscopic properties of the textured motion
pattern. hk,j is a histogram of filtered responses.

The filter set F is selected from ∆F and for each of the
filters Fk ∈ F, the spatio-temporal filter response of I at
(x, y, t) ∈ Λim,j is Fk ∗ I(x, y, t). The convolution is over
spatial and temporal domain. By pooling the filter responses
over all (x, y, t) ∈ Λim,j , we can obtain a number of 1D
histograms

Hk(IΛim,j
) = Hk(z; IΛim,j

) (7)

=
1

|Λim,j |
∑

(x,y,t)∈Λim,j

1(z − Fk ∗ I(x, y, t)), k = 1, ...,K.

where 1() is an indicator function and z is the index of the
histogram bins in discrete form. Following the FRAME
model[22], the statistical model of textured motion IΛim,j

can be written in the form of the following Gibbs distribu-
tion,

p(IΛim,j ;F, β) ∝ exp{−
∑
k

⟨βk,j ,Hk(IΛim,j )⟩}. (8)

The filters in F are chosen one by one from the filter
bank ∆F by maximizing the information gain provided by
the filters

F ∗
k = arg max

Fk∈∆F

∥Hsyn
k −H0

k∥. (9)

H0
k and Hsyn

k are the response histograms of Fk before and
after synthesizing IΛim,j by adding Fk respectively. This
shows the process of reproducing the observed histogram
of the filter responses which describe the texture best.

Following the distribution form of eqn(8), the probabilis-
tic model of implicit parts of I is defined as

p(IΛim ;F, β) ∝
nim∏
j=1

p(IΛim,j ;F, β). (10)

where F = (F1, ..., FK) represents the selected spatio-
temporal filter set.

In the experiments described later, we demonstrate this
model can synthesize a range of dynamic textures by match-
ing the histograms of filter responses.

2.3. Hybrid model for video representation

In summary, by taking the explicit parts as boundary con-
ditions for the implicit regions, the probabilistic models for
IΛex and IΛim are given by eqn(5) and eqn(10) respectively

IΛex ∼ p(IΛex ;B, α), IΛim ∼ p(IΛim |I∂Λim ;F, β). (11)

As an extension of the image primitive sketch model[9],
we have the following probability model for the video pri-
mal sketch representation,

p(I|B,F, α, β) = (12)

1

Z
exp{−

nex∑
i=1

∑
(x,y,t)∈Λex,i

(I(x, y, t)− αiBi(x, y, t))
2

2σ2
i

−
nim∑
j=1

K∑
k=1

⟨βk,j ,Hk(IΛim,j
|I∂Λim,j

)⟩}.

where Z is the normalizing constant.
We denote by V PS = (B,H) as the representation for

the video IΛ, where H = ({hk,1}K1

k=1, ..., {hk,nim}
Knim

k=1 )
are the histograms described by F. The solution of V PS is
obtained by maximizing the posterior probability

V PS∗ = argmax
V PS

p(V PS|IΛ). (13)

following the video primal sketch model in eqn(12).
Table 1 gives an example of V PS composition. For a

given frame of the size 288 × 352, about 30% of the pix-
els are represented explicitly by nex = 300 motion primi-
tives. As each primitive needs 11 parameters to record the
profile and 1 more to record the type, the number of total
parameters for the explicit representation is 3,600. nim = 3
textured motion regions are represented implicitly by the
histograms, which are described by K1 = 11, K2 = 12 and
K3 = 5 filters respectively. As each histogram has 15 bins,
the number of the parameters for the implicit representation
is 420.

3. Algorithms and experiments
3.1. Spatiotemporal filters

In the literature, spatio-temporal filters were used
for motion information extraction[1] and optical flow
estimation[10], pattern categorization[20], dynamic texture
recognition[6]. In the experiments, we choose spatio-
temporal filters ∆F as shown in Fig.3(b). It includes three
types:

Static filters. Laplacian of Gaussian (LoG), Gabor, gra-
dient, or intensity filter on a single frame. They capture
statistics of spatial features.

Motion filters. Moving LoG, Gabor or intensity filters
in different velocities and orientations over three frames.
Specifically, Gabor motion filters move perpendicularly to
their orientations.

Flicker filters. One static filter with opposite signs at two
frames. It contrasts the static filter responses between two
consequent frames and detect the change of dynamics.



I F B

(0,0)

(10,-2)

(10,14)

(-2,-2)

(8,0)

(-4,2)

(-2,-4)

(6,12)

(u,v)

Figure 4. Some examples of primitives in a frame of video. Each
group shows the original local image I, the best fitted filter F, the
fitted primitive B ∈ ∆B and the velocity (u, v), which represents
the motion of B.

For implicit representation, the filters are 7 × 7 pixels
in size and have 6 scales, 12 moving orientations and 3 ve-
locities. Each type of filter has a special effect in textured
motion synthesis, which will be discussed in section 3.3 and
shown in Fig.5.

3.2. Learning motion primitives

After computing the sketchability[9] and trackability[8]
of one frame, we can extract explicit regions in the video.
By calculating all the coefficients of each part with motion
primitives from the primitive bank, αi,j = ⟨IΛtr,i , Bj⟩, all
the αi,j are ranked from high to low. We select the primitive
with the highest coefficient each time to represent the cor-
responding domain. The algorithm is similar to matching
pursuit[13].

In our work, in order to alleviate computational complex-
ity, αi,j are calculated by filter responses. The filters used
here are 11×11 pixels and have 18 orientations and 8 scales.
The fitted filter Fj gives a raw sketch of the trackable patch
and extracts information, such as type and orientation, for
generating the primitive. If the fitted filter is a Gabor-like
filter, the primitive Bj is calculated by averaging the inten-
sities of the patch along the orientation of Fj , while if the
fitted filter is a LoG-like filter, Bj is calculated by aver-
aging the intensities circularly around its center. Then Bj

is added to the primitive set B with its motion orientation
and velocity calculated from the trackability map. It is also
added into ∆B for the dictionary buildup. The size of each
primitive is 11 × 11, the same as the size of the fitted fil-
ter. In Fig.3, we show some examples of different types of
primitives, such as blob, ridge and edge. Fig.4 shows some
examples of reconstruction by motion primitives. In each
group, the original local image, the filter that is supposed
to fit, the generated primitive and the motion velocity are
given. In the frame, each patch is marked by a square with
a short line for representing its motion information.

3.3. Synthesizing textured motions

Each local volume IΛ0 of textured motion located
at Λ0 follows a Markov random field model condi-
tioned on its local neighborhood I∂Λ0 following eqn(8),
p(IΛ0 |I∂Λ0 ;F, β) ∝ exp{−

∑
k ⟨βk,Hk(IΛ0)⟩}, where

parameters βk = {β(i)
k }Li=1 ∈ β are the discrete forms of

the potential function βk() learned from input videos[22].
In order to draw a typical sample frame from p(I;F, β),

we use the Gibbs sampler which simulates a Markov chain.
Starting from any random image, e.g. a white noise, it can
converge to a stationary process with distribution p(I;F, β).

In summary, the process of textured motion synthesis is
given by the following algorithm.

Algorithm 1. Synthesis for Textured Motion
Input video Iobs = {I(1), ..., I(m)}.
Suppose we have Isyn = {Isyn(1) , ..., I

syn
(m−1)}, our goal is to

synthesize the next frame Isyn(m).
Select a group of spatio-temporal filters from a filter bank
F = {Fk}Kk=1 ∈ ∆F .

Compute hk, k = 1, ...,K of Iobs.
Initialize β

(i)
k ← 0, k = 1, ...,K, i = 1, ..., L.

Initialize Isyn(m) as a uniform white noise image.
Repeat

Calculate hsyn
k , k = 1, 2, ...,K from Isyn.

Update βk, k = 1, ...,K and p(I;F, β).
Sample Isyn(m) ∼ p(I;F, β) by Gibbs sampler.

Until 1
2

∑L
i=1 |h

(i)
k − h

syn(i)
k | ≤ ϵ for k = 1, 2, ...,K.

Fig.5 shows an example of the synthesis process. (f) is
one frame from textured motion of ocean. Starting from
a white noise frame in (a), (b) is synthesized with only 7
static filters. It shows high smoothness in spatial domain,
but lacks temporal continuity with previous frames. How-
ever, in (c) the synthesis with only 9 motion filters has sim-
ilar macroscopic distribution to the observed frame, but ap-
pears quite grainy over local spatial relationship. By using
both static and motion filters, the synthesis in (d) performs
well on both spatial and temporal relationships. Compared
with (d), the synthesis by 2 extra flicker filters in (e), shows
more smoothness and more similar to the observed frame.

In Fig.6, we show three groups of textured motion (4
bits) synthesis by algorithm 1: ocean (a), water wave (b)
and fire (c). In each group, as time passes, the synthesized
frames are getting different more and more from the ob-
served one. It is caused by the stochasticity of textured mo-
tions. However, the synthesized and observed sequences are
quite similar to human perception after matching the his-
tograms of a small set of filter responses. Fig.7 shows that
as Isyn(m) changes from white noise (Fig.5(a)) to the final syn-
thesized result (Fig.5(e)), the histograms of filter responses
become matched with the observed ones.
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Figure 5. Synthesis for one frame of the ocean textured motion.
(a) Initial uniform white noise image. (b) Synthesized frame with
only static filters. (c) Synthesized frame with only motion filters.
(d) Synthesized frame with both of static and motion filters. (e)
Synthesized frame with all of the 3 types of filters. (f) The original
observed frame.

Figure 6. Textured motion synthesis examples. For each group,
the top row are the original videos and the bottom row shows the
synthesized ones. (a) Ocean. (b) Water wave. (c) Fire.

Table 2 shows the comparison of compression ratios be-
tween ST-FRAME and the dynamic texture model[7]. It has
a significantly better compression ratio than the dynamic
texture model, because the dynamic texture model has to
record PCA components as large as the image size.

Observed Before Synthesized After Synthesized
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Figure 7. Matching of histograms of spatio-temporal filter re-
sponses for Ocean. The filters are (a) Static LoG(5×5). (b)
Static Gradient(vertical). (c) Motion Gabor(6,150◦). (d) Motion
Gabor(2,60◦). (e) Motion Gabor(2,0◦). (f) Flicker LoG(5×5).

Example Size ST-FRAME
Dynamic
texture

Ocean 112× 112 558(0.89%) 25,096(40.01%)
Water
wave 105× 105 465(0.84%) 22,058(40.01%)

Fire 110× 110 527(0.87%) 24,210(40.02%)

Table 2. The number of parameters recorded and the compres-
sion ratios for synthesis of 5-frame textured motion videos by ST-
FRAME and the dynamic texture model[7].

3.4. Synthesizing videos with VPS

In summary, the full version of the computational algo-
rithm for video synthesis of VPS is presented as follows.

Algorithm 2. Video Primal Sketch
Input a video Iobs.
Compute sketchability and trackability for separating Iobs

into explicit region IΛex and implicit region IΛim .
Reconstruct IΛex by the sparse coding model with the

selected primitives B chosen from the dictionary ∆B .
For each region of homogeneous textured motion, using
IΛex as boundary condition, synthesize IΛim by
ST-FRAME model with the selected spatio-temporal
filters F chosen from the filter bank ∆F .

Integrate the explicit representations and implicit
representations to get the synthesized video Isyn.

Fig.2 shows this process as we introduced in section
1. Fig.8 shows three examples of video synthesis (YCbCr
color space, 8 bits for grey level) by VPS frame-by-frame.
In every experiment, observed frames, trackability maps,
and final synthesized frames are shown. In Table 3, H.264
is selected as the reference of compression ratio compared



with VPS, from which we can see VPS is competitive with
state-of-art video encoder on video compression.

For assessing the quality of the synthesized results quan-
titatively, we adopt two criteria for different representa-
tions, rather than the traditional approach based on error-
sensitivity as it has a number of limitations[19]. The er-
ror for explicit representations is measured by the differ-
ence of pixel intensities errex = 1

|Λex|
∑

Λex
∥Isyn −

Iobs∥, while for implicit representations, the error is given
by the difference of filter response histograms errim =

1
nim×K

∑
nim,K ∥Hk(I

syn
Λim,j

) − Hk(I
obs
Λim,j

)∥. Table 4
shows the quality assessments of the synthesized videos.

Example Raw (Kb) VPS (Kb) H.264 (Kb)
1 924 16.02 (1.73%) 20.8 (2.2%)
2 1,485 26.4 (1.78%) 24 (1.62%)
3 1,485 28.49 (1.92%) 18 (1.21%)

Table 3. Compression ratio of video synthesis by VPS and H.264
to raw image sequence.

Example Size(Pixels) Error(IΛex ) Error(IΛim)
1 190×330 5.37% 0.59%
2 288×352 3.07% 0.16%
3 288×352 2.8% 0.17%

Table 4. Error assessment of synthesized videos.

3.5. VPS over scales, densities, dynamics

As it is observed in [8], the optimal visual representation
at a region is affected by distance, density and dynamics. In
Fig.9, we show four video clips from a long video sequence.
As the scale changes from high to low over time, the birds
in the videos are perceived by lines of boundary, groups of
kernels, dense points and dynamic textures respectively. We
show the VPS of each clip and demonstrate that the proper
representations are chosen by the model.

3.6. VPS supports action representation

VPS is also compatible with high-level action represen-
tation. By grouping meaningful explicit parts in a principled
way, it will represent an action template. In Fig.10, (b) is
the action template given by the deformable action template
model[21] from the video shown in (a). (c) shows a rough
action synthesis with only filters from a matching pursuit
process. While in (d), following the VPS model, the action
parts and a few sketchable background are reconstructed by
the explicit representation, and the large region of water is
synthesized by the implicit representation; thus we get the
synthesis of the whole video. This demonstrates that VPS
has a shared representation of videos for high-level tasks.

t=3 t=5 t=7

Figure 8. Video synthesis. For each experiment, Row 1: original
frames; Row 2: trackability maps; Row 3: synthesized frames.

4. Conclusion and discussion

In this paper, we present a novel video primal sketch
model as a middle-level generic representation of video. It
is generative and parsimonious, integrating a sparse coding



Figure 9. Representation switches triggered by scale. Row 1: ob-
served frames; Row 2: trackability maps; Row 3: synthesized
frames.

(a) Input (b) Action Template

(c) Action Synthesis (d) Video Synthesis

Figure 10. Action representation by VPS. (a) The input video. (b)
Action template obtained by the deformable action template[21].
(c) Action synthesis by filters. (d) Video synthesis by VPS.

model for explicitly representing sketchable and trackable
regions and a ST-FRAME model for implicitly representing
textured motions.

This model is also compatible with high-level represen-
tations, e.g. action recognition where the popular features
are HOG (Histogram of Oriented Gradients) for appearance
and HoF (Histogram of Optical-flow) for motion. Specif-
ically, sketchability and trackability in VPS provide spa-
tial and temporal statistical information of the video respec-
tively as the HOG and HoF features do. The difference is
that VPS moves one step further by making local decisions
to represent those regions, which have low entropy in their
appearance or motion statistics, with explicit primitives. In
future works, we will learn a richer dictionary of the video
primitives and improve the model by adding histograms of
velocities as a stronger temporal constraint, which is con-
sistent with the concept of trackability. This will hopefully
give better time-continuity over frames in video synthesis
and be used for action recognition and representation in the
high level.
Acknowledgements: This work is done when Han is a vis-

iting student at UCLA. We thank the support of an NSF
grant DMS 1007889 and ONR MURI grant N00014-10-1-
0933 at UCLA. The authors also thank the support by two
grants in China: 2007CB31100 and NSFC 60832004.

References
[1] E. Adelson and J. Bergen. Spatiotemporal energy models for

the perception of motion. JOSA A, 2(2), 1985.
[2] M. J. Black and D. J. Fleet. Probabilistic detection and track-

ing of motion boundaries. IJCV, 38(3), 2000.
[3] P. Bouthemy, C. Hardouin, G. Piriou, and J. Yao. Mixed-

state auto-models and motion texture modeling. Journal of
Mathematical Imaging and Vision, 25(3), 2006.

[4] A. B. Chan and N. Vasconcelos. Modeling, clustering, and
segmenting video with mixtures of dynamic textures. PAMI,
30(5), 2008.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object
tracking. PAMI, 25(5), 2003.

[6] K. G. Derpanis and R. P. Wildes. Dynamic texture recogni-
tion based on distributions of spacetime oriented structure.
CVPR, 2010.

[7] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto. Dynamic
textures. IJCV, 51(2), 2003.

[8] H. F. Gong and S. C. Zhu. Intrackability : characterizing
video statistics and pursuing video representations. Techni-
cal Report, UCLA.

[9] C. Guo, S. C. Zhu, and Y. N. Wu. Primal sketch: integrating
texture and structure. CVIU, 106(1), 2007.

[10] D. Heeger. Model for the extraction of image flow. JOSA A,
4(8), 1987.

[11] T. Kim, G. Shakhnarovich, and R. Urtasun. Sparse coding
for learning interpretable spatio-temporal primitives. NIPS,
2010.

[12] J. Maccormick and A. Blake. A probabilistic exclusion prin-
ciple for tracking multiple objects. IJCV, 39(1), 2000.

[13] S. Mallat and Z. Zhang. Matching pursuits with time-
frequency dictionaries. IEEE TSP, 41(12), 1993.

[14] D. Marr. Vision. W. H. Freeman and Company, 1982.
[15] B. A. Olshausen. Learning sparse, overcomplete representa-

tions of time-varying natural images. ICIP, 2003.
[16] A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant

dynamic texture recognition using a bag of dynamical sys-
tems. CVPR, 2009.

[17] D. Serby, S. Koller-Meier, and L. V. Gool. Probabilistic ob-
ject tracking using multiple features. ICPR, 2004.

[18] M. Szummer and R. W. Picard. Temporal texture modeling.
ICIP, 1996.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: from error measurement to struc-
tural similarity. IEEE TIP, 13(4), 2004.

[20] R. Wildes and J. Bergen. Qualitative spatiotemporal analysis
using an oriented energy representation. ECCV, 2000.

[21] B. Yao and S. C. Zhu. Learning deformable action templates
from cluttered videos. ICCV, 2009.

[22] S. C. Zhu, Y. N. Wu, and D. B. Mumford. Filters, random
field and maximum entropy (FRAME): towards a unified
theory for texture modeling. IJCV, 27(2), 1998.


