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Figure 1: Paintings of two customized styles rendered using our method. (a) has lower lightness contrast than (b) thus appears a little more
mellow. Zoom to 400% to view details. Their corresponding source photograph is at the top-left of Fig.3.

Abstract

In this paper, we study the stroke placement problem in painterly
rendering, and present a solution named stroke processes, which
enables intuitive and interactive customization of painting styles by
mapping perceptual characteristics to rendering parameters. Using
our method, a user can adjust styles (e.g., Fig.1) easily by con-
trolling these intuitive parameters. Our model and algorithm are
capable of reflecting various styles in a single framework, which
includes point processes and stroke neighborhood graphs to model
the spatial layout of brush strokes, and stochastic reaction-diffusion
processes to compute the levels and contrasts of their attributes to
match desired statistics. We demonstrate the rendering quality and
flexibility of this method with extensive experiments.
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1 Introduction

Among various techniques of non-photorealistic computer graph-
ics [Gooch and Gooch 2001; Strothotte and Schlechtweg 2002],
stroke-based painterly rendering [Hertzmann 2003] simulates the
common practices of human painters who create paintings with
brush strokes. This is complex since every single stroke depends on
many factors, including the scene and objects to depict, the theme
and style to express, many previously painted strokes on the can-
vas, etc. Technically, this problem has two main aspects, namely
brush modeling and stroke placement [Hertzmann 2003; Zeng et al.
2009]. While the former can hopefully be achieved by balancing
visual fidelity and computational feasibility, the latter involves sub-
tle subjective factors such as styles and feelings. To paint flexibly
like human artists, the computer should capture these factors from
users and reflect them in rendering.

For brush modeling, procedural and example-based methods have
been proposed, and some can work fairly well. But for stroke place-
ment, progress is less satisfactory. Existing methods simply place
strokes sequentially in a greedy manner, or do it by optimizing com-
plex energy functions. In neither way is it convenient to map intu-
itive perceptual characteristics to rendering parameters, for exam-
ple, “vibrant colors” and “gestural strokes” which appear in many
of Vincent van Gogh’s paintings. This makes them less convenient
to customize and thus unfriendly for interactive usage.

It is noticed that painting styles are usually expressed and recog-
nized through such intuitive perceptual characteristics, which we
call perceptual dimensions. For style customization in painterly
rendering, it is nice to have direct control of these dimensions
for each object in the source image. To achieve this, we adopt
eight intuitive system parameters defined below which correspond
to common perceptual dimensions, and users can interactively con-
trol them to achieve desired styles.

c©ACM, 2011. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version will be published in Proceedings of the
9th International Symposium on Non-Photorealistic Animation and
Rendering (NPAR 2011), Vancouver, Canada.
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Figure 2: Two painting masterpieces exhibiting sharp contrast
among neighboring strokes: (a) “Water Lilies” by Claude Monet,
and (b) “Lydia Leaning on Her Arms” by Mary Cassatt.

Density: Stroke density is proportional to the number of strokes
inside a unit image area.

Non-Uniformity: The degree of unevenness of the spatial density
of strokes. A high non-uniformity level means strokes are
very dense in some places but very sparse elsewhere.

Local Isotropy: The degree of similarity of stroke orientations in
a neighborhood inside an image region. A high local isotropy
level means neighboring strokes are usually near-parallel, ex-
hibiting a smoothed style with low contrast in orientation.

Coarseness: The average size of strokes. Generally, the larger the
stroke sizes are, the coarser the rendered painting image is.

Size Contrast: The local variance of size, represented by the size
differences between each stroke and its neighboring strokes.

Lightness Contrast: The differences in lightness of color between
each stroke and its neighbors.

Chroma Contrast: The differences in chroma of color between
each stroke and its neighbors.

Hue Contrast: The differences in hue of color between each
stroke and its neighbors.

Compared with previous methods focusing on regular features such
as stroke size and color, our parameter design explicitly emphasizes
the manipulation of spatial contrast among neighboring strokes in
five of the eight parameters listed above (i.e., local isotropy, and
contrasts in size, lightness, chroma and hue). This emphasis is in-
spired by painters’ experience [Cooke 1978] according to which
contrast, sometimes called tempo by artists, is an intuitive yet pow-
erful tool to depict styles, as we can observe in many famous paint-
ings. For example, the two masterpieces in Fig.2 exhibit vibrant
color tempos, which correspond to high contrasts in hue and light-
ness among neighboring strokes. Our choice to highlight contrast
is also supported by the successful use of wavelet and texton fea-
tures for classifying painting styles [Wallraven et al. 2009; Hughes
et al. 2010]. Note that what these features capture are patch-level
local contrasts in painting images. Fig.1 displays an example of
our rendering results, in which the two paintings are generated with
parameters differing only in lightness contrast.

Upon the eight perceptual dimensions, we propose our method
named stroke processes, which consists of a series of stochastic
processes, including point processes [Stoyan et al. 1996] to model
the spatial layout of brush strokes, and stochastic reaction-diffusion
processes [Turk 1991; Zhu and Mumford 1997] to compute the
levels and contrasts of their attributes to match desired statistics.

Reaction-diffusion is originally used for modeling the physical pro-
cesses of the chemical reaction among substances and their diffu-
sion in space. In our method, we diffuse attributes among strokes
to reduce or enhance (using negative diffusion rates) their contrasts.
The reaction with our applied external forces is for preserving in-
formation from the source image. In order to simulate the reaction-
diffusion, we connect neighboring strokes to build a graph, along
whose edge connections we are able to apply the diffusion.

The main contributions of this paper include (1) a parameter de-
sign emphasizing contrasts, which are commonly utilized by hu-
man painters to reflect styles, (2) a novel stroke neighborhood graph
model to represent the relations among strokes, and (3) a fast al-
gorithm to compute stroke attributes, enabling interactive control.
Details of the model and algorithm are explained in Section 3.

2 Related Work

Research in stroke-based painterly rendering has achieved encour-
aging progress. For brush modeling, Strassmann [1986] is among
the earliest to study painterly graphical elements. After that, peo-
ple have developed various improved methods [Cockshott et al.
1992; Meier 1996; Litwinowicz 1997; Hertzmann 1998; Hertz-
mann 2002; Baxter 2004; Zeng et al. 2009; Chu et al. 2010]. This
paper is not going to study brush modeling. We simply adopt the
example-based method of Zeng et al., and use a dictionary contain-
ing around 200 textured brush strokes. But other models, either
procedural or example-based, are also compatible with our method.

For stroke placement, there are greedy and optimization-based
methods [Hertzmann 2003]. In a greedy strategy, at each step,
the algorithm determines the current stroke according to certain ob-
jectives and image/semantic features [Haeberli 1990; Litwinowicz
1997; Hertzmann 1998; Collomosse and Hall 2002; Gooch et al.
2002; Hays and Essa 2004; Zeng et al. 2009; Lu et al. 2010;
Zhao and Zhu 2010]. The optimization-based methods compute
the entire sequence of strokes together to achieve optimal global
energies or desired statistics [Turk and Banks 1996; Hertzmann
2001; Vanderhaeghe et al. 2007; Hurtut et al. 2009]. Theoreti-
cally, optimization-based methods have the potential to outperform
greedy ones, since they can explicitly model the interactions among
strokes. These interactions, or high-order statistics among the
strokes, essentially control the spatial contrasts mentioned above.

Our method belongs to the optimization-based class, and it im-
proves previous work in two main aspects. (1) It has a parameter
design which explicitly emphasizes contrasts or high-order statis-
tics, while parameters in most previous methods only correspond
to either individual strokes or global features [Hertzmann 1998;
Hertzmann 2001; Hays and Essa 2004; Zeng et al. 2009; Lu et al.
2010] thus lack the power to reflect effects such as “complementary
colors in neighboring strokes.” (2) Our method decomposes the en-
ergies/statistics into separately optimized terms corresponding to
different perceptual dimensions. This not only simplifies compu-
tation, making it much faster than joint optimization [Hertzmann
2001] and MCMC sampling [Hurtut et al. 2009], but also enables
flexible and friendly user customization.

3 Stroke Processes

For clarity, we describe our model and algorithm using a simpli-
fied stroke element model, which has a rectangular shape and the
following attributes:

1. Position of the rectangle’s center p = (x, y),

2. Orientation of its major axis θ,
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Figure 3: The pipeline of our stroke processes. Green color and dashed arrows highlight the eight perceptual dimensions that users specify
for each image region to the system (slidebars indicate their settings for the regions of apples). P, Θ, S and C (black nodes in front of gray
background) are the positions, orientations, sizes and colors of strokes to compute, respectively, with which we can render the final painting
image or its fast preview. Gray segments in the stroke neighborhood graph (at the bottom) are connections between nodes in different image
regions. Zoom to 800% to view details. Source photograph (top-left) courtesy of Evette Murphy @publicdomainpictures.net.

3. Its size s (i.e., length u and width v), and

4. Its color c in the perceptually relevant CIELCH space, a
cylindrical form of the perceptually uniform CIELAB/LUV
spaces [Poynton 2002]. The three channels of c are light-
ness `, chroma k and hue h, respectively.

For simplicity, we use only one of the four types of brush strokes
from the dictionary [Zeng et al. 2009] (i.e., the textured type).
This basic model can be extended with richer attributes within
our framework, for example, multi-color strokes, curved strokes,
etc. For an entire collection of M strokes to compose a paint-
ing, let P = (p1,p2, · · · ,pM ), Θ = (θ1, θ2, · · · , θM ), S =
(s1, s2, · · · , sM ), and C = (c1, c2, · · · , cM ) denote their posi-
tions, orientations, sizes and colors, respectively.

We apply a two-level approach of rendering. In the upper level cor-
responding to the whole image, we adopt the interactive segmenta-
tion method used by Zeng et al. [2009] to paint the regions/objects
using different parameters for different styles, and also to preserve
sharp boundaries and layered effects. In the lower level correspond-
ing to each region/object, instead of hard-coding rendering parame-
ters according to image semantics as done by Zeng et al., we allow

user customization by selectively adjusting eight slidebars on the
software interface, which correspond to our summarized perceptual
dimensions. In this way, styles can be flexibly controlled and even
fine-tuned to depict subtle effects, as shown in Fig.1.

According to user customization, we compute the strokes using the
following three-phase stroke processes:

I. A global layout process for stroke positions, according to the
“density” and “non-uniformity” of strokes.

II. Building a stroke neighborhood graph to model the neigh-
borhood relations among strokes. Each stroke is a node in
the graph. The topology of the graph is not fixed. It keeps
changing with stroke positions and orientations during user
adjustment.

III. Three local attribute processes on the graph, for stroke orien-
tations, sizes and colors, respectively, according to the latter
six perceptual dimensions listed in Section 1.

This three-phase method essentially factorizes the stroke collection
(P,Θ, S,C) into P and (Θ, S,C|P), where “|” stands for “given”.
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In our current implementation, the layout process for P is a non-
stationary hard-core Poisson spatial point process [Stoyan et al.
1996] whose rate is determined by both image features and user
customization, and the attribute processes for (Θ, S,C|P) are PDE-
based stochastic reaction-diffusion processes [Turk 1991; Zhu and
Mumford 1997] defined locally on the stroke neighborhood graph.
Assuming the graph topology is determined by only P and Θ, and S
and C are conditionally independent given the topology, we can fur-
ther factorize (Θ, S,C|P) into (Θ|P), (S|P,Θ) and (C|P,Θ), and
compute them separately to match their respective statistics. This is
much easier than computing all attributes jointly. Fig.3 visualizes
the pipeline of our stroke processes.

3.1 Layout Process for Stroke Positions

In the layout process, with stroke density and non-uniformity spec-
ified by user input, we compute the stroke positions in three steps:

1. Computing a salience map of the image by edge and ridge
detection using steerable filters [Freeman and Adelson 1991;
Collomosse and Hall 2002].

2. Generating a density map of strokes’ spatial distribution on
the image lattice. Assuming density is positively correlated
with salience, we generate the former from the latter by
performing a 1D histogram matching [Gonzalez and Woods
2002] versus a tail-truncated exponential distribution, whose
rate is proportional to the specified non-uniformity. In this
way, when the non-uniformity level increases, more pixels on
the lattice will have very low probability masses, thus strokes
tend to be more clustered around a few salient areas.

3. Sequentially sampling the given (by density) number of
stroke positions according to the density map, each inhibit-
ing (through rejection sampling) future strokes within a small
radius (i.e., the hard core, inside which other strokes are not
allowed to appear) determined by the minimum stroke size
(empirically we use half of the minimum stroke width).

See Fig.3 for an example of these maps and sampled stroke posi-
tions corresponding to Fig.1a. Note that for the sampling, we use
a non-uniform density map but a uniform inhibition radius across
the image lattice, which is an exactly opposite design to the popu-
lar non-uniform Poisson-disk sampling method (cf. [Stoyan et al.
1996; Deussen et al. 2000; Vanderhaeghe et al. 2007; Gamito and
Maddock 2009]). The main advantage of our method is that it
can always approximate a full coverage of the canvas with enough
strokes given that the inhibition circle is smaller than the minimum
stroke size, while in Poisson-disk sampling, strokes with large in-
hibition radii must also have big enough sizes to cover their sur-
rounding areas, making it less flexible to manipulate stroke sizes
for customized styles.

3.2 Stroke Neighborhood Graph

In order to run the attribute processes to match stroke attributes
to desired statistics, we construct a Markov stroke neighborhood
graph, whose nodes are the strokes at sampled positions, and edges
connecting each node with up to four neighbors. Inspired by Guo
et al. [2003], we compute the neighborhood structure according to
the distances between strokes and their orientations:

1. Initializing each stroke’s orientation θ to its reference value
θ∗ in a reference orientation field Θ∗ prepared in advance
(e.g., an orientation field computed by diffusing segmentation
boundaries and salient sketches [Zeng et al. 2009], or by RBF
interpolation of the strongest gradients [Hays and Essa 2004];
we use the former, as visualized in Fig.3).

x

y
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stroke b

stroke c

stroke d

stroke e

stroke

stroke

stroke

stroke

stroke

stroke
Region Boundary

Figure 4: Edge connections in the stroke neighborhood graph. A
stroke’s neighborhood includes its nearest neighbor in each of the
four quadrants, if there exists one within the predefined distance
threshold inside the image region. In this figure, the neighborhood
of stroke a is a set N (a) = {b, c, d}, and stroke e is excluded
because it is not inside the same image region as a.

(a) (b) (c)

Figure 5: A visual comparison of three designs of stroke neigh-
borhood graph, for the rightmost apple in Fig.1a: (a) ours using
anisotropic 4-nearest neighbors as shown in Fig.4, in which edges
are more evenly distributed than in (b) using ordinary isotropic 4-
nearest neighbors, and (c) using all neighbors within a fixed radius
such that there are approximately the same number of edge connec-
tions as in (a) and (b). Gray segments around the boundary indicate
connections to nodes in other image regions.

2. Constructing local two-dimensional Cartesian coordinates as
shown in Fig.4, whose origin is anchored at each stroke center,
and the orthogonal straight lines x ± y = 0 are aligned with
the two axes of the stroke’s rectangular area.

3. Connecting the four edges from the stroke to its nearest neigh-
bor in each of the four quadrants. Nearest neighbors too far
away (over a predefined distance threshold) are ignored, and
strokes near region boundaries or image edges may not have
neighbors in every quadrant (i.e., some neighbors may belong
to other image regions thus excluded from the neighborhood),
so we allow less than four neighbors in such cases (see. Fig.4).

As soon as the stroke orientations are finally computed in the next
step, the structure of the stroke neighborhood graph should be up-
dated with refreshed neighborhood connections before we com-
pute the other attributes. An example stroke neighborhood graph
is shown at the bottom of Fig.3. In this visualization, some nodes
appear to have more than four connections due to our asymmetric
neighborhood design, in which if stroke b belongs to the neighbor-
hood of stroke a, i.e., b ∈ N (a), it does not imply the opposite
statement a ∈ N (b), and the graph shows superposed neighbor-
hood connections of both a and b.

We expect our anisotropic design of neighborhood structure to be
better than those using either ordinary isotropic 4-nearest neighbors
or all neighbors within a fixed radius, in the sense that neighbors are
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usually more evenly distributed around each stroke, and the entire
graph tends to be sparse yet less fragmented, especially when the
“non-uniformity” level is high. Fig.5 displays a visual comparison
of the three designs. Compared with Delaunay triangulation which
can also generate nice meshes [de Berg et al. 2010], our design
considers not only stroke positions but also their orientations in de-
termining the graph structure, which we think makes better sense
for the case of painting.

3.3 Attribute Processes for Stroke Orientations, Sizes
and Colors

In the attribute processes, coarseness as well as contrasts in orien-
tations, sizes and colors are involved. We use stochastic reaction-
diffusion equations to perform the computation, in which the dif-
fusion smooths the attributes among neighboring strokes to reduce
the contrasts (or enhances the contrasts if we use negative diffusion
rates, as explained below), and the reaction preserves information
from the source image.

Stroke Orientations. We apply the stochastic reaction-diffusion
equation

dθ

dt
= R(θ) + λθD(θ) + εθ (1)

to propagate information across the stroke neighborhood graph to
compute the orientations iteratively, in which εθ is a small stochas-
tic noise added to each iteration to simulate natural randomness.
Since θ is periodic over intervals of 2π, we adopt the orientation
diffusion [Perona 1998] term

D(θ) =
∑

n

wn sin(θn − θ), (2)

where θn are orientations of neighboring strokes of the one cur-
rently being updated, and wn are weights inversely proportional to
the spatial distances of these strokes. The local reaction term

R(θ) = sin(θ∗ − θ) (3)

applies the persistent external force from the reference orientation
field Θ∗. The diffusion rate λθ is set to the level of local isotropy
specified by user input. Specifically, when λθ > 0, the diffusion
term rotates each stroke’s orientation towards those of its neighbors
to make them similar, and thus leads to a smoothed style (like van
Gogh’s). When λθ < 0, it turns diffusion into concentration, which
rotates orientations of neighboring strokes away from each other,
leading to a cluttered style. The process in Eq.(1), if without εθ ,
essentially optimizes the Markov field energy

E(Θ|P; Θ∗) =
∑

i

φ(θi−θ∗i )+λθ
∑

i

∑

j∈N (i)

wijφ(θi−θj), (4)

with the kernel φ(·) = 1 − cos(·), and each weight wij inversely
proportional to the spatial distance between neighboring strokes i
and j. The energy is bounded above and below and converges to a
local minimum during reaction-diffusion. With εθ we can no longer
ensure the minimum, but fortunately it is unnecessary, and reaching
somewhere close to the minimum is good enough for our purpose.

After a few iterations θ is close to convergence, and we update the
edge connections of the stroke neighborhood graph using the com-
puted stroke orientations. The reaction-diffusion and graph updat-
ing are both very fast (usually under 100ms and fast enough for
interactive adjustment) since the number of strokes is usually much
smaller than that of image pixels (the difference is around three or-
ders in our experiments). For common images requiring less than
5000 strokes, 50–100 iterations can work well enough, and even

linear search of neighbors has acceptable speed. Both processes
can be parallelized on multi-core processors or graphics hardware
for even better performance (we use OpenMP for C++).

Stroke Sizes. After the stroke neighborhood graph is updated, we
move on to the separate processes for size and color. Similar to the
process for orientation, but aperiodic this time, the two-component
reaction-diffusion system for size, also involving a stochastic noise
εs, is

ds

dt
= (s∗ − s) + λs

∑

n

wn(sn − s) + εs, (5)

subject to predefined ranges u ∈ [umin, umax] and v ∈ [vmin, vmax].
This process corresponds to the quadratic-type Markov field energy

E(S|P,Θ; S∗) =
∑

i

‖si − s∗i ‖2 + λs

∑

i

∑

j∈N (i)

wij‖si − sj‖2.

(6)
λs is inversely proportional to the specified size contrast (large λs

leads to locally similar stroke sizes, and thus low size contrast).
The coarseness is controlled by reference values s∗ = (u∗, v∗) in
precomputed maps. The reference size maps of u∗ and v∗ are gen-
erated from the salience map using histogram matching (in similar
ways of generating the spatial distribution density map, as intro-
duced in Section 3.1), but here the salience histogram is firstly re-
versed (since intuitively, large salience corresponds to smaller brush
stroke), then matched versus two Laplacian distributions centered
respectively at the desired length and width levels (given by coarse-
ness) and truncated by the same predefined ranges of u and v as
mentioned above.

Stroke Colors. The reaction-diffusion of stroke colors includes
two parts, for the aperiodic lightness and chroma, and the periodic
hue, respectively. We use pixel colors c∗ = (`∗, k∗, h∗) in the
source image as local reaction reference values of colors (similar to
the usage of θ∗ and s∗), then the first part is done in a similar way
to the case of size, namely,

d`

dt
= (`∗ − `) + λ`

∑

n

wn(`n − `) + ε`, (7)

dk

dt
= (k∗ − k) + λk

∑

n

wn(kn − k) + εk, (8)

and the second part is similar to orientation reaction-diffusion,
namely,

dh

dt
= sin(h∗ − h) + λh

∑

n

wn sin(hn − h) + εh. (9)

Coupling Among Attributes. In fact, it is usually unnecessary
to restart from the very beginning when the user adjusts one or
more perceptual dimensions. For example, if only “local isotropy”
of orientations is adjusted, the stroke positions P do not need up-
dating, and if only “hue contrast” is adjusted, nothing except the
hue channel of C needs updating. Compared with some previous
optimization-based systems which require complete recomputation
once a single parameter is changed, this reduces computational cost
significantly.

4 Experiments

We have conducted a large batch of experiments on our painterly
rendering method. Fig.1 displays an example of the results, in
which (a) is generated with lower lightness contrast than (b), and
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Figure 6: Histograms of differences in lightness between neighbor-
ing strokes for Fig.1, which reflects the actual lightness contrasts
we have achieved in the two paintings. The red solid curve corre-
sponds to Fig.1a, and the blue dashed curve corresponds to Fig.1b.
With a lower peak and heavier tails, obviously Fig.1b has a higher
average difference, and thus a higher contrast in lightness.

the same configuration of all other attributes. This causes (a) to
appear a little more mellow than (b), especially for apples contain-
ing wider color ranges (e.g., the one at the bottom). As a quan-
titative confirmation, Fig.6 plots the histograms of differences in
lightness between neighboring strokes for Fig.1, which reflects the
actual lightness contrasts we have achieved in the two paintings.
(If the contrast is low, neighboring strokes have similar lightness
levels, thus most difference values should be close to zero, and the
histogram will have a high peak and low tails.) With a lower peak
and heavier tails, obviously Fig.1b has a higher average difference,
and thus a higher contrast in lightness. Using our method, it is very
easy to achieve such subtle difference in style.

Figs.8 through 11 show the flexibility of our method to simulate
various styles by simply changing the levels in several perceptual
dimensions. (Their figure captions are self-explanatory. Source
photographs and reference orientation fields with segmentation are
in Fig.7.) In Figs.8b, 9b and 9c we have applied different styles to
different image regions. In Figs.8c and 9c, we have used negative
λh’s to apply concentration instead of diffusion, in order to obtain
colors not existing in the original photograph. Levels in perceptual
dimensions not specified in the captions are set to neutral (i.e., in
the middle of the slidebar, corresponding to λ = 0). Histograms of
differences in stroke attributes are also plotted, reflecting the cor-
responding contrast levels. In these demonstrations, we can see
intuitive effects of different perceptual attributes.

We have also experimented curved brush strokes [Hertzmann 1998]
with our method, which are more expressive than straight ones for
depicting certain objects such as hairs. To build the stroke neigh-
borhood graph upon a spline stroke element model, we simply use
the coordinates and tangent at a spline’s middle point as its posi-
tion and orientation. Fig.12 displays a mixed use of straight and
curved strokes with color contrasts (corresponding to the source
photograph in Fig.7e). Fig.13 includes more results generated us-
ing our method.

Our method is friendly for interactive usage. The user only need to
slide one or more of the eight bars corresponding to the eight per-
ceptual parameters on the software interface. To help the user do
adjustment, the system has real-time previews of the effects (ren-
dered in lower resolution using color blocks as a simplified brush
model for faster computation, as shown at the bottom-left of Fig.3).
Once satisfied, the user can start the final rendering by clicking a
button. In all, it usually takes 3–5 minutes to do adjustment for
images with no more than 10–15 regions, and approximately 5–10
minutes to automatically render 2500–5000 textured brush strokes
for a 3-million-pixel final painting image (the resolutions of ren-
dered painting images in this paper are around 2000×1500) on a
desktop computer (Intel Core 2 Duo E6600 2.4GHz CPU, 8GB
DDR2 RAM).

5 Discussions

In this paper, we have presented a method to customize painterly
rendering styles in a convenient way, in which users only need
to specify desired levels in eight intuitive perceptual dimensions.
Compared with previous methods, we emphasize the importance of
contrasts as perceptual characteristics among strokes, and explicitly
use them as rendering parameters. To take advantage of this design,
we propose a novel stroke neighborhood graph model to represent
the stroke pattern, and a fast algorithm based on reaction-diffusion
for computation according to user specified contrast levels. Our ex-
periments show that this method is able to simulate various styles
under intuitive interactive control, and can generate some effects
which are difficult to achieve in existing methods, especially when
negative diffusion rates are used, as described in Section 3.3.

Perceptual Parameter Space. An intuitive way to improve our
understanding of the perceptual dimensions is to analyze the space
of these parameters by mapping the styles of some master artists
and famous genres to corresponding sub-spaces.

Neighborhood Design. In our formulation of the stroke neigh-
borhood graph, we assume the neighborhood connections depend
on stroke positions and orientations, but not sizes, and we include
the nearest neighbor in each of the four quadrants, instead of the
isotropic 4-nearest neighbors or all strokes within a fixed radius.
These empirical designs are preferred because of their balanced
properties (see Fig.5) and satisfactory rendering quality. For im-
provement, sextants or octants can be used, but this requires heav-
ier computation, and we have not seen quantitative justifications for
more complex models. For curved strokes with spline backbones, a
possibly better neighborhood design is to consider all control points
instead of only center points. Neighborhood connections can be
first established among these control points, upon which the stroke
neighborhood graph can be constructed by connecting strokes with
some of their control points connected.

Animation. Based on painterly rendering from still images, there
are many studies on painterly animation from videos in recent liter-
ature [Meier 1996; Litwinowicz 1997; Hertzmann and Perlin 2000;
Hays and Essa 2004; Collomosse et al. 2005; Lin et al. 2010; Ka-
gaya et al. 2011; O’Donovan and Hertzmann 2011]. For this pur-
pose, usually temporal coherence (i.e., smoothness) among strokes
is emphasized, including their positions and appearance attributes.
Our method may help improve the coherence by adding a temporal
domain to the spatial neighborhood graph, and perform reaction-
diffusion on this 3D graph. Of course, different or even opposite
diffusion rates can be used for the spatial and temporal connections,
in order to achieve temporal coherence while preserving sharp spa-
tial contrasts.

Project Website

More results rendered using our stroke processes are available at
http://www.stat.ucla.edu/∼mtzhao/research/stroke-processes/ .
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Figure 7: Source photographs and their reference orientation fields with segmentation visualized using colors, corresponding to the paintings
in Figs.8 through 12: (a) Petunias in Pot (courtesy of Petr Kratochvil @publicdomainpictures.net), (b) Vintage Rusty Stuff (courtesy of
Kim Newberg @publicdomainpictures.net), (c) Barn Window (courtesy of Jon Sullivan @public-domain-photos.com), (d) Old Castle Gate
(courtesy of Petr Kratochvil @publicdomainpictures.net), and (e) Grand Teton Barn (courtesy of pdphoto.org). Zoom to 400% to view details.

(a) (b) (c)

−30 0 30

Size Contrast (a)
(b)
(c)

−π 0 π

Hue Contrast

Figure 8: Painterly rendering close-ups of three different styles corresponding to the source photograph in Fig.7a: (a) neutral, (b) high size
contrast (for the leaves) and low local isotropy (for background), and (c) high hue contrast. For the leaves, histograms of differences in size
and hue between neighboring strokes are plotted on the right side. Zoom to 400% to view details.

(a) (b) (c) −π 0 π

Hue Contrast (a)
(b)
(c)

peak peak

Figure 9: Painterly rendering close-ups of three different styles corresponding to the source photograph in Fig.7b: (a) neutral, (b) low density
and high coarseness (for the wall), and (c) high size contrast and high hue contrast (for the wall, the shelf, and the can in the middle). For
the wall, histograms of differences in hue between neighboring strokes are plotted on the right side. In the blue dotted curve for (c), the
peaks near ±π (actually they are the same peak since hue is periodic over intervals of 2π) indicate the effect of “complementary colors in
neighboring strokes” as we mentioned in Section 2. Zoom to 400% to view details.
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(a) (b) (c)

−π/2 0 π/2

Local Isotropy (a)
(b)
(c)

−100 0 100

Lightness
Contrast

Figure 10: Painterly rendering close-ups of three different styles corresponding to the source photograph in Fig.7c: (a) neutral, (b) high
lightness contrast, and (c) low local isotropy. Histograms of differences in orientation and lightness between neighboring strokes are plotted
on the right side. Zoom to 400% to view details.

(a) (b) (c)

−100 0 100

Lightness
Contrast

(a)
(b)
(c)

−100 0 100

Chroma
Contrast

Figure 11: Painterly rendering close-ups of three different styles corresponding to the source photograph in Fig.7d: (a) neutral, (b) high
lightness contrast, and (c) high chroma contrast. Histograms of differences in lightness and chroma between neighboring strokes are plotted
on the right side. Zoom to 400% to view details.

(a) (b)

Figure 12: Painterly renderings of two different styles corresponding to the source photograph in Fig.7e: (a) curved strokes for the barn and
high lightness contrast, and (b) curved strokes for everything except the sky and low chroma contrast. Zoom to 400% to view details.
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(a) (b)

(c) (d)

Figure 13: Four photographs (top row from left to right: books in church, courtesy of Petr Kratochvil @publicdomainpictures.net; hands
holding tomatoes, courtesy of Hertzmann [1998, Fig.2a]; longboard surfer on the wave crest, courtesy of Andrew Schmidt @publicdomain-
pictures.net; and autumn fruits, courtesy of Petr Kratochvil @publicdomainpictures.net), their reference orientation fields with segmentation
visualized using colors (second row), and their painterly renderings using our method. Zoom to 400% to view details.
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