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Abstract. A typical scene category, e.g., street and beach, contains an enormous
number (e.g., in the order of 104 to 105) of distinct scene configurations that
are composed of objects and regions of varying shapes in different layouts. A
well-known representation that can effectively address such complexity is the
family of compositional models; however, learning the structures of the hierar-
chical compositional models remains a challenging task in vision. The objective
of this paper is to present an efficient method for learning such models from a
set of scene configurations. We start with an over-complete representation called
Hierarchical Space Tiling (HST), which quantizes the huge and continuous scene
configuration space in an And-Or tree (AOT). This hierarchical AOT can gen-
erate a combinatorial number of configurations (in the order of 1031) through
a small dictionary of elements. Then we estimate the HST/AOT model through
a learning-by-parsing strategy, which iteratively updates the HST/AOT param-
eters while constructing the optimal parse trees for each training configuration.
Finally we prune out the branches with zero or low probability to obtain a much
smaller HST/AOT. The HST quantization allows us to transfer the challenging
structure-learning problem to a tractable parameter-learning problem. We eval-
uate and demonstrate the advantages of the learned representation in three as-
pects. (i) Coding efficiency by comparing the rate-distortion curves. We show the
learned representation can approximate valid configurations with less errors us-
ing smaller number of primitives than other popular representations. (ii) Semantic
power of learning. The learned representation is less ambiguous in parsing con-
figuration and has semantically meaningful inner concepts. It captures both the
diversity and the frequency (prior) of the scene configurations. (iii) Scene clas-
sification. The model is not only fully generative but also yields discriminative
scene classification performance which outperforms the state-of-the-art methods.

1 Introduction

Motivation A typical outdoor scene category, e.g., street, beach, and country road,
contains an enormous number of distinct scene configurations, e.g., in the order of 104

to 105 (i.e., O(104) ∼ O(105), let O() denote the order) depending on the image
resolution, which are composed of objects (e.g., buildings, vehicles) and regions (e.g.,
sky, water) of varying shapes in different layouts. A well-known, or in a stronger word
the only-known, representation that can explicitly address such complexity effectively
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is the family of hierarchical compositional models, which are reconfigurable and can
generate combinatorial number of configurations through a small dictionary of shape
elements. However, learning the structures of such models remains a challenge in vi-
sion, either for scene or object categories, and recently has become a hot topic in two
communities: learning stochastic image grammar [14] and deep learning [4]. Two main
factors contribute to the difficulties of structure-learning: (i) The space of the internal
nodes is huge or essentially continuous (considering geometric deformations); (ii) The
representations are often ambiguous (i.e., not identifiable) and thus the learned model
partially loses its power in parsing or classification as it diffuses probability (i.e., prior
for structures) over multiple possible interpretations.

The objective of this paper is to present an effective method for structure learning.
We take outdoor scenes as an example and as a test bed for performance evaluations,
and argue that the proposed method can be used in learning object categories as well.

We define a scene configuration C as a label map with objects and regions, and
define a scene category as an unknown set Ω∗ of all valid configurations. Given a set
of training examples D = {Cm : m = 1...M} ⊂ Ω∗, we learn a hierarchical and
reconfigurable model which can equivalently be formulated as a stochastic grammar G
[14]. G is fully generative and its language is the set of all valid configuration,

Ω(G) = {C : C = g(pt;∆)} (1)
Here pt is the parse tree for C, ∆ is the dictionary or vocabulary of the model, and g()
is the generation function. Ω(G) should cover all variations in D with high probability
and thus be diverse, and also generalize well to the underlying set Ω∗ to achieve good
performance in classification or parsing on the test dataset.

Related work Most existing work on scene category have been posed as a classi-
fication problem whose objective is to fuel the SVM training. (i) Bag-of-Words (BoW)
representation [2] treats a scene as a collection of visual words and ignores the spatial
layout information. (ii) Grid structure representations, such as, gist-based representa-
tion [7], spatial pyramid matching (SPM) [5], and a “reconfigurable” model [8]. These
models implicitly adopt squares as elements in different sizes and locations and divide
the image into grids. (iii) Region based representations [3, 10] which segment an image
into semantic regions rather than a grid, then model the contextual relations between the
(adjacent) regions. (iv) Non-parametric representation, such as label transfer [6] that
remembers all the observed configurations and interprets new configurations through
nearest neighbor search and then deforming its label map through SIFT points. All
these representations miss the hierarchical reconfigurable structures. The most related
work is the Tangram model [13] which introduces the scene hierarchy by a pre-defined
dictionary and infers an optimal configuration for each scene category. We extend [13]
by proposing an effective method to learn the tiling dictionary for a compact and less
ambiguous scene representation and addressing many issues about structure-learning:
such as coding efficiency, ambiguity etc.

Overview Our method is inspired by the practice of ceramic tile industry where
people manufacture tiles of a few shapes (triangles, squares, rectangles) and in a few
sizes (from 2 × 2 inches to 20 × 20 inches), and compose any patterns to customer’s
needs in an economic budget. We start with an over-complete representation called Hi-
erarchical Space Tiling (HST), which quantizes the huge and continuous scene configu-
ration space in an And-Or tree (AOT). The HST/AOT is shown in Fig. 1. An And-node
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Fig. 1. HST transfers a structure-learning problem to a parameter-learning problem by pruning the
unlikely branches from an excessive HST/AOT quantization (left) with O(1031) parse trees to a
much smaller HST/AOT (right) with O(103) parse trees.

represents a way of decomposing a region; an Or-node represents alternative decompo-
sitions with branching probabilities; and a terminal node is an element, such as squares
and rectangles (one can add other primitives, e.g., triangles and trapezoids). This hier-
archical HST/AOT can generate a combinatorial number of configurations in just a few
layers (bottom left panel in Fig.1) . Then we estimate the HST/AOT model through a
learning-by-parsing (EM-like) strategy, which iteratively updates the HST/AOT param-
eters (branching probabilities at Or-nodes) while constructing the optimal parse trees
for each training configuration. The learning process maximizes the likelihood subject
to a model complexity. Finally we prune out the branches with zero or low probability to
obtain a much smaller HST/AOT, shown in Fig.1(right). This final HST/AOT is a more
compact model G whose language Ω(G) has a much smaller number of valid configu-
rations, as most unlikely configurations are removed (bottom right panel in Fig 1). The
probability of the model is focused on Ω(G) and is used as the prior for parsing.

In summary, the main contribution of our method is that it transfers the challenging
structure-learning problem to a tractable parameter-learning problem, and it achieves
this by hierarchically tiling the configuration space.

Evaluation We evaluate and demonstrate the advantages of the learned represen-
tation in three aspects. (i) Coding efficiency: given any configuration C ∈ Ω∗, we can
generate a configuration Ĉ ∈ Ω(G) by a parse tree pt so that Ĉ approximates C with
less than ε error and pt is small. More specifically, we compute the rate-distortion curves
in coding theory, and show that our representation is clearly more effective than other
popular representations (e.g., the Quadtree and spatial pyramids). (ii) Semantic power
of learning. The learned representation is less ambiguity in parsing configuration and
has semantically meaningful inner concepts discovered. It captures both the diversity
and the frequency (prior) of the scene configurations. (iii) Scene classification. We use
this generative model to provide descriptions and show discriminative scene classifica-
tion performance which outperforms the state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 introduces the def-
inition of the HST model for scene representation; Section 3 describes a learning-by-
parsing method to estimate the HST model; Section 4 shows the experiment results; and
finally, in Section 5, conclusions are made and some future work is discussed.
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Fig. 2. HST examples. (a) The And-Or structure of HST-SQ. (b) The And-Or structure of HST-RECT
(red) and HST-TRI (blue). (c) & (d) The tiling dictionary for HST-RECT/TRI on 2×2 grid respectively
(levels which are empty, e.g., s=3 in (c), are not shown). (e) The “street” scene configurations
generated from HST variants (Qt, SP, HST-RECT, HST-TRI respectively).

2 Hierarchical Space Tiling (HST) Representation

2.1 Definition of the HST

We define HST on an And-Or tree (AOT). There are three types of nodes in the HST/AOT:
And-nodes (V AND), Or-nodes (V OR) and terminal nodes (V T ).

The terminal nodes V T , shown as the square nodes in Fig.2(a) & (b), form a hierar-
chical tiling dictionary of the scene parts. They directly generate image regions. At the
bottom of the hierarchy (s = 1), an image lattice (i.e., scene label map) is divided into
a n×n grid, and each cell is seen as an atomic shape element of the dictionary. A num-
ber of the atomic elements compose the higher-level terminal nodes (i.e., scene parts) at
different scales, locations and shapes (to avoid the combination explosion, only regular
shapes e.g., squares, rectangles, triangles, trapezoid, are allowed) as shown in Fig.2(c)
& (d). The “level” here means the number of atomic shape elements being used. The
learning of the terminal nodes is introduced in Section.3.

The And-nodes V AND, shown as the solid circles in Fig.2(a) & (b), correspond to
grammar rules like rAND : A → a · b, which represent a fixed decomposition from a
node A into lower-level parts a and b with branching probability p(a, b|A) = 1.

The Or-nodes V OR, shown as the hollow circles in Fig.2(a) & (b), correspond to
grammar rules like rOR : A → a|b, which act as “switches” between possible com-
positions. The branching probabilities p(a|A), p(b|A) indicate the preference for each
composition and can be learned from scene label maps (introduced in Section.3).

The HST/AOT is naturally recursive, starting from a root which is an Or-node, gen-
erating the alternating levels of Or-nodes and And-nodes, and stopping at the terminal
nodes. The And-Or structure defines a full space of possible parsing with probabilistic
context free grammar (PCFG). By selecting the branches at Or-nodes, a parse tree pt
can be derived from this graph. Intuitively, when a parse tree collapses, it produces a
planar configuration (Fig.2(e)), which is a subset of terminal nodes, and we utilize this
configuration to represent the structure/configuration of a scene.
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2.2 Three variants of HST

With different atomic elements and compositional rules, the derived HST representa-
tions are also different. In this section, we explore three variants of HST: square tiling,
rectangular tiling and triangular tiling.

Square Tiling (HST-SQ) As shown in Fig.2(a), Quadtree (Qt)[1] is a type of HST, in
which an “And-node” always decomposes its region into quadrants of equal size and an
“Or-node” always switches either a terminal node (no split) or a 4-way split. As shown
in the middle left of Fig.2(e), this tiling method recursively divides a scene map until
reaching a threshold of homogeneity or size. The spatial pyramid (SP) model[5], which
is commonly used in scene analysis, generates an S-level representation for a scene, of
which each level divides the scene map into 2s × 2s grid (s = 0...S − 1). One layer of
SP is shown in the middle right in Fig.2(e). For both the Qt and SP model, as there is
only one splitting rule – the quartering rule, in which no dictionary is considered.

Rectangular Tiling (HST-RECT) Since the quartering rule is rigid, we extend the
HST-SQ with more flexible compositional rules: horizontal-cut and vertical-cut (the red
part in Fig.2(b)), to adapt to the variance of scene configurations. Using the square as
atomic elements and only allowing regular shape elements (i.e., rectangles and squares),
a hierarchical tiling dictionary is shown in Fig.2(c). The corresponding configuration
inferred from this variant is displayed in the bottom left of Fig.2(e).

Triangular Tiling (HST-TRI) Because of the object shape variations as well as the
viewpoint and perspective, scenes do not only have block structures, e.g., the “moun-
tain” and “street” scene. Therefore, we adopt triangles as the atomic shapes and further
relax the compositional shapes to four types: triangle, rectangle, square and trapezoid
(shown in Fig.2(d)). This improvement adds more shape elements to the tiling dictio-
nary. The HST-TRI configuration is shown in the bottom right of Fig.2(e).

We summarize the HSTs in Table.1 and evaluate their complexity by the number
of possible parse trees can be generated (|Ωpt|). As shown in Table.1, the space ex-
pands exponentially as the granularity of atomic shape elements decreases. Compared
to HST-SQ, HST-RECT and HST-TRI have much larger space volume and the potential
to account for the variety of scene configurations. However, the richer representation in-
creases model complexity (size of dictionary). To trade off the model expressive power
against the model complexity, we finally adopt the HST-RECT for scene representation
in this paper. The detailed comparison and analysis are shown in Section. 4.1.

2.3 Formulation

We define the HST as a 5-tupe

HST = (S, V N , V T ;Θ,∆) (2)

where S is a start symbol at root denoting a scene category. V N = V AND∪V OR is a set
of non-terminal nodes including the And-nodes V AND and the Or-nodes V OR. V T is a
set of terminal nodes. We use v to index the nodes, and vi ∈ Ch(v); i = 1...N (v) is the
i-th child node of v, where Ch(v) is the child node set and N (v) is the number of v’s
children. We assign the first choice of an Or-node as a terminal node, i.e., v1 ∈ V T , if
v ∈ V OR. That is, each non-terminal node is grounded to a terminal shape (see Fig.2(a))
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Table 1. Summarization of HST variants

Rules
Terminal
shapes

∆ Or-nodes
|Ωpt|

2×2 4×4 8×8

HST-SQ Qt
quartering square

× ! 2 16 65,536
SP × × 1

HST-RECT
horizontal-cut

vertical-cut
square

rectangle
! ! 9 2.59× 106 4.48× 1031

HST-TRI
horizontal-cut

vertical-cut
oblique-cut

square
rectangle
triangle

trapezoid

! ! 2891 2.81× 1017 6.30× 1080

which is the learned inner concept of this node. The parameters Θ are the branching
probabilities of each branch at the Or-nodes Θ = {θvi; v = 1...|V OR|, i = 1...N (v)}
where |V OR| is the total number of Or-nodes. The tiling dictionary of the scenes is
denoted by ∆ = V T which can be iteratively learned in Section.3.

By selecting the branches at Or-nodes, a parse tree pt can be derived from HST.
Given a configuration C (i.e., the scene label map), one can infer the parse tree pt from
a posterior distribution of the Gibbs form,

p(pt|C;Θ,∆) =
1

Z
exp{−E(pt|C;Θ,∆)} (3)

where Z =
∑
pt exp{−E(pt|C;Θ,∆)} is a partition function summing over the full

parsing space of HST and can be calculated analytically in this case.
In the formulation, the compatibility or contextual relations among the And-nodes

is not considered and thus the HST is a probabilistic context free grammar (PCFG). The
energy of a parse tree is therefore defined on two potential terms corresponding to the
Or-nodes and terminal nodes of a parse tree:

E(pt|C;Θ,∆) =
∑

v∈V OR
pt ,vi∈Ch(v)

EOR(vi|v) + λ
∑
v∈V T

pt

ET (Cv|v) (4)

where λ is the parameter balancing the two terms (λ=0.25 in this paper). Cv denotes
the patch of a label map covered by the terminal node v.

The energy of a child of an Or-node is defined on its branching probability, i.e.,

EOR(vi|v) = − ln θvi = − ln
#(v → vi)∑N(v)

i=1 #(v → vi)
(5)

where #(v → vi) is the number of times v selects ith branch vi. Intuitively, this term
favors the sub-configurations (or the compositional ways) that often make up a larger
part. We learn the branching probability for each scene category in Section.3.

The energy for terminal nodes is defined as

ET (Cv|v) = − ln
1

|Cv|
∑
i∈Cv

1[li = lv] (6)

where 1[·] is the indicator function, li is the semantic label of pixel i, lv is the dominant
label of the terminal node v. This term measures the homogeneity of the terminal nodes
in terms of semantic labels.
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3 Learning of HST

Given a set of scene configurations D = {Cm : m = 1...M}, we learn the HST
representation. To avoid the false compositions, e.g., sky and ocean may be grouped
wrongly into one region due to their similar appearance, we use the scene label maps as
the ground-truth scene configurations as training examples. The learning requires us to
estimate the optimal branching probabilities Θ at the Or-nodes and tiling dictionary ∆
subject to constraints:

(Θ,∆)∗ = argmax
Θ,∆

log p(D;Θ,∆) = argmax
Θ,∆

M∑
m=1

log p(Cm;Θ,∆)

= argmax
Θ,∆

M∑
m=1

log
∑
ptm

p(Cm, ptm;Θ,∆) s.t.

N(v)∑
i=1

θvi = 1; v = 1...|V OR|

(7)

The objective function can be rewritten as:

L(Θ,∆) =

M∑
m=1

log
∑
ptm

p(Cm, ptm;Θ,∆) +

|V OR|∑
v=1

αv(1−
N(v)∑
i=1

θvi) (8)

where αv is the Lagrange multiplier for the branching probabilities at each Or-node
to be normalized. To maximize L(Θ), we adopt a learning-by-parsing (EM-like) strat-
egy including: the E-Step, inference of pt, and the M-Step, parameter estimation of Θ.
Finally, we summarize the tiling dictionary ∆ by removing the rare elements.

3.1 The E-step: Parse tree inference

In the E-step, we keep the current branching probability Θ on the Or-nodes fixed and
infer the parse trees for each given configuration (i.e., scene map). Because the full pars-
ing space is huge, e.g., |ΩRECTpt | = 4.48×1031 for an 8×8 grid, it is intractable to solve
Eq.8 by summing over all possible parse trees. Thus Viterbi algorithm is introduced as
an approximated method by using the optimal one instead of all parse trees [11]. Since
the HST is tree-structured, and the objective energy function (Eq.8) is defined in a lin-
ear form, a Dynamic Programming (DP) algorithm can be employed to infer a globally
optimal parse tree. However, when the training set is small w.r.t. the large HST space,
although the Viterbi algorithm infers the optimal parse tree for each data sample, the
number of parse trees may be insufficient in order to robustly estimate the HST param-
eters. Therefore, we extend the standard DP to inferring the top-K(K ≥ 1) parse trees
to enlarge the number of parse trees used in EM. In the following, we first introduce the
standard DP followed by the multi-case strategy.

We rewrite Eq.4 in a recursive expression by defining an energy function over the
sub-tree starting with an Or-node v as the root node, and {vi ∈ Ch(v), i = 1...N (v)} is
child-node set of v:

Ev(pt(vi)|C;Θ,∆) =

{
ET (Cv|v) for i = 1∑N(vi)

j=1 Evi(pt(vij)|C;Θ,∆) for i > 1
(9)
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Fig. 3. Illustration of multi-case inference when K = 2. Multiple compositions kept for each
non-terminal node are highlighted in the blue bar.

where i = 1 indexes the Or-node v terminates on itself; otherwise, a branch vi ∈ V AND
will be chosen. vij is a child node of vi.

The DP proceeds by evaluating all possible branches for the Or-nodes v in the HST,
and selects the best one such that v∗i = argminvi Ev(pt(vi)|C;Θ,∆).

We propose a multi-case strategy to infer the top-K (50 in this paper) parse trees
for each given configuration in an ascending order of the energy defined in Eq.9. It
guarantees that the globally optimal solution is in the first place since the standard DP
is a special case of the multi-case algorithm when K = 1. Fig.3 shows an example of
K = 2 for illustration. Compared with the standard DP, here each non-terminal node v
can keepK = 2 compositions (highlighted in the blue bar in Fig.3). During the bottom-
up inference, (i) if reaching an Or-node, say “F ”, we sort all its child nodes in ascending
order according to their energies (A,B,C : A < B < C) and keep the first K = 2
items {A,B}. (ii) If reaching an And-node, say “H”, we first enumerate all possible
combinations of its child nodes {AE,AD,BE,BD}, then select the first K = 2 items
in the similar way. (iii) If reaching the root node, multiple parse trees can be obtained
by tracing back all the kept compositions in a top-down manner.

3.2 The M-step: Branching probability update

In the M-step, we estimate the parameterΘ by Maximum Likelihood Estimation (MLE),
which takes the derivative of L(Θ) (Eq.8) w.r.t. θvi and sets it to zero, then update the
branching probability for each branch vi according to

θ
(t+1)
vi =

1

αv

M∑
m=1

∑
ptm

1[vi ∈ ptm] · p(ptm|Cm;Θ(t), ∆(t)) (10)

where 1[·] is the indicator function that indicates whether the branch vi is selected in
the top-K parse tree ptm. Θ is set to uniform as initialization.

Finally, those branches whose probabilities are below a certain threshold (say 0.01)
are pruned. We collect the terminal nodes from all the parse trees, and they compose
the tiling dictionary ∆.

4 Experiments

In this section, we justify the proposed HST representation in three aspects. (i) We
evaluate the coding efficiency of HST variants by the rate-distortion curve. (ii) We show



Hierarchical Space Tiling for Scene Modelling 9

the change of model compactness, ambiguity reduction and the learned meaningful
dictionary through the iterative learning process. (iii) We apply the learned categorical
scene spatial layout prior to scene classification and show the improved performance.

Dataset The dataset we use in this paper is a subset of the LabelMe dataset [9]
as in the work on label transfer [6], which includes 2, 688 images from 8 categories of
outdoor scenes (e.g., coast, highway) and their corresponding scene label maps with 33
semantic labels plus a “void” label, L = {‘sky′, ‘road′, ..., ‘void′}. The image size is
256×256. Note that some semantic regions of very small areas are merged into sur-
rounding regions for simplification, e.g., “moon” and “sun” are merged into “sky”,
“window” and “door” are merged into “building”. After this pre-processing, those im-
ages annotated by single label (no configuration at all) or whose “void” area exceeds a
threshold (i.e., 30%) are discarded. Finally we get 1,968 valid “image-scene map” pairs
with 27 semantic labels.

4.1 Efficiency of representing scene configurations

In the first experiment, we compare four HST variants: Quadtree(Qt), spatial pyra-
mid(SP as a special case), rectangular tilling(HST-RECT) and triangular tilling(HST-
TRI), by the rate-distortion curves which defined as the coding error w.r.t. coding length.

The coding error counts the per-pixel error ratio in the generated configurations,
i.e., reconstructed scene maps, using inferred parse trees, which is defined as

CE =

M∑
m=1

1

|Cm|
∑

i∈Cmv,v∈V T
ptm

1[li 6= lv]. (11)

The coding length is defined as the total bits storing in a reconstructed scene map
binary file which varies with different HSTs. (i) For Qt, since it does not have a dic-
tionary, the coding length is calculated as CLQt =

∑M
m=1 nm ∗ Bsq , where nm is

the number of terminal nodes for the given configuration (scene label map) Cm and
Bsq = Bl+Bp+Bs is the coding bits for square terminal node, whereBl = dlog2(|L|)e
is the coding bits for the semantic label, Bp = dlog2(wCm)+ log2(hCm)e is the coding
bits for the node position, wC and hC are the width and height of Cm. Bs = log2 S is
the coding bits for scale, where S is the maximum level allowed in Qt. (ii) For S-level
SP, CLSP =

∑M
m=1

∑S−1
s=0 2s ∗Bl. (iii) For HST-RECT and HST-TRI, considering the

hierarchical dictionary, the coding length is defined as

CLHST−RECT/TRI = CL(∆) +

M∑
m=1

∑
v∈V T

ptm

(Bl +Bp − log p(v)) (12)

where p(v) is the frequency of the elements (i.e., terminal node) v that appears in all the
parse trees which is learned in Section.3.2, and CL(∆) is the coding length of learned
dictionary defined as:

CL(∆) =

S∑
s=1

|∆s| · (s− 1) · 2 log2 s (13)

where |∆s|, s = 1...S denotes the number of terminal nodes in the s-level of the dictio-
nary. An s-level terminal node consists s atomic shape elements (shown in Fig.2(c) &
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Fig. 4. Rate-distortion curve. (a) The inferred configurations by Qt, HST-RECT and HST-TRI. (b)
The rate-distortion curve of HST variants where the horizontal axis denotes the coding error and
the vertical axis denotes the coding length.

(d)). s − 1 means we shall code the rest of atomic elements w.r.t. the first one. 2 log2 s
is the sum of the coding bits to localize where is an atomic element w.r.t. the first one in
horizontal and vertical by assuming that a terminal node is a connected components of
the atomic elements.

For the images of size 256×256, we divide them to an 8×8 grid at the bottom level.
Fig.4(a) shows the inferred configurations by Qt, HST-RECT and HST-TRI. As shown
in Fig.4(b), by controlling the number of selected terminal nodes we can measure the
changes of coding error (the horizontal axis) w.r.t the coding length (the vertical axis)
for each scene category. We have the following observations: (i) when the coding error
is high, less terminal nodes are selected. The coding lengths of HST-RECT and HST-
TRI are always above SP and Qt due to the coding bits for the hierarchical dictionaries.
(ii) When the coding error decreases, the coding lengths of SP and Qt increase expo-
nentially because of the exponential growth of the number of additional terminal nodes.
However, due to the over-completeness of the dictionaries and adaptive variable-length
coding strategy (Shannon entropy coding), the coding lengths of HST-RECT and HST-
TRI are much more stable and finally go below SP and Qt when the coding error is
small. (iii) Moreover, compared with HST-RECT, although HST-TRI contains richer
shape dictionary (it has triangle, trapezoid), it costs more coding bits consistently for
every category. Therefore, we adopt HST-RECT to model the scenes, which can always
get reasonable coding accuracy with compact coding length.
4.2 Ambiguity reduction, learned dictionary and configuration priors

For each category, we randomly select 100 images as a training set to learn the HST-
RECT. We divide the scene maps into an 8×8 grid at the bottom level and empirically
set K = 50 and λ = 0.25.

In initialization, we set the branching probability of HST-REST follow an uni-
form distribution. During the iterative learning, the probabilities of the often selected
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Table 2. The shrinkage of HST-RECT space for “street” scene

Round |V AND| |V OR| |V T | |ΩRECT
pt |

0 6, 048 1, 296 1, 296 4.48× 1031

1 570 519 366 8.01× 107

2 351 386 256 2.23× 105

3 238 302 184 1.14× 103

4 221 290 173 9, 140

Fig. 5. Terminal node groups which are often observed in different scenes.

branches are increasing while the rarely selected ones are decreasing. Thus the distribu-
tion over branches becomes concentrated. Moreover, the branches whose probabilities
are lower than a certain threshold (say 0.01) are pruned. The learning leads to the fol-
lowing results:

(i) Taking “street” scene as an example, we count the total number of possible parse
trees as the volume of HST spaceΩRECTpt .The full parsing space of HST shrinks quickly
as shown in Table.2 and converges after 4 rounds.

(ii) The dictionary size (|∆| = |V T |, i.e., the number of terminal nodes) can be
reduced greatly as shown in Table.2. Fig.5 shows some learned terminal node groups
which are often observed in different scenes. They are composed of several terminal
nodes and form meaningful sub-configurations of semantic regions in the scenes.

(iii) The compositional ambiguity of representation is greatly reduced. The ambi-
guity arises from the shape elements shared by more than one parent node, which will
admit two or more reasonable parse trees for one configuration. e.g., Fig.6(a) shows four
different parse trees for the same street scene configuration. Reduced ambiguity leads
to distinct representation and lower model complexity. The ambiguity of parse trees
are measured by their posterior probability distributions (Eq.3). Fig.6(b)&(c) shows the
similar probabilities in initialization (Round=0) and their posterior probabilities become
increasingly polarized through each round of learning.

(iv) The number of typical configurations for a scene category is small. For each
scene category, we infer 5000 (50 × 100 images) parse trees by multi-case inference
(Section.3.1), then calculate their posterior probabilities and form a posterior proba-
bility distribution as shown in Fig.7(a), where the horizontal axis denotes the index of
parse trees and vertical axis denotes their posterior probabilities. The sharp decay curve
demonstrates the categorical configurations concentrated on only a few typical ones.
The typical configurations and their corresponding images are shown in Fig.7(b)-(i).
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Round 0
Round 1
Round 2
Round 3
Round 4

1

2

3 4

(c) Posterior probability distribution of parse tree(a) Ambiguous parse trees

1 2 3 4

Round

0 0.024 0.024 0.020 0.020

1 0.034 0.024 0.023 0.016

2 0.048 0.032 0.024 0.012

3 0.058 0.034 0.018 0.010

4 0.164 0.040 0.014 0.000

1 2 3 4

(b) Posterior probability 

Fig. 6. Ambiguity reduction through learning. (a) An illustration of ambiguous parse trees. (b)
The posterior probability in each learning round of the ambiguous parse trees. (c) The posterior
distribution of the top-K inferred parse trees.
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Fig. 7. Categorical typical configurations. (a) The posterior probability distribution for each scene
category, where the horizontal axis is the index of parse tree and vertical axis is the posterior
probability. (b)-(i) The categorical typical configurations for each scene category.

4.3 Scene classification

In application, we apply the learned scene spatial layout priors from HST-RECT as
templates to improve the supervised scene classification. The data is split in the same
way as introduced in Section. 4.2 – 100 images for training and the rest for testing in
each category.

The categorical scene templates are selected according to the posterior probability.
We set a threshold empirically (90%) and select the smallest parse tree set whose poste-
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Image

Templates

Descriptor 
(texture / color)

...

Template histogram vector

Codewords 
(texture / color)

[ ]...

Methods AP(%)
Gist [7] 72.15
BoW [2] 84.57
SPM [5] 84.92
LLC [12] 87.97

Tangram [13] 86.07
Ours 91.71

Fig. 8. The pipeline of feature extraction using typical configurations as templates (left) and the
scene classification performance (right)

rior summation is above the threshold, e.g., select the top-5 parse trees if the summation
of their posterior probabilities covers more than 90% of the posterior probability distri-
bution. We then remove the reduplicate configurations and merge the similar configu-
rations generated by the selected parse trees, and finally get 2-5 typical configurations
(Fig.7(b)-(i)) as templates for each scene category and use them for classification.

After that, the features are extracted as shown in the right of Fig.8. Firstly, the ap-
pearance descriptors such as “SIFT” and “color moment” are extracted from all training
images. Secondly, the K-means clustering algorithm is applied to quantize the appear-
ance descriptors into codewords with Wtxt = 200 and Wclr = 50 for texture and color
respectively. Thirdly, for each template, we align it to the training images by scaling,
and then collect a histogram of detected appearance codewords inside each region of
the template and concatenate them into a template histogram vector. The template his-
togram vectors of each template are then connected together into a long feature vector
named scene configuration appearance descriptor (SCAD). Finally, we train multi-class
scene classifies using the SCADs as input data. The classifier is support vector machines
(SVMs) using one-versus-all mode. In testing, we extract SCAD from an input image,
and the scene category label is the one whose classifier has the highest response.

With the same data split, we compare our classification performance with other
five methods: (i) a holistic “Gist” feature based method [7], (ii) a BoW based method
[2], (iii) spatial pyramid matching (SPM) method [5], and (iv) an extension of SPM
named locality-constrained linear coding (LLC) [12], (iv) the tangram model (Tangram)
[13]. We ran their released source codes and reported the results in the right table of
Fig.8. The average precision (AP) of the proposed model (HST-RECT) is 91.71% which
outperforms the others.

We believe that it is the categorical spatial priors that improves the classification
performance. The BoW based methods ignore the spatial layout information in scene
modeling. While the Gist, SPM and LLC models extract features from rigid image par-
titions, e.g., 2s×2s, s = {0, 1, 2}, to account for scene structures. Although the tangram
model utilize more flexible image partitions, their predefined dictionary is not able to
account for the compositional priors of the local structure of the scenes. Compared with
the previous methods, our proposed model allows more flexible configurations, and it
also incorporates the scene spatial layout priors so as to improve the classification per-
formance.
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5 Discussion and future work

In this paper we propose an effective method for learn the structure of hierarchical and
reconfigurable scene models by quantizing the space of configurations using Hierarchi-
cal Space Tiling (HST). We show that it can learn a parsimonious and less ambiguous
representation, as well as meaningful tiling dictionary. We also show improved scene
classification performance using the learned configurations as templates. For learning
the meaningful categorical configurations we focused only on the outdoor scenes which
have strong geometric structures and roughly aligned. In the future work, we shall adopt
a multi-scale strategy to learn the HST from coarse to fine, and thus integrating the
learning of small objects inside the scenes. In addition, we can also study the relation-
ships between the learned structure (dictionary) and scene attributes to associate scene
attributes to nodes in the AOT and thus local windows in images.

Acknowledgement The authors thank Jun Zhu and Tianfu Wu for discussions. This
work is supported by research grants: NSF-CNS-1028381, 973-2009CB320904, NSFC-
61272027, NSFC-61231010, NSFC-91120004 and China Scholarship Council.

References

1. Berg, M., Cheong,O., Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and
Applications (Third edition). Springer-Verlag (2008)

2. Fei-Fei, L., Perona, P.,: A Bayesian hierarchical model for learning natural scene categories.
CVPR (2005) 524–531

3. Gokalp, D., Akso, S.: Scene Classification Using Bag-of-Regions Representations. CVPR
(2007)

4. Hinton, G. E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural
Computation (2006)

5. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for
recognizing natural scene categories. CVPR (2006) 2169–2178

6. Liu, C., Yuen, J., Torralba, A.: Nonparametric scene parsing: label transfer via dense scene
alignment. CVPR (2009)

7. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial
envelope. IJCV (2001) 145–175

8. Parizi, S. N., Oberlin, J., Felzenszwalb, P.: Reconfigurable models for scene recognition.
CVPR (2012)

9. Russell, B. C., Torralba, A., Murphy, K. P., Freeman, W. T.: LabelMe: a database and web-
based tool for image annotation. IJCV (2008) 157–173

10. Socher, R., Lin, C., Ng, A., Manning, C.: Parsing natural scenes and natural language with
recursive neural networks. ICML (2011)

11. Viterbi, A. J.: Error bounds for convolutional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory (1967)

12. Wang, J., Yang, J., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image
classification. CVPR (2010)

13. Zhu, J., Wu, T. F., Zhu, S. C., Yang, X. K., Zhang, W.J.: Learning reconfigurable scene
representation by Tangram Model. Workshop on Application of Computer Vision (2012)

14. Zhu, S. C., Mumford, D.: A stochastic grammar of images. Foundations and Trends in Com-
puter Graphics and Vision (2006) 259–362


