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1 Introduction

A natural scene is composed of many components. See the example of the scene
of beach in Figure 2. When we look at this image, our visual systems process
a series of tasks in order to understand the whole scene. These tasks include
to decompose the whole scene into parts, group them to form larger and larger
parts, and organize discovered parts in a certain way. It has been a fundamental
problem in computer vision to mimic these procedures by machine vision sys-
tems. However, this is a very challenging task due to the huge complexity arisen
from an enormous number of distinct scene configurations, which are composed
of a variety of objects and regions of varying shapes in different layouts.

In this chapter we will introduce a general model for scene or object cate-
gories that can represent varying configurations effectively. The desired proper-
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Figure 1: (a) The “Tangram”, the ancient Chinese puzzle which consists of seven
pieces, and a few examples of completed shapes formed by the pieces. One can
composite an enormous number of different shapes by assembling the same set of
pieces. (b) A various types of tilings, also called tessellation, in the real world.
Although building blocks are simple and may be even identical, high order
patterns can still emerge from specific configurations, namely, organizations.
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Figure 2: A natural scene (top) as well as an object (bottom) contain a number
of components and their sub-components. We can completely understand the
image by decomposing the whole into the parts and organizing them.

ties of such models can be summarized as follows:

i. It should incorporate generic grouping rules among image primitives at
low-middle level interpretation (i.e., Gestalt Laws) as well as category-
specific production rules of parts at high level (i.e., image grammar).

ii. Compositionality is required as it ensures that the model can be expres-
sive enough to deal with hugely varying configurations of many components
by a relatively small dictionary.

iii. The structural representation should be flexible so that it can adaptively
capture unique configuration of each instance at multi-scales, as opposed to
fixed representations.

iv. Finally, the learned models should be unambiguous and allow only one
interpretation to each instance of a given scene or an object.

In order to fulfill such requirements, the proposed model will be a hierarchical
compositional model based on the tiling method. The tiling, as shown in Fig. 1,
can be seen as a process of composing complex shapes by assembling smaller
and simpler parts. Fig. 1(a) shows a tiling puzzle, an ancient invention in
China, called “Tangram”. While it is composed of a small set of very simple
pieces, one can composite an enormous number of a variety of complex shapes by
assembling them. The same intuition can be also found in real world examples
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such as tessellated street pavement and ceramic tile flooring. In such cases, one
can observe complex high order patterns emerging from one or few types of tiles
according to specific configurations, namely, organizations of tiles.

Inspired by these examples, each individual component of scene or object
will be treated as a tile in the proposed model whose visual dictionary will
be a collection of all observable tiles. Each tile is treated as a template that
explains a specific part of the image. Then, the task of understanding the whole
scene will simply become tiling, which is identifying proper tiles and assembling
them. As the nature of tiling, we consider the assembly of tiles in 2D space in
this chapter, in contrast to another class of models to cope with 3D arrangement
of parts or primitives.

Our framework which utilizes image parts (tiles) and their relations is closely
related to a series of theories in part-based object recognition of human vision,
e.g., “Recognition-by-Components” by Biederman [1]. According to these mod-
els, humans perceive given scenes as their “structural descriptions” with a lim-
ited set of known components in memory while a huge flexibility is achieved
through combinations of the components. On the other hand, another class
of theories, “image-based” models [5, 21], suggest that our brains store many
viewpoint-specific images of the same object. By analogy, our model also incor-
porates multiple templates, each of which explains an aspect specific to view-
point or appearance type. Such treatment allows us to deal with complex and
nonrigid parts of real-world objects such as humans. In contrast to image-based
models, we define the set of templates at the part level (rather than at the
entire image level) and parse the image into the parts with selected templates
where the relations among the parts are also captured by the model structure.
Therefore, our proposed model can be seen as a combined approach that can
benefit from both classes of models.

2 Background Review

In this section, a group of related researches on perceptual organization will
be briefly reviewed. In particular, we will consider two different dimensions: 1)
whether their grouping rules and parts are generic or category-specific (Sec. 2.1),
and 2) whether their representations are built on a flat layer or in hierarchy
(Sec. 2.2).

2.1 Grouping Rules: Generic vs. Category-Specific

At low level, an image can be seen as a collection of simple image features or
primitives such as line segments, junctions, and so on. At this level of abstract,
relationship among primitives is disregarded. It is the role of perceptual orga-
nization that exploits such relationship and detects the groupings of elementary
primitives. Gestalt laws such as proximity, continuity, etc explain certain pat-
terns of grouping capabilities of humans, which lead to advanced interpretation
enriched by geometric contexts among primitives as middle level representation.
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These grouping rules and simple primitives are generic and commonly ob-
served in any types of objects and scene categories. The generic grouping rules
of image structures have been studied in many works in the literature, including
Lowe’s early work [13]. Lowe viewed that the goal of perceptual organization is
to find out image relations arisen from actual structure in the scene. He mea-
sured this quantity for each grouping rule, such as collinearity and parallelism.
Mohan and Nevatia [14] also exploited such grouping rules to detect geometri-
cally related edges for scene segmentation. These generic grouping rules often
form simple and common groupings of primitives, such as L-junction. More re-
cently, Wu et al. [24] defined a set of common “graphlets” (simple primitives and
junctions) as basic building blocks and parsed the whole scene from detected
graphlets in a bottom-up manner.

Beside generic parts, any object or scene class also has its own unique parts
as well as distinct grouping rules, which can be seen as category-specific infor-
mation. Thus, it is difficult to understand the entire pattern of image solely
by generic rules. Such unique parts, which could be formed from generic parts,
may have complex structures (compared to simple primitives) and be shared by
objects within one or a few classes. Therefore, learning and representing them
can’t be achieved in the same way as generic parts and grouping rules. In late
1970’s, Saund was among the first to go beyond generic Gestalt’s laws [19]. He
pointed out that the domain specific knowledge plays an important role in shape
representation and one might lose this important information when relying on
a fixed set of generic shape primitives alone.

More generally, the goal of many high level vision tasks is to learn category-
specific dictionaries of parts and their configurations. These dictionaries tend to
contain more complex elements than common primitives so that they can reflect
distinct properties of each category of object or scene. The corresponding con-
figurations can also capture unique structure or relations of parts. For example,
a human and a dog have different sets of parts and different configurations, and
none of them can be identified by generic rules without domain knowledge.

2.2 Organization: Flat vs. Hierarchical

The generic grouping rules, such as Gestalt laws, have been often posed as rela-
tional constraints on the parts, which are modeled in a flat layer. For example,
Zhu [28] proposed a mathematical framework based on Markov Random Field
(MRF) whose neighborhood structures captured relationship between line seg-
ments. Through the structures, Gestalt laws were explicitly modeled as pairwise
features so that they could act as constraints posed on shape elements. Por-
way et al. [16] also employed MRFs for aerial image parsing where the common
elements of aerial images such as parking lots, roads, etc were defined on the
graph. Then, the statistical constraints such as relative position were added
between objects.

However, certain relations or groupings can be better organized and ex-
pressed in the hierarchy of different levels of abstract. A fractal pattern is a
good example in which one can observe the law of symmetry recursively at in-
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finite scales. Let’s also recall the beach example in Fig. 2 which contains many
components and their subcomponents. One can easily imagine a huge com-
plexity that would be caused by modeling all components and their relations
together on the flat representation.

The use of hierarchical representation for image modeling dates back to
1970s in Fu’s early works [9], namely syntactic approaches where pattern struc-
tures and sub-pattern relations were modeled as symbolic tokens and production
rules by analogy to natural languages. Dickinson et al. [4] adopted a hierarchi-
cal Bayesian network for 3D object recognition, where layers of short bound-
aries, object faces, and aspects were linked hierarchically. Sarkar and Boyer [18]
also used the Bayesian network for grouping primitives into hierarchical struc-
tures in aerial images. In both models, groupings were governed by conditional
probabilities defined over layers in the hierarchy. More recently, Geman and
collaborators [2] presented grammatical and compositional frameworks with ap-
plications such as vehicle license plate recognition [10]. Zhu and Mumford [29]
also proposed a general framework for image grammar named And-Or Graph,
which we adopt in our model and will discuss in details in Sec. 3.

The key advantage of these approaches is that they can represent an enor-
mous number of distinct configurations by composing a relatively smaller num-
ber of elements, instead of enumerating all possible configurations. Also, hier-
archical structures further allow us to limit local complexity at each scale. As
discussed at the beginning of this chapter, these are critical aspects in modeling
highly complexed and versatile scene or object classes.

Again, the remaining question is how to learn image parts and their relations.
In the rest of this chapter, we will introduce a hierarchical compositional model
based on “Hierarchical Tiling”. In this model, the grouping rules will be defined
by region-based recursive decomposition and each sub-region will correspond to
an atomic element in the dictionary (Sec. 3). Then the learning problem can be
posed as node pruning and parameter estimation problem (Sec. 4).

3 Hierarchical Organization by AOT

Now, we provide the definition and details of our model for hierarchical organi-
zation. We adopt And-Or Tree (AOT) [29] as our main framework. AOT has
been used for modeling objects and scenes in the literature of computer vision
[27]. An AOT, as the stochastic image grammar, represents the hierarchical
decompositions of elements and produces a number of varying configurations by
alternating sub-components subject to probabilistic distributions defined over
nodes and edges.

Each node in AOT plays a distinct role according to its node type. As
Fig. 3. illustrates, an AOT has three types of nodes: AND nodes, OR nodes
and Terminal nodes. Note that all nodes are associated with specific sub-regions
and the root node corresponds to the whole region of image. Each type can be
characterized as follows.

i. An AND node represents the composition of two sub-regions. For instance,
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Figure 3: During the learning process, a number of invalid configurations are
eliminated from the initial model. This results in a huge drop in the complexity
of the model and the final model only contains a compact set of meaningful
configurations which can be frequently observed in the training images.

‘upper-body’ = ‘head’ ∪ ‘torso’. By the definition of hierarchical tiling,
AND nodes always have two child nodes.

ii. An OR node contains several alternating ways to decompose the current
region. This is a switch of indicating how and where to partition the current
region.

iii. A Terminal node corresponds to the most elementary region which is not
decomposed further.

Note that an AOT is a ‘whole’ representation of the entire scene class, in the
sense that all possible decompositions of all sub-regions are integrated in this
AOT. In order to represent a particular image, one needs to make choices at
OR nodes to select specific decompositions. We call this process parsing, which
yields corresponding representations as follows:

i. A Parse Tree is an image-specific instance drawn from AOT. This is a set
of selected nodes including terminal and non-terminal nodes.

ii. A Configuration means a spatial layout of elementary regions in a parse
tree. In other words, it is a set of terminal nodes in a parse tree, which does
not reflect hierarchical relationship.

iii. Then, a whole AOT can be seen as an entire collection of all possible parse
trees and configurations.

One important benefit of this representation is flexibility which is required
to account for varying scene components and configurations. When built on
8 by 8 grid, the AOT can generate more than 4 × 1031 different parse trees.
This flexibility comes from only 1,296 rectangular building blocks which are re-
configurable. The efficiency of this model partly relies on the fact that smaller
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sub-regions - nodes in lower layers in AOT - can be shared by multiple par-
ent regions at higher order. However, such a huge flexibility also introduces a
counter effect on increased complexity and ambiguity. We will discuss this issue
in the following section in details.

3.1 Mathematical Formalism

In this subsection, we define notations and introduce mathematical formalisms.
Given a set of N training images {Ii}, our objective is to learn an AOT with

visual dictionary and associated parameters. Let us define the AOT as follows.

AOT = (S, V ; Θ,∆) (1)

where S is a start symbol at root, i.e., the whole region, V is a set of nodes in
AOT. A node, vi ∈ V , has one of types: {AND, OR, Terminal} as section 3. Θ
is the set of model parameters which control the frequencies of decomposition
rules being activated at OR nodes. The tiling dictionary of the scenes is denoted
by ∆, which is also a set of terminal nodes in V .

From the AOT, the learning problem can be formulated as maximum likeli-
hood estimation (MLE).

(∆,Θ)∗ = arg max
∆,Θ

N∑
i=1

log p(Ii; ∆,Θ). (2)

In the AOT model, each image I is generated by a hidden parse tree, pt.
Then the data likelihood in Eq. (2) can be marginalized over parse trees and
further factorized as follows.

p(Ii; ∆,Θ) =
∑
pt

p(Ii, pt; ∆,Θ) (3)

=
∑
pt

p(Ii|pt; ∆) · p(pt; Θ). (4)

For a certain parse tree, pt, the first factor of the product in eq. (4) represents
the likelihood of an image given the parse tree. In order words, it measures how
well the parse tree and corresponding configuration is suited to or explains the
given image. And the second part, p(pt; Θ), is a prior probability of the parse
tree and this measures how commonly this parse tree would be used. This part
is not affected by the choice of image.

4 Learning AOT

So far, we have discussed the general structure of our model. The next step is
to learn actual models from training images. To learn a model means to define
the whole structure and estimate optimal parameters such as probabilistic dis-
tribution, from training data. In our model, this can be understood as learning

7



how frequently each decomposition has happened and ruling out those paths
that has never or rarely occurred.

This procedure can be easily understood when we think of what we do
for learning our visual world. For example, let’s imagine a typical scene of
‘beach’ (as one presented in Fig. 2). Then one would probably draw in mind
a horizontally divided scene with the sky at top and ocean at bottom, because
this spatial configuration is very common in beach scenes that we have observed,
and we have learned and stored such frequency of configurations in our mind.

Therefore, our learning procedure follows the exact same strategy as hu-
mans. The algorithm takes as input a set of training images and infers the most
probable interpretations of them, i.e., parse trees and configurations. Then, it
can evaluate what kinds of configurations are the most common and how fre-
quent each one is. Such information are stored as parameters of the learned
model, and eventually, can be used for analyzing a new image.

On the other hand, the main difficulty in many structure learning algorithms
comes from the fact that there are too many different ways in decomposing
the scene into parts, i.e., ambiguity. This difficulty can be alleviated here by
constraining the feasible set of structures by definition of hierarchical tiling de-
scribed in the previous section. The hierarchical tiling AOT contains a number
of rectangles on the grid as basic building blocks as well as rules of decomposi-
tion. In this representation, the original continuous geometric space is quantized
at the resolution of the grid, and moreover, factorized into the local forms of
three regions: one parent region at an AND node and two subsequent sub-
regions. Therefore, the complexity is locally limited, and this makes the model
manageable in learning. Note that, despite this constraint, it can still repre-
sent a combinatorial number of parse trees, which provide enough flexibility to
modeling a variety of configurations.

Figure 3 illustrates the key idea of the learning procedure which can be seen
as a shrinking process. It first establishes a very “fat” and highly over-complete
initial model. This model can generate an exponential number of different con-
figurations. Some of these configurations are useful (they correspond to the
real examples of natural scenes), however, most of the other configurations do
not make any sense so they are unable to capture meaningful structure of any
natural scenes. Therefore, those meaningless configurations will be gradually
eliminated from the initial model during the learning procedure. Then eventu-
ally, the learned model can generate a much more compact set of configurations
and parse trees, which one can commonly observe in real images.

4.1 Iterative Learning

In our formulation, a parse tree is a latent variable which is not observable. One
common algorithm used for maximum likelihood estimates with latent variables
is Expectation-Maximization (EM) algorithm [3]. This is an iterative algorithm
and alternates between evaluating the posterior distribution of latent variable
and updating model parameters, based on the current estimates at each itera-
tion. Our learning algorithm follows a similar iterative strategy which alternates
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between inference of the optimal parse trees and updating parameters. The de-
tails of each step can be summarized as follows.

1. Inference. Inference is the task of evaluating the most probable parse tree
which can be considered as the best interpretation of a given image under
the current parameters of AOT. We obtain the optimal parse tree for each
image by dynamic programming (DP) in a bottom-up process. For a given
image Ii, the optimal parse tree, pt∗i , maximizes following probability.

pt∗i = arg max
pt

p(Ii|pt; ∆t) · p(pt; Θt). (5)

The parse tree prior is the product of branching frequencies at OR nodes.

p(pt; Θt) =
∏

v∈V OR⊂pt

Θt
(v,vch), (6)

where Θt
(v,vch) is the branching frequency from an OR node v to its child

node, vch.

2. Activation Frequency Update. After obtaining the optimal parse trees,
now the parameters of model are updated. These parameters include the
activation frequency, Θ, which indicates frequencies of decomposition rules.

Θt+1
(v,vch) =

∑
i 1[v, vch ∈ pt∗i ]∑

i 1[v ∈ pt∗i ]
. (7)

3. Node Pruning. According to the updated frequency, the dictionary is
compressed by pruning nodes which have been never or rarely activated.

∆t+1 = ∆t\{v; f(v) < ε, v ∈ ∆t}, (8)

f(v) =
1

M

∑
i

1[v ∈ pt∗i ]. (9)

These steps are repeated until the model converges. At the beginning, an
initial AOT contains a huge number of decomposition rules and a large size of
the dictionary and there exists a very high ambiguity on parsing images. As
iterations proceed, the model parameters keep being refined, also the size of the
dictionary becomes smaller. A series of relevant experimental results will be
presented in following sections with applications to the scene and the human
body.

5 Case Study I. Scene

In this section, we present a concrete development of the introduced algorithm
for scene modeling and its evaluation. The experimental results of this section
was reported in [23].
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Figure 4: Parse an image into scene configuration. (a) Input image. (b) Seg-
mentations in different layers. (c) The optimal parse tree of given image. (d)
Scene configuration. (e) Scene configuration with localized parts.

For the purpose of scene analysis, a dataset of natural scene images has been
proposed to computer vision community [17]. This dataset contains 2, 688 im-
ages from 8 categories of outdoor scenes including coast, highway, open-country,
street, forest, tall-building, inside-city and mountain. Figure 5 shows the exam-
ples of each category in the dataset.

For each image, our algorithm first generates multiple segmentations by
graph-based segmentation method [7], as shown in Figure 4 (b), while varying
the parameter, k, which controls the granularity of segmented regions. From the
set of segmentation layers, we obtain the optimal parse tree and corresponding
configuration, which are consistent with learned parsing prior and preserve the
homogeneity of each terminal tile. That is, we encourage the model to parse an
image into a more familiar configuration where each perceptually homogeneous
sub-region, an image segment, is explained by an elementary part in one piece.

5.1 Qualitative Results

Table 5.1 shows the statistics on the complexity of AOT. The size of parsing
space that an initial AOT defines is combinatorial. It contains a huge number
of region decomposition rules and this can generate an enormous number of
distinct parse trees. This also implies a high ambiguity. Through the iterative
learning procedure, the admissible parsing space quickly shrinks by pruning
many infrequent parsing rules and nodes. After convergence, the learned AOT
only contains a compact set of common parsing paths and nodes.

5.2 Scene Category Classification

The goal of scene category classification is to predict a scene category to which
each image belongs. This is a multi-class classification problem which has at-
tracted many researches in computer vision. Many prior works have focused

10



Table 1: The shrinkage of AOT for “street” scene at each iteration round

Round |V AND| |V OR| |V T | |Ωpt|
0 6048 1296 1296 4.48× 1031

1 570 519 366 8.01× 107

2 351 386 256 2.23× 105

3 238 302 184 1.14× 103

4 221 290 173 9140

on exploring better image feature without considering structural representation
(Gist [15], Bag of Words [12]), or building their models on limited or fixed struc-
ture (spatial pyramid [11]). In contrast, our model can take advantage of much
more flexible representation by AOT.

Specifically, we obtain a set of typical configurations of each scene category
from the learned AOT, as shown in Figure 5. We use SIFT descriptors and
color moments of each terminal window as image features and train category
classifiers by support vector machine (SVM). Given a test image, we assign the
best category whose prediction score is maximum. Note that the ground-truth
segmentations (label map) of training images are provided in this dataset and
we used them for compatible comparisons with the other method.

We compare the performance of our model with prior works including: (i)
a holistic “Gist” feature based method [15], (ii) a BoW based method [12], (iii)
spatial pyramid matching (SPM) method [11], and (iv) an extension of SPM
named locality-constrained linear coding (LLC) [22]. (iv) the tangram model
(Tgm) [25]. Figure 5 shows the average precision (AP) of different methods,
where our method outperforms the others.

This can be a strong evidence supporting the needs of flexible and hierar-
chical models in understanding the scene. Without such a hierarchy, one can
still identify some common visual words (BoW), but it loses the spatial infor-
mation and the relationship among parts and fails to capture the context on
the entire scene. Although some uniformly predefined configurations have been
used in SPM, it still results in a poor performance. One possible explanation
is that their configurations, regular grids at multi-resolution, are not coherent
with real images of scenes. Therefore, by pursuing meaningful spatial layout
from training data, the hierarchical tiling model can improve the classification
performance.

6 Case Study II. Object: Human Figures

In this section, we present the application of our algorithm to an object with
examples of human bodies. As shown in Figure 7, a complete human body can
be understood as a hierarchical organization of body parts. In fact, such type
of hierarchical models have been used for tasks such as human pose estimation
[26] and general object detection [6] in the recent literature. The common idea
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Methods Gist[15] BoW [12] SPM [11] LLC [22] Tgm [25] Ours[23]
AP(%) 72.15 84.57 84.92 87.97 86.07 91.71

Figure 5: Scene classification based on the categorical typical configurations.
(a) The learned configuration distributions where the horizontal axis is the in-
dex of configuration and vertical axis is the posterior probability. (b)-(i) The
categorical typical configurations for each scene category. The performance of
scene classification is shown in the bottom table.
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Figure 6: Examples of upper-bodies of human.
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Figure 7: Similar to the case of scene, one can interpret the human body as
a collection of body parts which can be organized in the object-level And-Or
Tree. The configuration will be governed by the pose of body as well as different
clothings or accessories (jean, skirt, etc) that each person wears.

behind such methods is to decompose the whole object into its parts and analyze
them. Compared to the conventional whole template based approach without
part definition, the part based approaches have their strength in capturing in-
dividual geometric variation of each part and relationship among parts, which
has leaded to the improvement in performance [6].

While a majority of related works focus on learning parameters of manually
defined structures of objects, there has been the other line of researches pursuing
learning the unknown structure of objects from image [27, 8]. Our learning
method introduced in this chapter also falls into this category. Then the task
of learning is equivalent to identifying the hierarchical dictionary of body parts
including varying types of appearance from raw images.

Figure 6 shows examples of input training images which contain upper-bodies
of human. These images are collected from Internet for the experiment. Images
are preprocessed by cropping and aligning with respect to the positions of head
and waist.

The algorithm starts by learning appearance models at each rectangular
sub-region in AOT. This is essentially a task to learn the conditional image
likelihood given a terminal node, p(I|pt) in Eq. (4). To model the likelihood of
appearance, Hybrid Image Template (HIT) has been used in this experiment.
HIT is a generative image model having four different types of low-level features:
{sketch, color, texture, flatness}. Details can be found in [20]. A single HIT
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t = 1 t = 2 · · · t = T ∆T

Figure 8: (left) The optimal configurations pooled from AOT at each iteration.
At the beginning, the ambiguity is very high. As the learning proceeds, the
optimal configuration becomes more meaningful, and finally captures the correct
parts of human bodies. (right) Some popular elements in the dictionary of AOT
after learning.

template can be learned for each terminal node to represent an individual part.
Then, the whole AOT which contains a number of HIT templates can generate
many compositional human poses, each of which is a composed HIT template
for human body.

For each sub-region at a terminal node, the corresponding patches of all
training images are cropped and clustered by their appearance into k distinct
groups. Then, from each cluster, a single HIT template is learned so that one
rectangular sub-region has k different appearance models. These k templates
address the different appearance types of a part. For example, a head can
be modeled as a mixture of templates including ‘head with hat’, ‘head with
long hair’, and so on. For this reason, now the task of parsing includes the
choice of specific appearance type at previous terminal nodes. Therefore, such a
terminal node becomes another OR node whose children are a set of appearance
templates. A complete parse tree now includes spatial configuration as well as
associated appearance types of parts.

6.1 Learning Body Parts

At this point, we still do not have a clue of what sub-regions are true human
parts and all templates are treated as potential parts. As the case of scene, we
build a fat initial AOT and again go through iterations in order to develop and
refine a compact model where ambiguous parts are suppressed.

Figure 8 shows a series of optimal configurations being developed through
iterations. At the beginning, the ambiguity is very high as there are too many
redundant parts and a prior on parse tree is yet immature. As the learning
proceeds, the optimal configuration becomes more meaningful, and finally cap-
tures the correct parts of human bodies. Some of those parts are presented in
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Figure 8. These are the most frequently used parts during the learning, and
thus included in the learned dictionary.

From the result, one might wonder why the model can learn true parts or
which parts are preferred over the others. There are two factors in deciding the
optimal parse tree: the image likelihood from selected appearance templates and
the parse tree prior which controls the overall frequency of parts being activated.
The set of true atomic parts which can be modeled by rigid templates tend
to be more robust from articulation, which leads to higher image likelihood.
Therefore, we can think that some good appearance templates (hence, good
parse trees) are more likely to be selected at earlier stages of learning and the
other ambiguous parse trees will move toward a smaller set of good parse trees
to which stronger priors are given.

7 Conclusion

In this chapter, a hierarchical representation for images and its learning algo-
rithm were discussed. And-Or Tree (AOT) was adopted as the main framework
to model the hierarchy of image structure. An algorithm to learn the parameters
and dictionary of AOT has been suggested with mathematical formalisms. Fi-
nally, to demonstrate the introduced model and learning method, two concrete
cases for natural scenes and human bodies have been presented with a various
experimental results.
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