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1 Introduction

It has been widely acknowledged that while humans are quite good at extracting
structures from images, i.e. the edges [4], textons [10] etc. which are concepts hid-
den in pixel intensities, the notion of structure does not lend itself to its precise
detection by computer programs. As a result, there now exist appearance based im-
age representations [14, 6] which directly express the image using statistics or his-
tograms of image operator (filter) responses. Structure based and appearance based
image representations are advocated by different researchers, whose reasons for en-
dorsement range from the practical benefits in building simple vision applications
to the faith that computer vision would ultimately stick to human vision.

When different views of objects are taken into account, a similar dichotomy hap-
pens in describing the image structures. The intrinsic 3D shape of objects suggests
that object-centered representation using volumetric primitives [2, 1, 15] should be
simple yet capable of representing the observed image structure changes. But again
the difficulty of extracting these 3D hidden concepts from images make the viewer-
centered representation [11, 12, 17, 21] a competing alternative, which uses a col-
lections of 2D representations each covering a small portion of the modelled views.
Over the two representations, researchers showed various cases where one represen-
tation prevailed [20, 3, 8], but there is no clear winner.

In our view, these competing representations are points lying in different posi-
tions of representation spectrum, and they should be combined to better represent
images. For example, consider the images of leaves at different scales shown in
Fig.1, one can easily identify the structures inside the first image, but quickly give
up and change to appearance based description for the last image. By gradually
zooming the camera, images in between must combine some portion of both struc-
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Fig. 1 Images of leaves at different scales. From left to right, our description of the image gradually
changes from exact structure to the overall appearance of the leaves.

ture and appearance. A similar spectrum for the 2D and 3D case is suggested in
[7].

(a)

3D primitive         2D primitive 

(b)

Fig. 2 (a) Hybrid image template mixing sketch (dark bar) and texture (red disk) representations.
(b) Templates mixing 2D primitives (dark bar) and 3D primitives (red bar) to describe the desktop
globe images over different views. Image in (b) is adopted from [9].

In this chapter, we want to evaluate and combine these representations on purely
intrinsic and quantitative measurements. The idea behind this work is that elements
(primitives) in competing representations should be weighted by their informa-
tion contribution. Borrowing from information theory, we take information gain as
a quantitative measure of this contribution. We further introduce a mathematical
framework called information projection, which evaluates and sequentially selects
elements from both competing representations, so that the best representation of a
given set of images can be learned automatically.

As a result of using a combined pool of representational elements, we find that
the learned result almost always mixes the competing representations. Fig.2 shows
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two typical examples for the structure v.s. appearance case and 3D v.s. 2D case in
our study. In the structure v.s. appearance case, we take deformable Gabor filters
[16] as primitives for structure representation, and oriented histograms of Gabor
responses as those for appearance. On cat face images shown in Fig.2(a), Gabor fil-
ters (dark bars) are automatically selected to describe the boundary of cat ears, eyes
and mouth etc., while the histograms (red disks) are used to encode the texture of
fur on the cat face. Similarly, in the 2D v.s. 3D case, we take 2D Gabor filters and
3D stick-like elements as primitives for object-centered representation and viewer-
centered representation respectively. Given the set of desktop globe images shown in
Fig.2 (b), the algorithm selects 3D primitives (red bars) for the handle and the base
as their appearance change drastically across views, and uses 2D primitives (dark
bars) for the much more view invariant circular shape of the globe. More experi-
ments on various image classes reveal that the representation spectrum exist, which
further shows the importance of having a numerical solution to the representation
integration problem.

In the rest of this chapter, we will first introduce the information projection
framework along with our information gain criterion, followed by detailed case stud-
ies over the above two pairs of competing representations.

2 Information Projection

P1 = {p : Ep[r1(I)] = Ef [r1(I)]}

P2 = {p : Ep[r2(I)] = Ef [r2(I)]}

p1

p2

p3

f

p0 = q

Fig. 3 Learning by information projection, illustrated in the model space. Each point in this
space represents a possible model or a distribution over the target images. The series of mod-
els p0, p1, . . . , pK converge to the target probability f monotonically by sequentially matching the
constraints. Image adopted from [19].

We treat the set of images we want to model as samples from a target image
distribution f (I):

{Iobs
m ;m = 1,2, · · · ,M} ∼ f (I), (1)

Our objective is to learn a sequence of models p starting from an initial reference
model q, which would incrementally approach the target distribution f by minimiz-
ing the Kullback-Leibler divergence KL( f ||p):
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q = p0→ p1→ ··· pk to f (2)

The approach can be explained in the space of probability distributions shown in
Fig.3, where each point is a model describing a probability distribution over target
images. Our true model f and the initial model q are two points in the space with a
large divergence KL( f ||q).

The learning proceeds iteratively. In each iteration, we augment the current model
pk−1 to pk, by adding one statistical constraint so that pk matches a new marginal
statistics E f [rk(I)], where rk(I) is a scalar or vector valued function of images, de-
noting the response of elements (such as Gabor filter) in image representations.
Specifically, an iteration is composed of the following two steps:

1. Min-step. Given an unobserved image statistics E f [rk(I)], we want to find the
model p∗k in the set of models Pk having the same statistics as f while as close to
pk−1 as possible:

Pk =
{

p : Ep[rk(I)] = E f [rk(I)]
}
. (3)

The closeness is evaluated by KL(pk||pk−1). Intuitively, this is to enforce that on
the element k our model should produce the same image statistics as the true model
f . In figure.3, this set of models Pk can be shown as the corresponding gray curve
passing through f . According to the pythagorean theorem [5] in information theory,
the new model p∗ is the perpendicular projection of pk−1 on Pk, and the three points
f , p∗k , pk−1 form a right triangle.

The step above actually solves the constrained optimization problem of

p∗k = argmin
p∈Pk

KL(p||pk−1). (4)

By using Lagrange multiplier, we have

pk(I;Θk) =
1
zk

pk−1(I;Θk−1)e−λkrk(I) (5)

where λk is the parameter satisfying the constraint in Eqn.3, zk is the partition func-
tion that normalize the probability to 1, and Θk = {λ1,λ2, · · · ,λk}.

2. Max-step. Among all the candidate elements r(I) and their statistics, choose
the one that reveals the largest difference between pk and pk−1.

r∗k = argmaxKL(pk||pk−1) (6)

As the KL-divergence is non-negative and

KL(pk||pk−1) = KL( f ||pk−1)−KL( f ||pk), (7)

this step greedily minimize the the KL-divergence between f and our final model p.
Intuitively, this step chooses a curve in Fig.3 which is farthest away from the current
model pk−1.

After K iterations, we obtain a model
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p(I|Θ) = q(I)
K

∏
k=1

1
zk

e−λkrk , (8)

and the information gain of each step k is:

Igk = Epk

[
log

pk(I|Θ)

pk−1(I)

]
= KL(pk||pk−1) (9)

As the information gain in step k is equal to KL(pk||pk−1), each of the training it-
erations above actually selects the representation element which achieves maximum
information gain over the current model pk−1. This learning process sequentially
projects the current model to a number of constrained spaces, and thus is called
information projection.

As the only assumption in the above model is that the candidate element should
have a scalar or vector valued response, the information projection framework can
be used in many feature or pattern learning problems, provided that the goal of
learning is to construct the target image distribution, and the candidate element pool
is fixed before learning. In the following, we discuss in detail the candidate element
pools and implementation details in studying the two groups of competing repre-
sentations introduced Section 1.

3 Case I: Combining Sketch and Texture

In the first case study, we illustrate the integration of structure and appearance as
hybrid image templates (HIT) for object image modelling. More discussion about
this hybrid image template can be seen in [19].

We assume the training images {Iobs
m : m = 1,2, · · · ,M} are instances of an object

category and are roughly aligned in position, orientation and scale with arbitrary
background, such as the ones shown in Fig.2(a). While a single template suffices for
the cat examples here, when there is large pose variations on the objects in training
images, multiple templates can be learned through an EM-like clustering procedure.

Given the set of training image, the lattice of the image Λ is decomposed into a
set of K non-overlapping patches {Λi}K

i=1 selected from a large pool of candidate
patches. Note that these patches do not necessary compose the full lattice Λ as some
pixels in Λ may correspond to object background which have inconsistent feature
responses.

By enumerating all possible patch candidates, and assuming each patch can be
represented either by its structure or appearance, we are able to construct a large
pool of candidate representation elements. It is worth noting that although the final
selected set of patches are assumed to be non-overlapping, patches in the candidate
pool are not subject to this restriction.

Currently, we limit the structure elements to be sketches only, such as those
shown on the boundary of the hedgehog template in Fig.4(b). If an image patch
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Fig. 4 (a) A hedgehog image may be seen as a bunch of local image patches, being either
sketches or textures. (b) Quantization in the image space and histogram feature space provides
candidate pools for sketches {B} and textures {h} respectively. A hybrid template of hedgehog
T = {B1,h2,B3,h4, · · ·} is composed of sketches and histogram prototypes explaining local image
patches at different locations. Image adopted from [19].

IΛk is represented as a sketch, we define its element response rskt(IΛk) by

rskt(IΛk) = maxdx∈∂x,do∈∂oS(|〈I,Bxk+dx,ok+do〉|2) (10)

which is a transformed local maximum response of a image primitive B around a
local neighborhood of a specific position x and orientation o indexed by k. Here we
choose the primitives to be Gabor filters at a set of discrete orientations, such as the
ones shown in Fig.4(b), 〈·, ·〉 denotes the inner product between the image and the
filter, and S(·) is the sigmoid transform that saturates large filter responses.

Similarly, we limit the appearance elements to be those for texture only, and
define the element response as:

rapp(IΛk) = S(‖H(IΛk)−h‖2) (11)

where H(IΛk) is the histogram of the responses from Gabor filters at different ori-
entations pooled within IΛk and h is a pre-computed histogram prototype (one may
consider it as a cluster center of similar texture patches). In practice, h is obtained
by averaging the histograms at the same position over all the observed training ex-
amples.

By constructing this candidate pool, we derive a large set of constraints as in
Eqn.3 on the individual response of patch representations, where E f [r(IΛk)] is esti-
mated by the average response on observed images
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E f [r(IΛk)]≈
1
M

M

∑
m=1

r(Im,Λk) (12)

Because we assume the selected patches are non-overlapping,

Igk = KL[pk(I)||pk−1(I)] = KL[p(IΛk)||q(IΛk)], (13)

thus the information gain of each candidate element can be computed ahead of time
by matching Ep[rk(I)] = E f [rk(I)]. During learning, the patch non-overlapping as-
sumption is enforced by inhibiting (removing) candidate patches with significant
overlap with selected ones.

bear head bonsai butterfly clock dollar bill

hedgehog lion head pigeon head pig head pizza

Fig. 5 Learned HITs of several object categories. Bold black bars denote sketches, while red blobs
denote texture patches. For illustration purpose, we only show sketches/textures of a single scale
and vary the (relative) Gabor scales for different categories.

Fig.5 shows the hybrid templates learned from several categories. The sketches
usually outlines the rough shape of the target object category, with the appearance
patches fill in the furs on animal head or leaves on the tree.

1

head/shoulder hedgehog pizza water patches

Fig. 6 Transition from structure based to appearance based representation. For each image cate-
gory, the top 40 selected patches are ordered by their information gains in decreasing order. Image
adopted from [19].
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We also study how the structure and appearance patches are ordered by their
information gains. We choose four categories ranging from structured to textured:
head-shoulder, hedgehog, pizza, and wavy water. We plot the information gains of
the selected patches in decreasing order: the hollow bars are for structure patches
and the solid (red) bars are for texture patches. For image categories with regular
shape, e.g. head/shoulder, sketches dominate the information gain. For the wavy wa-
ter, textures makes the most contributions. The two categories in the middle contains
different degrees of mix of sketch and texture.

Learned templates can be used for image classification. Quantitative experiments
in [19] show that our method performances on-par with HoG+SVM approach [6] on
several public datasets, while using far shorter (at least 1/10) feature dimensions.

4 Case II: Mixing 3D and 2D Primitives
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Fig. 7 (a) Illustration of 3D and 2D primitives and how they are used to compose mixed repre-
sentations. The 3D primitives can be viewed as sticks with selected 3D positions and orientations,
while 2D primitive are Gabor filters located at selected 2D positions and orientations. (b) When
generating object images at a particular view ω , we project the 3D primitives and superimpose
the 2D primitives. A primitive is not instantiated if it is not visible in the particular view. Image
adopted from [9]

In the second case study, we illustrate the automatic selection of viewer-centered
and object-centered representations, which build object templates composed of 3D
and 2D primitives. The observed images are those of an object category captured
from different views {Im,ωm}M

m=1, where ω denotes the view of the image param-
eterized by the pan and tilt angle of camera. For simplicity, we assume the camera
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roll angle is zero, and object images are captured at the same scale. More discussion
about this case study can be found in [9].

Similar to the structure v.s. appearance case, we have two types of image primi-
tives to build our pool of constraints.

Ωi

Fig. 8 Illustration of how 3D primitives are learned from images in different views. The learn-
ing step can be interpreted as trying all possible locations and orientations of 3D primitives and
incrementally select ones with high overall responses. Image from [9]

The first type is the primitive for object-centered representation, which we call
3D primitives. The 3D primitives are stick like primitives with position X and ori-
entation O in 3D space, such as the ones shown in the center of Fig.8. On object
images, primitives are realized by Gabor filters at their projected positions and ori-
entations, and primitive responses can be defined similar to the sketch responses in
the previous case study:

r3D
k (I;ω) = maxdx∈∂x,do∈∂oS(|〈I,GP(Xk,ω)+dx,P(Ok,ω)+do〉|2) (14)

where P(·, ·) denotes the camera projection function.
Our 3D primitive pool is created by enumerating combinations of 3D positions

X and orientations O as in Fig.7(a). To avoid an excessive enumeration of 3D prim-
itives, we quantize the 3D object volume into non-overlapping cuboids, and inside
each cuboid, we sample primitive orientations uniformly.

We illustrate how the proposed 3D primitives pool information from images in
Fig.8. For each hypothesized 3D primitive, we project it on to observed images from
different views, compute its primitive responses on images and estimate its statistics.
Primitive responses of meaningful ones will be consistently high across views and
will contribute significant information gains.

The 2D primitives we choose for viewer-based image representation are the same
as the sketches in case study I, and thus are not further explained.

Compared with learning the hybrid image templates model in section 3 , one
key difference in mixing 3D and 2D primitives is that the primitives might occlude
each other, such as in the desktop globe example. Also, as a viewer-centered repre-
sentation, the 2D primitives should be allowed to be view specific, thus individual



10 Wenze Hu, Zhangzhang Si, and Song-Chun Zhu

2D sketches may only explain some of the observed images whose views are in a
specific range.

To model these effects, we introduce another auxiliary variable Ω to describe
the visible range of a primitive, which is defined as a set of N views on which the
corresponding primitive is visible: fΩ = {ω1,ω2, · · · ,ωN}

Adding this auxiliary variable leads to the following changes in Min-step and
Max-step:

In Min-step, the estimation of E f [r(I)] is changed to the sample mean of the
primitive response on visible images:

E f [r(I)]≈
1
N

M

∑
m=1

rk(Im) ·1(ωm ∈Ωk) (15)

where 1(·) is an indicator function that equals 1 if ωm is in set Ωk, and 0 otherwise.
In Eqn.(15), N = ∑

M
m=1 1(ωm ∈Ωk).

In Max-step, the constraint selection criterion is also updated to

(r∗k ,Ω
∗
k ) = argmaxKL(pk||pk−1) (16)

Conceptually, adding auxiliary variable Ω will dramatically increase the compu-
tational complexity, since for each primitive, we need to search through 2M possible
different view ranges. However, since we only care about the pair which leads to
maximum information gain, these 2M evaluations would be reduced to less than M
evaluations. Details of this simplification can be found in [9].

For experiments, we use the ETH80 dataset [13], and further augment it by
adding images of soda cans and desktop globes to have 10 categories of object
images, where each one is captured from different views and with a few instances.
Due to the difficulty in illustrating the 3D elements in mixed templates, we directly
show their projections on sample training images in the first three rows of Fig.9.

From the figure, we can see that our method automatically finds suitable repre-
sentations for different object categories, which spans a spectrum from nearly pure
2D to pure 3D. For object categories with stable 2D shapes, the algorithm automat-
ically selects 2D primitives to form the rough shape of that category. For parts such
as the tip of tomatoes, and handle of cups, it selects 3D primitives, because these
details are view specific and only appear in part of the view sphere. For categories
with complex shapes, coding the projected shape for each single view will be less
efficient than coding the general 3D shape using 3D primitives. So, the algorithm
automatically transit to mostly selecting 3D primitives.

Row 4 and 5 of Fig.9 shows the selection order of the 3D (red) and 2D (gray)
primitives, their information gains, and their proportion of information contribution
in each template. By sorting these categories according to this proportion, Fig.9
clearly shows that the learned representations reside in different positions of the
spectrum, and their positions are related to the complexity of the object shape.
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Fig. 9 Spectrum of image representations in 2D/3D case. Row 1-3: Learned templates for each
object category. The white bars represent 2D primitives and red ellipses are 3D primitives. Row 4:
The selection order of 2D and 3D primitives in each object class and their information gains. Row
5: The ratio on the information contribution of 3D and 2D primitives. Image from [9]

Fig. 10 The confusion matrix over 8 poses in the 3D car dataset [18], and sample car pose estima-
tion results. 3D and 2D primitives are all showed using white bars. Image adopted from [9].

The learned model can be used for image classification and object pose estima-
tion. Fig.10 shows sample pose estimation results and the confusion matrix over the
8 views in 3D car dataset [18]. More experiment results can be found in [9].

5 Discussion

This chapter introduces a general learning framework that automatically mixes dif-
ferent representations to find the best representation for a given set of images. By
using images of different object classes, we show that there are representation spec-
trum where images are best represented by mixing different proportions of compet-
ing representations. Although only particular cases are illustrated, the framework
we describe permits the exploration of this approach to general representations and
we hope it will prove to be useful for researchers in the vision community.
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