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Abstract. This paper addresses a new problem, that of multiscale activity recog-
nition. Our goal is to detect and localize a wide range of activities, including indi-
vidual actions and group activities, which may simultaneously co-occur in high-
resolution video. The video resolution allows for digital zoom-in (or zoom-out)
for examining fine details (or coarser scales), as needed forrecognition. The key
challenge is how to avoid running a multitude of detectors atall spatiotemporal
scales, and yet arrive at a holistically consistent video interpretation. To this end,
we use a three-layered AND-OR graph to jointly model group activities, individ-
ual actions, and participating objects. The AND-OR graph allows a principled
formulation of efficient, cost-sensitive inference via an explore-exploit strategy.
Our inference optimally schedules the following computational processes: 1) di-
rect application of activity detectors – calledα process; 2) bottom-up inference
based on detecting activity parts – calledβ process; and 3) top-down inference
based on detecting activity context – calledγ process. The scheduling iteratively
maximizes the log-posteriors of the resulting parse graphs. For evaluation, we
have compiled and benchmarked a new dataset of high-resolution videos of group
and individual activities co-occurring in a courtyard of the UCLA campus.

1 Introduction

This paper addresses a new problem. Our goal is to detect and localize all instances of
a queried human activity present in high-resolution video.The novelty of this problem
is two-fold: (i) the queries can be about a wide range of activities, including actions of
individuals, their interactions with objects and other people, or collective activities of
a group of people; and (ii) all these various types of activities may simultaneously co-
occur in a relatively large scene captured by high-resolution video. The video resolution
allows for digital zoom-in (or zoom-out) for examining fine details (or coarser scales),
as needed for recognition. We call this problem multiscale activity recognition.

With the recent rapid increase in the spatial resolution of digital cameras, and grow-
ing capabilities of capturing long video footage, the problem of multiscale activity
recognition becomes increasingly important for many applications, including video
surveillance and monitoring. While recent work typically focuses on short videos of
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a particular activity type, there is an increasing demand for developing principled ap-
proaches to interpreting long videos of spatially large, complex scenes with many peo-
ple engaged in various, co-occurring, individual and groupactivities. The key challenge
of this new problem is complexity of inference. It is infeasible to apply sliding windows
for detecting all activity instances at all spatiotemporalscales of the video volume.

To address the above challenge, we account for the compositional nature of hu-
man activities, and model them explicitly with the AND-OR graph [1–3]. The AND-
OR graph is suitable for our purposes, because it is capable of compactly representing
many activities, each recursively defined in terms of spatial layouts of human-human or
human-object interactions. Modeling the temporal structure of activities is left for the
future work. The recursion ends with primitive body parts and objects. Also, its hier-
archical structure allows for a principled formulation of cost-sensitive inference. Our
formulation rests on two computational mechanisms. First,following the work of [4],
we express inference in terms of theα, β, andγ processes. The three processes are
specific to each node in the AND-OR graph, where

1. α(node): detecting the activity directly from video features extracted from the video
part associated with the node;

2. β(node): bottom-up binding of parts of the activity represented by the node;
3. γ(node): prediction of the activity represented by the node from the context pro-

vided by a parent node.

Second, we specify an explore-exploit (E2) strategy for cost-sensitive inference. The
E2 strategy optimally schedules the sequential computation of α, β, andγ, such that the
log-posteriors of the resulting parse graphs are maximized. In this way, theE2 strategy
digitally zooms-in or zooms-out at every iteration, conditioned on previous moves, and
thus resolves ambiguities in all hypothesized parse graphs.

To initiate research on this important problem, we have collected and annotated a
new dataset of high-resolution videos of various, co-occurring activities taking place
in a courtyard of the UCLA campus [5]. Fig. 1 shows an example,cropped out frame
from our UCLA Courtyard dataset. As can be seen, the cropped-out part shows a vast
space wherein students are standing in a line to buy food, walking together in a cam-
pus tour led by a guide, or sitting and reading on the staircase. In other parts of the
same video (not shown), people may be riding bicycles or scooters, buying soda from a
vending machine, or jogging together. The video has a high resolution to allow activity
recognition at different spatial and temporal scales. For example, it may be necessary to
exploit the high resolution for digital zoom-in, and thus disambiguate particular objects
defining the queried activity (e.g., buying a soda or a snack from the vending machine).

Prior Work – Multiscale activity recognition has received scant attention in the
literature. Recent work typically studies prominently featured, single-actor, punctual
or repetitive actions [6]. Activities with richer spatiotemporal structure have been ad-
dressed using graphical models, including Deformable Action Templates [7], Sum Prod-
uct Networks [8], and AND-OR graphs [2, 3]. However, this work considers only one
specific scale of human activities. Our work is related to recent methods for recognizing
group and individual activities using context [9–11], and identifying objects in videos
based on activity recognition [12]. There are two major differences. First, that work
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Fig. 1. An example from our UCLA Courtyard dataset, showing multiple co-occurring group ac-
tivities, primitive actions, and objects. Overlaid over the original frame, the purple marks the
group walking together, the magenta marks the group standing in a line for food, the beige marks
the group going to class, and the light blue marks the UCLA Courtyard tour. Within the dashed
boxes, we show that each of these group activities consists of individual actions of group partici-
pants, where some of them interact with objects, e.g., carrybackpacks.

considers only two semantic levels – namely, either contextand activities, or activities
and objects. We jointly consider three semantic levels: objects, individual actions, and
group activities. Second, prior work typically focuses on simple videos showing a sin-
gle activity (or object) in the entire video. Our high-resolution videos, instead, show
a spatially large scene with multiple co-occurring activities of many people interact-
ing with many objects over a relatively long time interval. We advance recent work on
localizing single-actor, punctual, and repetitive activities [13] by parsing significantly
more challenging videos with co-occurring activities at different scales.

Our work builds upon an empirical study of theα, β, andγ process for face de-
tection in still images, presented in [4]. That work considered only one object class
(i.e., faces), whereas we seek to recognize a multitude of activity and object classes.
Our extensions include: (i) a new formulation of the expected gains ofα, β, andγ, and
specifying theE2 strategy for cost-sensitive inference of the AND-OR graph.

In the sequel, Sec. 2 defines the AND-OR graph. Sec. 3 presentsour inference.
Sec. 4 specifies low-level detectors used in inference, and the computation ofα, β, and
γ. Sec. 5 formulates theE2 strategy. Sec. 6 specifies our learning. Sec. 7 presents our
experimental evaluation.
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2 AND-OR Graph

This section presents the AND-OR graph following the notation and formalism pre-
sented in [4]. The AND-OR graph, illustrated in Fig. 2, organizes domain knowledge
in a hierarchical manner at three levels. Group activities,a ∈ A, (e.g., Standing-in-
a-line) are defined as a spatial relationship of a set of primitive actions (e.g., a group
of people Standing, in a certain Pose, Orientation, and at certain Displacement). They
are represented by nodes at the highest level of the graph. Primitive actions,r ∈ R,
(e.g., Riding-a-bike) are defined as punctual or repetitivemotions of a single person,
who may interact with an object (e.g., Bike or Phone). They are represented as chil-
dren nodes of the group-activity nodes. Objects,o ∈ O, include body parts and tools
or instruments that people interact with while conducting aprimitive action. Object
nodes are placed at the lowest level of the AND-OR graph, and represent children of
the primitive-action nodes. Modeling efficiency is achieved by sharing children nodes
among multiple parents, where AND nodes encode particular configurations of parts,
and OR nodes account for alternative configurations.

More formally, the AND-OR graph isG = (VNT ,VT , E ,P), whereVNT is a union
set of non-terminal AND and OR nodes. An AND node is denoted as∧, and an OR
node is denoted as∨. Let l = 1, ..., L denote a level inG, wherel− 1 is the level closer
to the root than levell. Then, a parent of∧l is denoted as∧l−. Similarly, ith child of
∧l is denoted as∧l+

i . We also useX∧l to denote a descriptor vector of the video part
associated with node∧l, including the information about location, scale and orientation
relative to the video part associated with the parent node∧l−1. VT = {t∧i

: ∀∧i ∈
VNT } is a set of terminal nodes connected to the corresponding non-terminal nodes,
where eacht∧i

represents a detector applied to the video part associated with ∧i. E is
a set of edges ofG. A parse graph, pg, is a valid instance of the grammarG. P is the
probability over the space of all parse graphs. The edge set of a parse graph is a union of
switching edgesEswitch(pg), decomposition edgesEdec(pg), and relation edgesErel(pg),
E(pg) = Eswitch(pg) ∪ Edec(pg) ∪ Erel(pg), as explained below.

The prior probability of a parse graph is defined asp(pg) = 1
Z

exp(−E(pg)), where
the partition function isZ =

∑

pg exp(−E(pg)), and the total energy is

E(pg) = −
∑

l

[
∑

(∨l,∧l)∈Eswitch(pg) log p(∧l|∨l) +
∑

(∧l,∧l−)∈Edec(pg) log p(X∧l |X∧l−)

+
∑

(∧l+
i ,∧l+

j )∈Erel(pg) log p(X∧l+
i
, X∧l+

j
)
]

.

(1)
In (1), the first term denotes the probability that OR node∨l selects AND node∧l,
the second term defines parent-child statistical dependencies, and the third term defines
pairwise dependencies between pairs of children of∧l.

Given an input video frame,I, with domain defined on latticeΛ, the likelihood of a
parse graph is defined asp(I|pg) =

∏

t∈VT (pg) p(IΛt
|t), whereΛt ∈ Λ is video domain

occupied by the terminal nodet.
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Fig. 2.The AND-OR graph of group activitiesA, primitive actionsR, and objectsO. t is the ter-
minal node representing a detector of the corresponding activity or object. Detector responsest(·)
constitute theα process. The top-downγ process is aimed at predicting and localizing the cor-
responding primitive action (or object), based on context provided by the detected group activity
(or primitive action). The bottom-upβ process is aimed at inferring the corresponding primitive
action (or group activity), based on detections of participating objects (or primitive actions).

3 Inference

Given a video, we conduct inference frame by frame. Temporalcharacteristics of ac-
tivities are implicitly accounted for via descriptor vectors, which collect visual cues
from space-time windows centered around spatial domains,Λt ∈ Λ, occupied by ev-
ery terminal nodet. Similar to the derivation in [4], the video frame,IΛ, contains an
unknown number,K, of instances of the queried activities at different spatial scales.
Each inferred instance is represented by a parse graph in theworld representation,
W = (K, {pgk : k = 1, 2, . . . ,K}). Under the Bayesian framework, we inferW
by maximizing its posterior probability,W ∗ = argmaxW∈Ω p(W )p(IΛ|W ), whereΩ
is the space of solutions.

The prior ofW is defined asp(W ) = p(K)
∏K

k=1 p(pgk), wherep(K) ∝ exp(−λ0K)
is the prior of the number of parse graphs, andp(pgk) is defined by (1). To compute
the likelihoodp(IΛ|W ), we define foreground latticeΛfg = ∪kΛpgk

, and background
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latticeΛbg = Λ \ Λfg, and use a generic background pdf,q(I), as

p(IΛ|W ) = p(IΛfg |W )q(IΛbg)
q(IΛfg)

q(IΛfg)
= q(IΛ)

K∏

k=1

p(IΛpgk
|pgk)

q(IΛpgk
)

(2)

wherep(IΛpgk
|pgk) means that domainΛpgk

is explained away by the parse graph pgk,
andq(IΛpgk

) explains domainΛpgk
as background.

In inference, we sequentially infer the parse graphs, one ata time, and augmentW .
The inference of a parse graph is formulated as

pg∗ = arg max
pg∈Ω(pg)

[

log p(pg) + log
p(IΛpg|pg)

q(IΛpg)

]

, (3)

wherep(pg) is defined by (1). The likelihood ratio in (3) can be factorized over terminal
nodes,t ∈ VT (pg), representing detector responses over the corresponding video parts.

Specifically, we can writelog
p(IΛpg|pg)

q(IΛpg)
=

∑

t∈VT (pg) log
p(p(IΛt |t)

q(IΛt ) =
∑

t∈VT (pg) ψ(t),

whereψ(t) denotes the confidence of detectort applied at video partIΛt
. From (1) and

(3), we have:

pg∗ = arg max
pg∈Ω(pg)

∑

l

{

log p(∧l|∨l)
︸ ︷︷ ︸

AND-OR graph structure

+ψ(t∧l)
︸ ︷︷ ︸

αl

+
[

ψ(t∧l−)
︸ ︷︷ ︸

αl−

+ log p(X∧l |X∧l−)
︸ ︷︷ ︸

γl−

︸ ︷︷ ︸

zoom-out

]

+ p(N l)

N l

∑

i=1

[

log p(X∧l+
i
|X∧l)

︸ ︷︷ ︸

γ
l+
i

+ψ(t∧l+
i

)
︸ ︷︷ ︸

α
l+
i

+
∑

i6=j

log p(X∧l+
i
, X∧l+

j
)

︸ ︷︷ ︸

β
l+
ij

]

︸ ︷︷ ︸

zoom-in

}

(4)
Equation (4) specifies theαl, βl, andγl processes at levell of the AND-OR graph.
Confidences of the activity detectors constituteαl process. The top-downγl process
is aimed at predicting and localizing the corresponding primitive action (or object),
based on the context of the group activity (or primitive action). For example, to zoom-
out for examining the context of a primitive action, it is necessary to detect the ac-
tion’s contextual group activity,αl−, and to estimate the likelihood of the corresponding
parent-child configurationγl−. The bottom-upβl process is aimed at inferring the cor-
responding group activity (or primitive action), based on its children primitive actions
(or objects), and their configuration. For example, to zoom-in for examining individual
actions within a group activity, it is first necessary to detect the primitive actionsαl+

i ,
i = 1, ..., N l, then, estimate the likelihood of the corresponding parent-child configura-
tion γl+

i , and finally estimate the likelihood of their configurationβl+
ij , i, j = 1, ..., N l.

4 Computing α, β, γ

For each levell of the AND-OR graph, we define a set ofαl detectors aimed at detecting
corresponding activities. As theα’s are independent across the three levels of our AND-
OR graph, we specify three different types of detectors. Alldetectors have access to the
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Deformable-Parts-Model (DPM) person detector [14], and a multiclass SVM classifier
aimed at detecting a person’s facing direction. The person detector is initially applied
to each frame using the scanning procedure recommended in [14]. A person’s facing
direction is classified by an 8-class classifier, learned by LibSVM on HOGs (the 5-fold
cross-validation precision of orientation is 69%).

For detecting objects, we train the DPM on bounding boxes of object instances an-
notated in training videos, and apply this detector in a vicinity of every people detection.
For each object detection, we use the above SVM to identity the object’s orientation.

For detecting primitive actions, we apply the motion-appearance based detector
of [15] in a vicinity of every people detection. From a given window enclosing a per-
son detection, we first extract motion-based STIP features [16], and describe them with
HOG descriptors. Then, we extract KLT tracks of Harris corners, and quantize the mo-
tion vectors along the track to obtain a descriptor called the Sequence Code Map. The
descriptors of STIPs and KLT tracks are probabilistically fused into a relative location
probability table (RLPT), which captures the spatial and temporal relationships between
the features. Such a hybrid descriptor is then classified by amulticlass SVM to detect
the primitive actions of interest.

For detecting group activities, we compute the STV (Space-Time Volume) descrip-
tors of [17] in a vicinity of every people detection, called an anchor. STV counts people,
and their poses, locations, and velocities, in different space-time bins surrounding the
anchor. Each STV is oriented along the anchor’s facing direction. STVs calculated per
frame are concatenated to capture the temporal evolution ofthe activities. Since the
sequence of STVs captures a spatial variation over time, therelative motion and dis-
placement of each person in a group is also encoded. TrackingSTVs across consecutive
frames is performed in 2.5D scene coordinates. This makes detecting group activities
robust to perspective and view-point changes. The tracks ofSTVs are then classified by
a multiclass SVM to detect the group activities of interest.

Theβ process binds pairs of children nodes(∧l+
i ,∧l+

j ) of parent∧l. This is evalu-
ated using the Gaussian distributionp(X∧l+

i
, X∧l+

j
) = N(X∧l+

i
−X∧l+

j
;µβl , Σβl).

Theγ process predictsith child∧l+
i conditioned on the context of parent∧l. This is

evaluated using the Gaussian distributionp(X∧l+
i
|X∧l) = N(X∧l+

i
−X∧l ;µγl , Σγl).

5 TheE2 Strategy for Cost-sensitive Inference

TheE2 strategy optimally schedules a sequential computation ofα, β, andγ processes,
such that the posterior distributions ofK parse graphs inW are iteratively maximized.
We make the assumption that every process carries the same computational cost.

More formally, given a query,q, theE2 strategy sequentially selects an optimal
move at a given state, which results in another state. The setof states,Sq, that can
be visited are defined by all AND nodes which form the transitive closure of node∧q

representingq in the AND-OR graph. Thus, a states ∈ Sq represents an AND node
in the transitive closure of∧q. A move,m ∈ Ms, at states, is defined by the edges
in the AND-OR graph that directly link∧s to its parents and children nodes inSq. For
example, a move toith child node of∧s means running the detector defined by the
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terminal nodet∧i
, i.e., zooming-in and computing theα process of the child. Similarly,

a move tolth parent node of∧s means zooming-out and running the detectort∧l
.

We make the assumption that we have access to asimulator, which deterministically
identifies next states′ (i.e., next AND node) after taking movem at states. This simula-
tor computes the log-posterior ofK parse graphs inW , given by (4), from allα, β, and
γ processes available until a given iteration. Since the simulator will always account for
available detector responses in (4), theE2 strategy should not repeat the moves which
have already been taken. Since the moves are Markovian, we keep a record of detectors
that have already been usedMused.

A relatively small number of moves|Ms| at each states ∈ Sq allows for a robust
estimation of expected utilities of taking the moves, denoted asQq = [Q(s,m; q)].
Qq is then used for guiding the scheduling of optimal moves in inference. One of the
strengths of Q-learning is that it is able to computeQq without requiring a model of
the environment. We specify a rewardRt(s,m; q) for taking movem ∈ Ms in state
s ∈ Sq, which results in the next states′ ∈ Sq, and evaluate this reward for a given
set of training parse graphs,{pgt : t = 1, ..., T}. The reward is defined using the

sigmoid function:Rt(s,m; q) =
(

1+exp−
(

log p(pgt|Mused)−log p(pgt|M
′

used)
) )−1

, where

log p(pgt|Mused) denotes the log-posterior distribution oftth training parse graph, given
all detector responses inMused. Then, the Q-learning is runT times over all parse graphs
{pgt}, andQq is updated as, fort = 1, ..., T :

Q(s,m; q)← Q(s,m; q)+ηs

(

Rt(s,m; q) + ρmax
m′

Q(s′,m′; q)−Q(s,m; q)
)

, (5)

whereηs is the learning rate, andρ is the discounting factor. We estimateηs as the
inverse of the number of times states has been visited, and setρ = 1.

TheE2 strategy is summarized in Alg. 1. The initial states(0) ∈ Sq is assumed to be
the query node in the AND-OR graph. The first movem(0) ∈Ms is defined as running
the detector of the query. For selecting optimal moves in thefollowing iterations,τ =
1, 2, ...,B, theE2 strategy flips a biased coin, and, if the outcome is “heads”, takes the
best expected movem(τ+1) = arg maxm Q(s(τ),m; q), otherwise takes any allowed
move in states(τ). In both cases, the move is selected from the allowed set of previously
unselected movesMs(τ) \Mused. We specify the probability of “heads” to beǫ = 0.75,
and thus enable a mechanism for avoiding local optima. For the selected movem(τ+1),
our simulator evaluates the log-posterior of the parse graphs,{pg∗(τ+1)

k : k = 1, ...,K},
over all availableα, β, andγ processes, given by (4). If theseK log-posteriors are
above a certain threshold,δ, estimated in training, the algorithm can terminate before
the allowed number of iterationsB. We do not study here the right values ofδ andB.

In our empirical evaluations, we have observed that theE2 strategy produces a
reasonable scheduling ofα, β andγ. Fig. 3a, shows our evaluation of theE2 strategy
for the query Walking, under different time budgets, on the UCLA Courtyard dataset.
Fig. 3b shows our sensitivity toǫ values averaged over 10 different types of queries
about group activities, primitive actions, and objects, for the allowed budget of 100
iteration steps, on the UCLA Courtyard dataset.
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Algorithm 1 : E2 Strategy
Input : Queryq; budgetB; Bernoulli “success” probabilityǫ;
expected utilitiesQq = [Q(s, m; q)]; thresholdδ
Output : All instances ofq, inferred by the parse graphs,{pg∗(B)

k : k = 1, ..., K}
Initialize: τ = 0; states(0); movem(0); Mused= ∅;1

Compute{pg∗(0)k : k = 1, ..., K} given by (4) ;2

while (τ < B) or (∀k, log p(pg∗(τ)
k |Mused) ≤ δ) do3

Toss a biased coin withp(“heads”) = ǫ;4

if (“heads”) then5

Select the best expected movem(τ+1) = arg maxm∈M
s(τ)\MusedQ(s(τ), m; q);6

else7

Select randomly a movem(τ+1) ∈ Ms(τ) \ Mused;8

end9

Mused= Mused∪ {m(τ+1)};10

Evaluate{pg∗(τ+1)
k : k = 1, ..., K} for Mused, given by (4);11

τ = τ + 1;12

end13

6 Learning the Model Parameters

This section explains how to learn parameters of the pdf’s appearing in (4).
We learn the distribution of the AND-OR graph structure,p(∧l|∨l), as the frequency

of occurrence of pairs (∧l,∨l) in training parse graphs. The prior over the number
of children nodesp(N l) is assumed exponential. Its ML parameter is learned on the
numbers of corresponding children nodes of∧l in training parse graphs.

Learning α: For learningαl, at a particular levell of the AND-OR graph, we use
annotated sets of positive and negative training examples,{T+

αl , T
−
αl}. T

+
αl consists of

labeled bounding boxes around corresponding group activities (l = 1), or primitive
actions (l = 2), or objects (l = 3). Parameters of a classifier used forαl detector (e.g.,
DPM of [14]) is learned on{T+

αl , T
−
αl} in a standard way for that classifier (e.g., using

the cutting-plane algorithm for learning the structural latent SVM).

Learning γ: For learningγl of a primitive action (or object), we use training setTγl .Tγl

consists of pairs of descriptor vectors,{(X∧l , X∧l−
i

)}, extracted from bounding boxes
annotated around instances of the primitive action (or object), and its contextual group
activity (or primitive action) occurring in training videos. The descriptors capture the
relative location, orientation, and scale of the corresponding pairs of training instances.
Tγl is used for the ML learning of the mean and covariance,(µγl , Σγl), of the Gaussian
distributionp(X∧l |X∧l−).

Learning β: For learningβl, we use two training sets:T ′
βl , andT ′′

βl+ . For a group
activity (or primitive action),T ′

βl consists of pairs of descriptor vectors,{(X∧l , X∧l+
i

) :

i = 1, ..., N l}, extracted from bounding boxes annotated around instancesof the group
activity (or primitive action), and its constituent primitive actions (or objects) occurring
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(a) (b)

Fig. 3. Evaluation on the UCLA Courtyard dataset: (a) Precision andrecall under different time
budgets for the query Walking, averaged over all parse graphs. Our precision and recall increase
as the number of detectors used reaches the maximum number 33. (b) Average log-posterior of
ground-truth parse graphs of 10 different queries about group activities, primitive actions, and
objects, for the budget of 100 iterations. The best results are achieved forǫ ∈ [0.6 − 0.8].

in training videos. For a particular group activity (or primitive action),T ′′
βl+ consists

of all pairs of descriptor vectors,{(X∧l+
i
, X∧l+

j
) : i, j = 1, ..., N l}, extracted from

bounding boxes annotated around pairs of children of primitive actions (or objects)
comprising the group activity (or primitive action). The descriptors capture the relative
location, orientation, and scale of the corresponding pairs of training instances.T ′

βl ,
andT ′′

βl+ are used for the ML learning of the means and covariances,(µ′
βl , Σ

′
βl) and

(µ′′
βl , Σ

′′
βl), of the Gaussian distributionsp(X∧l+

i
|X∧l) andp(X∧l+

i
, X∧l+

j
).

7 Results

Existing benchmark datasets are not suitable for our evaluation. Major issues include:
(1) unnatural, acted activities in constrained scenes; (2)limited spatial and temporal
coverage; (3) limited resolution; (4) poor diversity of activity classes (particularly for
multi-object events); (5) lack of concurrent events; and (6) lack of detailed annotations.
For example, the VIRAT Ground dataset shows only single-actor activities (e.g., en-
tering a building, parking a vehicle). The resolution of these videos (1280 × 720 or
1920× 1080) is not sufficient to allow for digital zoom-in. Other surveillance datasets
such as, VIRAT Aerial and CLIF, are not appropriate for our problem, since they are
recorded from a high altitude where people are not visible. Other datasets (e.g, KTH,
Weizmann, Youtube, Trecvid, PETS04, Olympic, CAVIAR, IXMAS, Hollywood, UCF,
UT-Interaction or UIUC) are also not adequate, since they are primarily aimed at eval-
uating video classification. To address the needs of our evaluation, we have collected
and annotated a new dataset, as explained below.

UCLA Courtyard Dataset [5]: The videos show two distinct scenes from a bird-
eye viewpoint of a courtyard at the UCLA campus. The videos are suitable for our
evaluation, since they show human activities at different semantic levels, and have a
sufficiently high resolution to allow inference of fine details. The dataset consists of a
106-minute, 30 fps,2560× 1920-resolution video footage. We provide annotations in
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terms of bounding boxes around group activities, primitiveactions, and objects in each
frame. A bounding box is annotated with the orientation and pose, where we use 4 orien-
tation classes for groups, 8 orientations for people, and 7 poses for people. Each frame is
also annotated with the ground plane, so as to allow finding a depth of each individual or
group. The following group activities are annotated: 1. Walking-together, 2. Standing-
in-line, 3. Discussing-in-group, 4. Sitting-together, 5.Waiting-in-group, and 6. Guided-
tour. The following primitive actions are annotated: 1. Riding-skateboard, 2. Riding-
bike, 3. Riding-scooter, 4. Driving-car, 5. Walking, 6. Talking, 7. Waiting, 8. Reading,
9. Eating, and 10. Sitting. Finally, the following objects are annotated: 1. Food, 2. Book,
3. Car, 4. Scooter, 5. Bike, 6. Food Bus, 7. Vending Machine, 8. Food Menu, 9. Bench,
10. Stairs, 11. Table, 12. Chair, 13. Bottle, 14. Phone, 15. Handbag, 16. Skateboard,
and 17. Backpack. For each group activity or primitive action, the dataset contains 20
instances, and for each object the dataset contains 50 instances. We split the dataset
50-50% for training and testing.

We also use the Collective Activity Dataset [17] that consists of 75 short videos of
crossing, waiting, queuing, walking, talking, running, and dancing. This dataset tests
our performance on a collective behavior of individuals under realistic conditions, in-
cluding background clutter, and transient occlusions. Fortraining and testing, we use
the standard split of2/3 and1/3 of the videos from each class. The dataset provides
labels of every 10th frame, in terms of bounding boxes aroundpeople performing the
activity, their pose, and activity class.

The Collective Activity Dataset mostly shows a single groupactivity per video.
We increase its complexity by synthesizing a composite dataset. The composite videos
represent a concatenation of multiple original videos randomly placed on a2 × 2 grid,
as shown in Fig. 4. The composite videos show four co-occurring group activities. We
formed 20 such composite sequences of multiple co-occurring group activities, and
used 50% for training and 50% for testing.

We evaluate our performance for varying time budgets:B = {1, 15,∞}. B = 1
means that we are allowed to run only the detector directly appropriate for the query
(e.g., the detector of Riding-bike). This is our baseline.B = ∞ means that we run the
E2 strategy as long as all detectors and their integration via theα, β, andγ processes
are not executed. Finally,1 < B <∞means that theE2 strategy is run forB iterations.

We evaluate: i) Classification accuracy and ii) Recall and precision of activity de-
tection. For detection evaluation, we compute a ratio,ρ, of the intersection and union
of detected and ground-truth time intervals of activity occurrences. True positive (TP)
is declared if the activity is correctly recognized, andρ > 0.5, otherwise we declare
false positive (FP). Note that this also evaluates localization of the start and end frames
of activity occurrences.

Table 1 shows our precision, false positive rates, and running times, under varying
time budgets, on the UCLA Courtyard dataset. As the budget increases, we observe
better performance. TheE2 strategy gives slightly worse results in a significantly less
amount of time, than the full inference with unlimited budget. Thus, theE2 strategy
improves the accuracy-complexity trade-off.

Table 2 compares our classification accuracy and running times with those of the
state of the art [9, 11, 17] on the Collective Activity Dataset. For this comparison, we
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Query about group activities
E

2 strategy Standing-in-lineGuided-tourDiscussingSitting Walking Waiting Time
B = 1, Precision 62.2% 63.7% 68.1% 65.3% 69.4% 61.2% 5s

B = 1, FP 7.2% 2.3% 9.8% 12.6% 8.1% 10.4% 5s
B = 15, Precision 65.4% 66.1% 69.0% 68.7% 70.3% 66.5% 75s

B = 15 FP 10.1% 4.7% 11.1% 11.1% 8.7% 10.9% 75s
B =, Precision 68.0% 70.2% 75.1% 71.4% 78.6% 72.6% 230s
B = ∞, FP 13.6% 10.3% 17.1% 13.7% 10.1% 12.2% 230s

Query about primitive actions
E

2 strategy Walk Wait Talk Drive Car Ride S-boardRide ScooterRide Bike Read Eat Sit Time
B = 1, Precision 63.3% 61.2% 58.4% 65.8% 63.5% 60.1% 56.8% 55.3% 60.9% 54.3% 10s

B = 1, FP 12.1% 16.2% 11.4% 3.4% 10.2% 11.6% 6.2% 8.2% 2.2% 5.3% 10s
B = 15, Precision67.6% 63.4% 62.3% 67.2% 67.1% 65.9% 59.3% 61.2% 66.3% 59.2% 150s

B = 15, FP 14.2% 17.1% 15.1% 7.1% 13.8% 13.2% 9.3% 10.3% 4.3% 7.1% 150s
B = ∞, Precision69.1% 67.7% 69.6% 70.2% 71.3% 68.4% 61.4% 67.3% 71.3% 64.2% 330s

B = ∞, FP 18.7% 20.2% 17.9% 9.7% 17.1% 16.3% 12.3% 12.1% 7.7% 9.0% 330s

Table 1.Average precision, and false positive rates on the UCLA Courtyard Dataset for primitive
actions and group activities. The larger the time budget, the better precision.

allow infinite budget in inference, and do not account for objects, since this information
is not available to the competing approaches. As can be seen,we our performance is
superior in reasonable running times. Figures 4 and 5 illustrate our qualitative results.

8 Conclusion

We have formulated and addressed a new problem, that of multiscale activity recog-
nition, where the main challenge is to make inference cost-sensitive and scalable. Our
approach models group activities, individual actions, andparticipating objects with the
AND-OR graph, and exploits its hierarchical structure to formulate a new inference
algorithm. The inference is iterative, where the direct application of activity detectors,
bottom-up and top-down computational processes are optimally scheduled using an
explore-exploit (E2) strategy. For evaluation, we have compiled a new dataset of106-
minute, 30 fps,2560× 1920-resolution video footage. The dataset alleviates the short-
comings of existing benchmarks, since its videos show unstaged human activities of
different semantic scales co-occurring in a vast scene, andhave a sufficiently high res-
olution to allow for digital zoom-in (or zoom-out) for examining fine details (or coarser
scales), as needed for recognition. TheE2 strategy improves the accuracy-complexity
trade-off of full inference of the AND-OR graph. We have alsoreported competitive
results on the benchmark Collective activities dataset.
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Class Our [11] [18] [9] [17]
Walk 74.7% 38.8% 72.2% 68% 57.9%
Cross 77.2% 76.4% 69.9% 65% 55.4%
Queue95.4% 78.7% 96.8% 96% 63.3%
Wait 78.3% 76.7% 74.1% 68% 64.6%
Talk 98.4% 85.7% 99.8% 99% 83.6%
Run 89.4% N/A 87.6% N/A N/A

Dance 72.3% N/A 70.2% N/A N/A

Avg 83.6% 70.9% 81.5% 79.1% 65.9%

Time 165s N/A 55s N/A N/A

Table 2. Average classification ac-
curacy, and running times on the
Collective Activity Dataset [17].
We useB = ∞.

Class Our Our [18] [18]
FP-Rate FP-Rate

Walk 65.3% 8.2% 58.1% 12.2%
Cross 69.6% 8.7% 61.5% 15.5%
Queue76.2% 5.2% 65.5% 8.7%
Wait 68.3% 7.7% 59.2% 8.2%
Talk 82.1% 6.2% 67.5% 7.1%
Run 80.4% 8.8% 72.1% 10.2%

Dance 63.1% 10.2% 55.3% 12.9%

Avg 72.1% 6.7% 62.7% 10.6%

Table 3. Average precision, and
false positive rates on the Compos-
ite Collective Activity dataset. We
useB = ∞.

Fig. 4. Our results on detecting group activities of the
Composite Collective Activity dataset, forB = ∞. The
figure shows a single frame (not 4 frames) from the
Composite dataset. A total of 7 co-occurring activity in-
stances are detected. The detections are color coded. Top
left: we detect the co-occurring Walking and Waiting.
Top right: we detect the co-occurring Queuing, Talking,
and Waiting. Bottom row: we detect Crossing (left), and
Talking (right).
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