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Abstract

Recognizing the events and objects in the video se-
quence are two challenging tasks due to the complex tem-
poral structures and the large appearance variations. In
this paper, we propose a 4D human-object interaction
model, where the two tasks jointly boost each other. Our
human-object interaction is defined in 4D space: i) the co-
occurrence and geometric constraints of human pose and
object in 3D space; ii) the sub-events transition and ob-
jects coherence in 1D temporal dimension. We represent the
structure of events, sub-events and objects in a hierarchi-
cal graph. For an input RGB-depth video, we design a dy-
namic programming beam search algorithm to: i) segment
the video, ii) recognize the events, and iii) detect the ob-
jects simultaneously. For evaluation, we built a large-scale
multiview 3D event dataset which contains 3815 video se-
quences and 383,036 RGBD frames captured by the Kinect
cameras. The experiment results on this dataset show the
effectiveness of our method.

1. Introduction
The past decade has seen remarkable progress in event

understanding [5, 8, 12, 22]. An event usually exhibits com-
plex temporal structures. It can be decomposed into sev-
eral sequential sub-events or atomic events in the temporal
domain [12]. In addition to recognizing the entire event,
modeling and recognizing these atomic events are also im-
portant, especially in the real applications, like predicting
agent’s goal and intention in actions [12].

The man-made indoor objects are always involved in the
human action. It is usually hard to recognize and local-
ize them by appearance, due to the motion and occlusion
caused by human action. Actually, the man-made indoor
objects are mainly defined by function rather than appear-
ance, like the cellphone for making a call. A cellphone is a
cellphone because of its ability to allow the agent to perform
the action make a call. This ability is known as affordance
[3, 4, 25]. When someone is making a call, it is hard to de-
tect the occluded cellphone in the hand. But we can reason-

ably predict that there is a cellphone in the hand according
to the action. This is like a ‘pantomime’. When someone
is performing actions in a scene, even if without seeing the
objects themselves, we can guess and predict the classes,
locations, and even the sizes of the objects, according to the
actions. Furthermore, in the progress of an event, the loca-
tion of an object is coherent. For example, in the event fetch
water from dispenser, the dispenser almost stays still, and
the mug smoothly moves with the hand.

An event is a sequence of time-varying interactions be-
tween human and objects with hierarchical structures in 3D
spatial domain and 1D temporal domain.

In this paper, we propose a 4D human-object interaction
model (4DHOI) for event recognition and object detection.
The framework is shown in Figure 1. The human-object in-
teraction relation is embedded in 4D space: i) the semantic
co-occurrence and geometric compatibility of human pose
and object in 3D spatial domain; ii) the atomic event tran-
sition and object coherence in 1D temporal domain. We
model the 4D human-object interaction with a hierarchical
graph, as Figure 2 shows. An event is decomposed into
several sequential atomic events. The atomic event is de-
composed into human pose and objects.

Given the RGBD video and the human pose from the
Kinect camera [18], we design an online dynamic pro-
gramming beam search algorithm to segment the video,
recognize the events, and detect the objects in each video
frame. In each frame, the human pose predicts possible ob-
ject classes and their 3D locations where the objects are
searched. The possible interpretations to this frame are
jointly proposed according to the human pose, the objects,
and the 3D spatial relations between them. The temporal
relations between frames are incorporated to optimize those
proposals for each frame. In this way, the algorithm gener-
ates the hierarchical event interpretation and correspondent
object labeling. This framework is illustrated by Figure 1.

Dataset. To evaluate our method, we built a large-
scale 3D event dataset with human-object interactions. It is
captured by three stationary Kinect cameras from different
viewpoints simultaneously. It includes 8 event categories
and 11 interacting object classes. It has totally 3815 event
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Figure 1. The framework of our 4DHOI model.

video sequences and 383,036 RGBD frames. Each event
category includes about 477 video sequence instances. We
test our model on this dataset and the experiment result
demonstrates the strength of our model.

1.1. Related Work

Human-object Context. In recent years, many work ap-
plied the human-object mutual context to event and object
recognition [2, 5, 7, 9, 11, 14, 15, 23, 24]. Gupta et al. [5]
combined the spatial and functional constraint between hu-
man and objects to recognize action and object. Yao and
Fei-Fei [24] modeled the relations between actions, objects,
and poses in still image for detecting objects. These work
define the human-object interaction in 2D image. Such con-
textual cues are often compromised due to their sensitivity
to viewpoint changes and temporal variations.

Koppula et al. [7] used Markov random field to model
the relations between human activity and object affordance,
as well as their changes over time. This method needs the
video to be pre-segmented, and all the relations are defined
between these small segments. Such strategy makes it hard
to understand the contents of object and human action in
each frame. And it detects and tracks objects independent
of the contextual feedback from human action. Different
from it, our model defines the relations within each frame
or between frames. And our model incorporates the object
detection, tracking, and human action modeling into a uni-
fied framework, under which these tasks mutually facilitate
each other.

Event Recognition. Event is usually recognized by
combining the human body features and the temporal re-
lations [8, 10, 12, 17, 19, 22]. Some work [10, 22] took
the event recognition as a classification problem. They rep-
resented the pre-segmented video as a feature vector, and
classified it to an event category. Such methods are advan-

tageous in the computation efficiency. But they can not in-
terpret the inner structure of the video, like the actions and
objects in each frame. Also, they are ineffective in real ap-
plications like video surveillance. In addition to event clas-
sification, our model can segment the video, recognize the
atomic events and objects in each frame.

Temporal Structure of Event. The hidden Markov
model [16] is usually used to model the transition between
video frame states [8]. Tang et al. [20] introduced duration
variables to the HMM and modeled them with multinomial
distribution. Sung et al. [19] decomposed the human ac-
tivity into sub-activities and model the hierarchical struc-
ture with maximum entropy Markov model. They solved
this model by graph structure selection in the dynamic pro-
gramming framework. However, this work do not consider
the object interactions and the duration of the sub-activity.
Pei et al. [12] represented an action with several atomic ac-
tions and employed a temporal filter embedded in an And-or
graph for video parsing. Inspired by these work, our model
integrates human action, object, and their 4D interaction re-
lations into a unified framework.

2. Hierarchical Graph Model of Event
In the 1D temporal domain, an event is decomposed into

multiple ordered smaller atomic events. For example, the
event fetch water from dispenser in Figure 2 is decom-
posed into three sequential atomic events - approach the
dispenser, fetch water, and leave the dispenser.

In the 3D spatial domain, each atomic event is decom-
posed into human pose, interacting objects, and the geo-
metric relations between them. An atomic event integrates
a specific type of human pose and one or more objects. The
semantic relation between the object class and a specific
atomic event is a hard constraint. For example, the atomic
event fetch water consists of the pose fetch and the objects

4322



e

event

atomic event

human

object

mug

dispenser
fetch water leave the dispenserapproach the dispenser

Figure 2. Hierarchical graph model of event.

dispenser, mug, as is shown in Figure 2.
Suppose V = (I1, ..., Iτ ) is an event video sequence in

the time interval [1, τ ], where It is the RGBD frame at time
t. The sequence V is interpreted by a hierarchical graph
G =< E,L >:

i) E ∈ ∆ = {ei|i = 1, ..., |∆|} is the event category like
fetch water from dispenser. ∆ is the set of event categories.

ii) L = (l1, ..., lτ ) is a sequence of frame labels. lt =
(ht, ot, at) is the interpretation to the frame It. ht is the
human pose. ot = (o1t , ..., o

nt
t ) are the objects interacting

with human, where nt is the number of objects. Each object
includes the attributes of class label and 3D location.
at ∈ ΩE = {ωi|i = 1, ...,KE} is the atomic event class

like fetch water. ΩE is the atomic event set of E. Each
event category ei has its own distinct atomic event set Ωei ,
i.e. the relations between an event and its atomic events are
hard constraints.

The energy that the video V is interpreted by graph G is
defined as

En(G|V ) =

τ∑
t=1

Φ(It, lt) +

τ∑
t=2

Ψ(l1:t−1, lt) (1)

Φ(·) is the spatial energy term of single frame. It encodes
the human-object interactions in 3D spatial domain.

Ψ(·) is the temporal energy term of multiple frames. It
encodes the temporal relations between frames in 1D tem-
poral domain. l1:t−1 are the labels of all the frames from the
time 1 to t − 1. Here, lt is not only related to the neighbor
lt−1, but also related to all the previous frame labels, which
is different from the traditional hidden Markov model. Be-
cause each event has its own distinct atomic event set, we
omit the variable E in the right side of Eq. 1.

2.1. Human-object Interactions in 3D Space

Φ(It, lt) describes the human-object interactions in 3D
spatial domain, which includes the semantic co-occurrence
and geometric compatibility. Semantic co-occurrence
means a specific type of human pose and some object
classes appear together in an atomic event. Geometric com-
patibility describes the spatial constraint between human
body and objects in 3D space.

We define Φ(It, lt) as:

Φ(It, lt) = φ1(at, ht) + φ2(at, ot, It) + φ3(at, ht, ot)
(2)

Pose Model. φ1(at, ht) is the human pose model. The
human pose with 20 3D joints are estimated by the Kinect
[18]. To normalize the data, we align all the skeletons to
a reference pose so that the torso and shoulder of all poses
have the same location, size, and direction.

The feature of each joint is defined as the 3D coordinate
concatenating the motion vector which is the difference of
joint coordinates in two successive frames. We extract a
feature vector containing the features of joints on arms and
apply the PCA to the feature vector to reduce the correla-
tion and noise. ht is the vector of the PC parameters. We
assume that ht follows a Gaussian distribution, and then
φ1(at, ht) = − lnN(ht;µat ,Σat), where µat is the mean
and Σat is the covariance.

Object Model. φ2(at, ot, It) is the object detection
model. Suppose zit is the 3D bounding box center of the
object oit in the 3D space. The 3D box is projected into
the RGB and depth images to form 2D bounding box, in
which the RGB and depth HOG features [1, 6] are ex-
tracted. The probability of object oit at zit is obtained by
normalizing the SVM detector with Platt scaling p(oit|zit) =
1/{1+exp{us(zit)+v}} [6, 13], where s(zit) is the score of
linear SVM object detector with the RGBD HOG features
at location zit. φ2(at, ot, It) is formulated as

φ2(at, ot, It) = − 1

nt

∑nt

i=1
ln p(oit|zit) (3)

where nt is the number of objects. Dividing the energy by
nt is to offset the influence of different object number.

We use a sliding window detection strategy to search the
objects. But different from [1, 6] where the sliding window
is defined on the 2D image plane, we slide the 3D window
box in the 3D space where the point cloud is not empty. We
then project the 3D window into the 2D image to extract the
appearance feature, as Figure1 shows. Since the instances
of the same object class usually have similar sizes in 3D
space, we define a prior 3D size for each object class.

Our model defines object location and scale in the 3D
space, and appearance in the 2D image, which are more
robust to the viewpoint and scale changes. It also provides
a natural way to define human-object relations in 3D space.

3D Geometric Compatibility. φ3(at, ht, ot) measures
the human-object geometric relations. As Figure 3 shows,
the geometric relation in 2D image is not applicable in dif-
ferent viewpoints. We model this relation in 3D space.

In an atomic event, the location of an object is closely
related to the locations and directions of some body parts,
which we call the key parts, as the arm to the dispenser in
Figure 3. Suppose yoit is the difference vector from the key
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Figure 3. Human-object geometric relation in 3D space.

parts center to the object bounding box center. xoit is the dif-
ference vector between the end points of the key parts. yoit
is closely related to xoit . We define ηoit = yoit −W

at
oit
xoit ,

where W at
oit

is a similarity transformation matrix. We as-
sume ηoit follows the Gaussian distribution. The 3D geo-
metric relation is modeled as:

φ3(at, ht, ot) = − 1

nt

∑nt

i=1
lnN (ηoit ;µ

R
oit,at

,ΣRoit,at
) (4)

where µR
oit,at

is the mean and ΣR
oit,at

is the covariance. The
superscript R is a sign which is used to differentiate the
3D relation Gaussian parameters from others. The subscript
(oit, at) indicates that the human-object geometric relation
varies in different atomic events and objects.

The key body parts vector xoit is like a local reference
system, by which we can estimate yoit , and therefore predict
the locations of related objects.

2.2. Temporal Relation

The temporal relation Ψ(l1:t−1, lt) is decomposed as

Ψ(l1:t−1, lt) = ψ1(a1:t−1, at) + ψ2(ot−1, ot) (5)

where a1:t−1 are the atomic event labels of the frames from
the time 1 to t− 1 . The first term encodes the atomic event
transition, and the second term encodes the object tracking.

Atomic Event Transition. In an event, the transition
probability from the current atomic event to the next atomic
event is related to the duration of current atomic event. We
propose to model the time-varying transition probability
with the logistic sigmoid function.

Suppose ωk−1 and ωk are two neighboring atomic events
of event E. Given E and at−1 = ωk−1, the next frame’s
atomic event at can be ωk−1 (repeat the same atomic event)
or ωk (start a new atomic event). dk−1 is the continuous du-
ration of ωk−1 up to time t−1 . The time-varying transition
probability p(at = ωk|at−1 = ωk−1, dk−1) is modeled as:

p(at = ωk|at−1 = ωk−1, dk−1) = σ(βdk−1 + γ) (6)
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Figure 4. The atomic event transition probability. (a) Duration-
dependent transition. (b) Duration-independent transition.

σ(v) = 1/(1 + e−v) is the logistic sigmoid function. β
and γ are the function parameters. We simplify p(at =
ωk|at−1 = ωk−1, dk−1) as p(ωk|ωk−1, dk−1). The tran-
sition probability to ωk−1 is p(ωk−1|ωk−1, dk−1) = 1 −
p(ωk|ωk−1, dk−1). Then ψ1(a1:t−1, at) is modeled as
− ln p(ωk|ωk−1, dk−1) or − ln p(ωk−1|ωk−1, dk−1), up to
the value of at.

Figure 4 shows two kinds of transition probability. To
the duration-dependent transition, at the preliminary stage
of approach the dispenser when the hand is still far from
the dispenser, the probability of transition from approach
the dispenser to approach the dispenser is much larger than
the possibility to the next atomic event fetch water, as the
interval 1 in Figure 4 (a). If approach the dispenser has
been lasting a long time, as in the interval 3, then the prob-
ability of transition to approach the dispenser will be much
smaller than the probability to fetch water. In interval 2, the
transition choice is indeterminate. The interval 1 and 3 de-
scribe the common duration distribution of the atomic event,
and the interval 2 reflects the variance. To the duration-
independent transition, the probability is constant regardless
of the duration, as Figure 4 (b) shows.
Object tracking. ψ2(ot−1, ot) describes the object loca-
tion tracking. In an event, the locations of some objects like
dispenser are rare to be changed. Some objects like mug
can move when human action is applied. To the moveable
objects, we assume the location follows a Gaussian distri-
bution p(zit|zit−1) = N (zit − zit−1;µZ

oit,at
,ΣZ

oit,at
). To the

non-movable objects, we set a hard threshold. If the differ-
ence of proposed location in the current frame and the last
frame is smaller than the threshold, p(zit|zit−1) is 1, other-
wise 0. The tracking energy is

ψ2(ot−1, ot) = − 1

nt

nt∑
i=1

ln p(zit|zit−1) (7)

2.3. Learning Atomic Events

We use the manually labeled video sequences (detailed
in section 4.1) of event categoryE to learn its atomic events.
Each sequence contains one instance of the event E from
the beginning to the end. First, we use EM algorithm to
cluster the pose feature and time order in all video frames
of E so that each sequence is grouped into KE segments.
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Based on the KE segments, we can obtain KE atomic
events for E. The pose model of the kth atomic event is the
kth component of the mixture Gaussian. The co-occurrence
object categories in all the frames of the k-th segment are
set as the interacting object classes for the kth atomic event.
The parameters of the 3D geometric compatibility model
(Eq.(4)) are learned using maximum-likelihood estimation
with samples of the kth segment. Figure 5 shows some sam-
ples of the learned atomic events.

3. Inference
Given a video V in the time interval ∧ = [1, T ] which

contains multiple events, the goal of inference is to inter-
pret it with a graph list G = (G1, G2, ..., GQ). Gq is
the graph interpretation of video clip V∧q

in the time inter-
val ∧q , which satisfies

⋃Q
q=1 ∧q = ∧ and

⋂Q
q=1 ∧q = ∅.

With graph list G, V is segmented into multiple video
clips V = (V1, V2, ..., VQ). The posterior probability is
p(G|V) =

∏Q
q=1 p(Gq|Vq). The energy that the video V is

interpreted by the graph list G is

E(G|V) =
∑Q

q=1
En(Gq|Vq) (8)

En(Gq|Vq) is the energy of each video clip, as defined in
Eq. (1). The most likely interpretation to V is computed as

G∗ = arg min E(G|V) (9)

3.1. Dynamic Programming Beam Search

The general framework to solve Eq.(9) includes three
procedures: i) in each frame, detect objects by sliding the
window in 3D space and produce multiple hypothesized ob-
ject detections; ii) propose multiple possible interpretations
to this frame according to the human pose feature, the object
detection, and the 3D spatial relations between them; iii) the
temporal relations between frames are applied to optimize
these proposals, and finally output the hierarchical interpre-
tations to the video sequence. However, it is impossible to

search the entire solution space of optimization because it
has an exponential complexity of the video length.

We use a dynamic programming beam search algorithm
(DPBS) to solve Eq. (9). The DPBS was previously used
in the machine language translation [21]. We extend it to
the video interpretation and exploit the characteristic of the
event graph structure to accelerate the computation. The
general idea is that based on the interpretations to the past
video frames, we compute all the interpretations to the cur-
rent frame. Then we keep part of all the current interpre-
tations with the highest probabilities. This process iterates
forward frame by frame until the video sequence ends. The
DPBS is illustrated in Figure 6.

Suppose G1
t−1, ...,G

J
t−1 are J possible interpretation

graph lists to the video sequence in the time interval [1, t−
1], with the energy E1t−1, ..., EJt−1. They are shown as the
paths from time 1 to t − 1 in Figure 6. We now want to
compute an interpretation to the current frame at t, based
on one of the J paths, like the jth path (the green path in
Figure 6). Suppose at−1 and at are the atomic event labels
of frame It−1 and It, respectively. Given the jth path Gj

t−1,
there are three types of interpretation to the current frame It
(shown in the right side of Figure 6):
1) at repeats the same atomic event with at−1;
2) at is the next atomic event of at−1 in the same event;
3) at is the atomic event of a new event.

In the third case, at can be any atomic event in the given
set, which makes our model able to handle the cases of event
insertion, interruption, and repetition.

We append all the possible values of the node at to
Gj
t−1 according to the three types of interpretations, which

generates mj new graph lists G1
t (G

j
t−1), ...,G

mj

t (Gj
t−1).

Their energy is Ejt−1 + Φ(It, lt) + Ψ(l1:t−1, lt). For all
G1
t−1, ...,G

J
t−1, we obtainm1+...+mJ possible solutions.

We keep J solutions G1
t , ...,G

J
t with the lowest energies

E1t , ..., EJt as the interpretations to the video in the interval
[1, t]. Figure 6 illustrates the algorithm with a simplified
example.

Our DPBS algorithm is an online algorithm. It interprets
each frame from the beginning of the video to the end. Ad-
ditional to recognize the event and the atomic event, it also
detect and label the objects in each frame.

4. Experiment
4.1. Multiview 3D Event Dataset

To evaluate our algorithm, we collect a large-scale mul-
tiview 3D event dataset. The dataset is captured using three
stationary Kinect cameras simultaneously at different view-
points around the human, which records the RGB, depth,
and 3D human pose for each video frame. The events are
performed by about 8 subjects in the natural indoor scenes,
like hallway and library. Each subject repeats an event
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Subject MV 3D SN ASN AVL
CMUHOI[5] 54 9 110
MSRA3D[22] X 567 28 42
Our Dataset X X 3815 477 100

Table 1. Dataset comparison. MV: multiview; SN: the number
of total video sequences; ASN: the average number of sequences
for each event category; AVL: the average length (frames) of each
video sequence.

Event MT HMM 4DH 4DHOI

drink with mug 0.51 0.62 0.72 0.83
call with cellphone 0.32 0.41 0.43 0.46
read book 0.83 0.73 0.93 0.95
use mouse 0.84 0.87 0.96 0.88
type on keyboard 0.77 0.89 0.96 0.97
fetch water from dispenser 0.82 0.76 0.90 0.93
pour water from kettle 0.68 0.67 0.89 1.00
press button 0.73 0.99 0.97 0.90
Overall 0.69 0.74 0.85 0.87

Table 2. Event recognition accuracy comparison.

for about 20 times independently with different object in-
stances and various styles. Our dataset includes 8 event cat-
egories: drink with mug, call with cellphone, read book, use
mouse, type on keyboard, fetch water from dispenser, pour
water from kettle, and press button, which involve 11 object
classes: mug, cellphone, book, mouse, keyboard, dispenser,
kettle, button, monitor, chair, and desk.

To label the video, we manually cut the original long
videos into short sequences that each sequence contains one
event from the beginning to the end. Totally, our labeled
dataset contains 3815 event video sequences and 383,036
RGBD frames. Each event category has about 477 sequence
instances on the average.

Our dataset has several characteristics which make it
challenging. First, our data is multiview. We use three cam-
eras to capture the video. But due to the various styles of
actor’s action, the viewpoint of each event is much larger
than three. Second, our event involves various objects and
has complex temporal structures. Finally, our dataset has
large variety due to the various styles of each actor to per-

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

1

1 2 3 4 5 6 7 8

2

3

4

5

6

7

8

1

1 drinkHwithHmug

5 typeHonHkeyboard

2 callHwithHcellphone

6 fetchHwater

3 readHbook

7 pourHwater

4 useHmouse

8 pressHbutton

4DH 4DHOI

Figure 7. Confusion matrix of 4DH and 4DHOI.

form an event. Table 1 gives the comparison of our dataset
with two typical human-object interaction event datasets.

4.2. Event Recognition

Event recognition is to predict an event label for each
video sequence which contains one event from the begin-
ning to the end. To label the sequence, in the inference, we
set Q = 1 and use the dynamic programming beam search
algorithm to compute its graph interpretation. The root of
the graph is its event label.

We use two classical event recognition method as base-
lines - motion template (MT) [10] and traditional hidden
Markov model (HMM) [16]. Similar to our pose model in
Section 2, we use the 3D joint points on the arms as the
input frame feature for the MT and HMM methods. All
the original data is aligned with the same method as our
model. We also compute the recognition accuracy of the
4DH method, which is the same algorithm as the 4DHOI
except that it only uses the human pose information as in-
put and omits the information of object interaction.

Tabel 2 shows that the performance of our model is bet-
ter than other three methods. It outperform other methods
in 6 categories of all 8 event categories, and improves the
overall accuracy greatly, which demonstrates the strength
of our method.
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Figure 7 shows the confusion matrix of 4DH and
4DHOI. The comparison between 4DH and 4DHOI demon-
strates the effect of human-object interaction on event
recognition. For example, the human body movement in
the event drink with mug and call with cellphone are highly
similar. It is hard to distinguish them only by the human
pose information. Incorporating the object information of
mug and cellphone, the two events are better distinguished.
Consider another event - pour water from kettle, it is com-
plex in the temporal structure and human body movement
because it involves the movement of both two arms and the
coordination between the two arms. The object kettle has
distinct appearance and only exists in the event pour water
from kettle, which makes it provide strong support to this
event. So when incorporating the information of kettle, the
performance is significantly improved.

4.3. Sequence Segmentation

Sequence segmentation is to segment a long video se-
quence into coherent clips that each clip contains one event.
Simultaneously segmenting a sequence and recognizing the
events is a challenging problem. Our inference algorithm
can interpret the current frame as a new event. The new
event interpretation segments the video into clips which cor-
respond to different events.

We use 10 unsegmented long event sequences to test
the segmentation. Each sequence contains multiple events.
Our segmentation data is challenging because many of the
highly similar events successively occur in one sequence,
and some events occur many times in one sequence.

We compare our 4DH model with the nearest neighbor
classification (NN), which recognizes each frame indepen-
dently without temporal context. We evaluate the accuracy
in terms of frames compared to the ground truth. The accu-
racy of our 4DH is 0.783, and the accuracy of NN is 0.641.
Figure 8 visualizes some segmentation results. Recognizing
each frame independently produces many small incoherent
clips, as the NN method shown in the Figure 8. Our 4DH in-
corporates the prior temporal structures of the events, which
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Table 3. Object localization accuracy (%).
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Figure 9. Object recognition and localization. (a) Ground truth.
(b) HOG. (c) RDH. (d) Our 4DHOI. The results of RDH are vi-
sualized by projecting the areas on the depth images into the 3D
point cloud.

provide the contextual and duration information among suc-
cessive frames. So it produces coherent segmentation and
achieves better performance than NN.

4.4. Object Recognition and Localization

In video, object recognition is to determine the object
class, which is related to the event recognition since the
connection between object class and event category is hard
constraint. So in this section, we mainly focus on the object
localization. Different from the previous work which only
localized objects in one video frame, or just recognized the
pre-detected object motion, we localize the object in each
video frame of the 3D point cloud (with it, the 2D location
on image is available by projection). In each RGB frame,
an object localization box is considered correct if it overlaps
more than 0.5 with ground truth bounding box. The local-
ization accuracy is defined as the ratio between the number
of frames with correct object localization and the number of
frames where the object appears in ground truth. We com-
pare our method with method HOG [1] and RDH which
uses the RGBD HOG feature [6] in a sliding window way to
detect objects. We choose the detection with the maximum
score as the final detection. The HOG and RDH detectors
are trained for each object class. Table 3 shows the local-
ization accuracy. Figure 9 shows some examples of object
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localization.
The objects involved in the event present large appear-

ance variance. Some objects have non-rigid structures,
like book. Some objects move with the human action and
present different directions, scales, and views in the mo-
tion, like mug. Some small objects are always occluded by
the human body in the action, like cellphone and mouse.
The HOG and RDH methods localize objects with appear-
ance information in each frame. However, non-rigid struc-
ture, movement, occlusion, and low resolution make it hard
to localize these objects by appearance. The human ac-
tion information can facilitate the localization by using the
temporal and human body context. So for those objects,
our model significantly improves the accuracy. For those
big and still objects which have regular appearance, like
dispenser, though the improvement is not remarkable, our
method still outperforms the baseline methods.

5. Conclusion
We proposed a 4D human-object interaction model for

event and object recognition. The human-object interac-
tions defined in 3D spatial domain boost the reliability on
atomic event recognition. Ambiguities in interpreting the
video frames are resolved by integrating temporal relation
between frames. Through the dynamic programming beam
search algorithm, we can efficiently segment the video, rec-
ognize events, and localize objects simultaneously. The
experiment on our large scale multiview 3D event dataset
proves the effectiveness of our method. The future work
will focus on using the 4D human-object relations to esti-
mate human pose in regular surveillance video.
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