
Online Object Tracking, Learning and Parsing with And-Or Graphs

Yang Lu, Tianfu Wu∗ and Song-Chun Zhu
Center for Vision, Cognition, Learning and Art

Department of Statistics, University of California, Los Angeles, USA
yanglv@ucla.edu, {tfwu, sczhu}@stat.ucla.edu

Abstract
This paper presents a framework for simultaneously

tracking, learning and parsing objects with a hierarchi-
cal and compositional And-Or graph (AOG) representation.
The AOG is discriminatively learned online to account for
the appearance (e.g., lighting and partial occlusion) and
structural (e.g., different poses and viewpoints) variations
of the object itself, as well as the distractors (e.g., similar
objects) in the scene background. In tracking, the state of
the object (i.e., bounding box) is inferred by parsing with the
current AOG using a spatial-temporal dynamic program-
ming (DP) algorithm. When the AOG grows big for han-
dling objects with large variations in long-term tracking,
we propose a bottom-up/top-down scheduling scheme for
efficient inference, which performs focused inference with
the most stable and discriminative small sub-AOG. During
online learning, the AOG is re-learned iteratively with two
steps: (i) Identifying the false positives and false negatives
of the current AOG in a new frame by exploiting the spa-
tial and temporal constraints observed in the trajectory; (ii)
Updating the structure of the AOG, and re-estimating the
parameters based on the augmented training dataset. In ex-
periments, the proposed method outperforms state-of-the-
art tracking algorithms on a recent public tracking bench-
mark with 50 testing videos and 30 publicly available track-
ers evaluated [34].

1. Introduction
1.1. Objective and Motivation

Given a specified object in the first frame of a video,
the objective of online object tracking is to locate it in
the subsequent frames with bounding boxes. Online ob-
ject tracking, especially long-term tracking, is a very chal-
lenging problem due to (i) the variations of the object it-
self, which include the appearance and structural variations,
scale changes, occlusions (partial or complete), and the sit-
uations of disappearing and reappearing, etc., and (ii) the
complexity of the scene, which includes camera motion, the
background clutter, distractors, illumination changes, and

∗Tianfu Wu is the corresponding author

frame cropping, etc. In recent literature, object tracking
has received much attention due to practical applications in
video surveillance, activity and event prediction, etc.

This paper presents an online Tracking-Learning-Parsing
(TLP) framework to address the issues above. The object
to be tracked is modeled by an And-Or graph (AOG) [39]
which is a hierarchical and compositional representation
with a directed acyclic graph (DAG) structure. The hy-
pothesis space of AOG is constructed using the quantization
method [31] recently proposed for learning object detectors
in PASCAL VOC datasets. The AOG is discriminatively
trained online to account for the variations of objects against
background stated above. Our TLP framework is of similar
spirit to tracking-learning-detection (TLD) [19], tracking-
by-detection [2] and self-paced learning of tracking [16].
Note that the AOG in this paper is learned for the tracked
object instance, rather than at the object category level. The
motivation of introducing the AOG is four-fold.

i) More representational power: Unlike TLD [19] and
many others which model an object as a single template or a
mixture of small number of templates and thus does not per-
form well for articulated objects (e.g., person), an AOG rep-
resents an object in a hierarchical and compositional man-
ner which has three types of nodes: an And-node represents
the rule of decomposing a complex structure (e.g., a walk-
ing person or a running basketball player) into simple ones;
an Or-node represents alternative structures at both object
and part levels which can capture different poses and view-
points and partial occlusion; and a Terminal-node grounds
the representational symbol to image data using different
appearance templates to capture local appearance change.
Both the structure and appearance of the AOG will be dis-
triminatively trained online to account for the variations of
a tracked object against its scene backgrounds.

ii) More flexible computing schemes: Firstly, due to the
DAG structure of an AOG, we can use a dynamic program-
ming (DP) algorithm in inference; Secondly, the compo-
sitional property embedded in an AOG naturally leads to
different bottom-up/top-down computing schemes as the α-
β-γ computing processes studied in [32], which can track

1

Frame: 13 Frame: 21 Frame: 48 Frame: 60 Frame: 66

Frame: 283Frame: 1
Online Tracking-by-Parsing

Online Learning of the AOG

L
e

a
rn

in
g

Updating

Initial AOG
Update AOG using Parsing Results

Pars
in

g
Re-learning

Tracking

P
ar

si
ng

Tracking

Red Arrows: the parse tree

in Frame 60

updating

O
n

lin
e

 C
o

lle
c
te

d
 O

b
je

c
t P

ro
to

ty
p

e
s

Or-node

And-node

Terminal-node
Object

Part1 Part2
Part3 Part4

Figure 1. Illustration of our tracking-learning-parsing (TLP) framework using the “shaking” video in the dataset [34]. See text for details.
Also see the video demos in the supplementary material. (Best viewed in color and magnification)

the object by matching the object template directly (α), or
computing some discriminative parts first and then combine
them into object (β), or doing both (α+ β). Usually, at the
beginning of tracking, the AOG has a few number of nodes
so we can track the object by parsing with the AOG using
DP efficiently. As time evolves, the AOG can grow through
online learning, especially for objects with large variations
in long-term tracking, and thus faster inference is entailed
for the sake of real time applications.

iii) More robust tracking and online learning strategies:
While the whole object has large variations or is partially
occluded from time to time during tracking, some parts
might remain stable and are less likely to be occluded,
so they can be used to robustly track the object using a
bottom-up/top-down computing scheme, and also to im-
prove the accuracy of appearance adaptation of Terminal-
nodes (e.g., identifying appearance changes or occlusion of
other nodes). This idea is similar to finding good features to
track [30], and we find good part(s) online for both tracking
and learning.

iv) Fine-grained tracking results: Beside predicting the
bounding boxes of the tracked object, the output of our
method (i.e., the parse trees) has much more information
which is potentially useful for other modules beyond the
tracking such as activity or event prediction.

1.2. Method Overview
As illustrated in Fig.1, our framework consists of three

components:
i) The AOG for modeling the tracked object. Given the

input bounding box of the object in the first frame (top-left),
we divide the bounding box into a r × c cells (3 × 3 here).
The set of primitive parts are then enumerated in the r × c
cells, which quantize the hypothesis space of AOG using
the method proposed in [31]. The quantization is capable of
exploring a large number of latent part configurations (cap-
turing discriminative and stable parts at different frames),
meanwhile it makes the problem of online learning AOG
feasible. We will elaborate the construction of the AOG in
Sec. 3.1. See two examples, the initial AOG and one online
updated AOG , in the bottom-left of Fig. 1.

ii) The spatial-temporal DP algorithm for tracking-by-
parsing with AOG. At time t, given the previous bound-
ing box, the spatial DP algorithm is used to compute the
matching score and parse tree of a sliding window inside
the search range (which can be either some neighborhood
around the location and scale predicted based on the previ-
ous bounding box or the whole feature pyramid). A parse
tree is a realization of the AOG by selecting the best child
node for each encountered Or-node, and is the best inter-
pretation of the object at current frame. For example, the
parse tree of the object in Frame 60 is illustrated by the red
arrows in the AOG (bottom-middle). We maintain a DP ta-
ble memoizing the candidate object states generated by the
spatial DP algorithm in the past n frames (e.g., 20 in our
experiments). The temporal DP algorithm is then used to
find the optimal solutions for the n frames, which can help
correct tracking errors (i.e., false negatives and false posi-
tives collected online) by leveraging more spatial-temporal

information. The formulation of the spatial-temporal DP is
given in Sec. 4. We study the scheduling scheme for infer-
ence with a big AOG in handling objects with large varia-
tions during tracking (Sec. 5.3).

iii) The online learning of the AOG. The AOG is discrim-
inatively trained online with only the whole object bound-
ing box in the first frame being given. In this paper, we
adopt the weakly-labeled latent SVM framework [12]. De-
tails on online learning is given in Sec.5. The learning is
done incrementally as time evolves, starting with a small
set of positive examples (bootstrapped based on the given
bounding box) and a set of negative examples (mined from
outside of the given bounding box) to train the initial AOG.
In the subsequent frames, the AOG is re-learned iteratively
with two steps: The first step collects the false positives and
false negatives of the current AOG in a new frame by ex-
ploring the temporal and spatial constraints in the trajectory,
similar to the P-N learning proposed in TLD [19], and the
second step updates the structure of the AOG (e.g., adding
a new object template and/or some part configurations and
corresponding templates) if necessary, and re-estimates the
parameters based on the augmented training dataset. One
key issue of learning the AOG online is how to maintain
the purity of the positive and negative training set collected
online (similar issue of learning single object template is
discussed in [16] and [19]). The spatial-temporal DP algo-
rithm for tracking-by-parsing stated above can help main-
tain the robustness of learning. Some object examples col-
lected online are shown in the bottom-right in Fig. 1.

In experiments, the proposed framework is tested on a
recent public benchmark [34] consisting of 50 video clips
with different types of variations. Experimental results
show that our method outperforms the state-of-the-art track-
ing methods consistently.

2. Related Work
In the literature of object tracking [36], either single ob-

ject tracking or multiple-object tracking, there are often two
types of settings:

i) The offline visual tracking [37, 28, 6], which assumes
the whole video sequence has been recorded already, and
then utilizes two steps; the first step generates object pro-
posals in all frames of the input video by using some of-
fline trained detectors (such as DPMs [11]) and then obtains
“tracklets”, and the second step finds the optimal object tra-
jectory (or trajectories for multiple objects) by solving an
optimization problem (e.g., the K-shortest path or min-cost
flow formulation) for the data association.

ii) The online visual tracking, which is designed for live
videos, and starts tracking when the bounding box of an ob-
ject of interest was specified in certain frame. Most popular
methods can be divided into four streams: (1) Appearance
modeling of object itself as a whole, such as the incremen-
tal learning [29], kernel-based [8], particle filtering [17],

Figure 2. Illustration of constructing the compositional space of
AOG using the method in [31]. Here, the full structure of the AOG
is constructed for a 2× 3 grid.

sparse coding [26] and 3D-DCT representation [23]. (2)
Appearance modeling of object with parts, such as patch-
based [22], coupled 2-layer model [7] and adaptive sparse
appearance [18]. The major limitation of the appearance
modeling of object itself is the lack of background mod-
els, especially when there are distracotrs (e.g., players in
sport games). To address this issue, it leads to so called
discriminant tracking. (3) Tracking by discrimination using
a single classifier, such as the support vector tracking [3],
multiple instance learning [4], the struck [14], the circu-
lant structure-based kernel method [15], and the discrim-
inant saliency based tracking [25]. (4) Tracking by part-
based discriminative models, such as the online extension
of the DPM model [35], and the structure preserving track-
ing method [38].

Our method belongs to the fourth stream of online vi-
sual tracking. Unlike the predefined or fixed part configu-
rations with the star-model structure used in previous work,
we learn both the structure and appearance of the AOG on-
line which is, to our knowledge, the first method to address
the problem of online explicit structure learning in tracking.
Our contributions. This paper makes four contributions to
the long-term online visual tracking problem:

i) It presents a generic tracking-learning-parsing (TLP)
framework which can learn and track objects with online
discriminatively trained AOGs.

ii) It presents a spatial-temporal DP algorithm for
tracking-by-parsing with AOG and outputs fine-grained
tracking results using parse trees.

iii) It proposes a simple yet effective bottom-up/top-
down scheduling scheme for inference when the AOG
grows big in tracking.

iv) It outperforms the state-of-the-art tracking methods
on a recent public benchmark [34].

3. Problem Formulation
3.1. The AOG and Structure Quantization

Let B denote the input bounding box. We first divide it
into a r × c-cell grid (e.g., 2 × 3 in Fig. 2). The maximum
grid size is 3 × 3 cells in this paper to control the model

complexity. The full structure of AOG is constructed us-
ing breadth-first search (BFS) [31]. By “full structure”, it
means all the possible compositions on top of the cell grid
with binary composition being used for And-nodes.

The AOG is a directed acyclic graph, denoted by G =
(V,E). The node set V consists of three subsets of Or-
nodes, And-nodes and Terminal-nodes respectively, which
represent different aspects of modeling objects in a gram-
matical manner [39]. From the top to bottom, the AOG
consists of: The object Or-node (plotted by green circles),
which represents alternative object configurations; A set of
And-nodes (solid blue circles), each of which represents a
typical configuration of the tracked object; A set of part Or-
nodes, which handle local variations and configurations in
a recursive manner; A set of Terminal-nodes (red rectan-
gles), which link the whole object and parts to the image
data (i.e., grounding the symbols), and take into account
appearance Or-node (i.e., local appearance mixture) and oc-
clusions (e.g., the head-shoulder of a walking person before
and after opening a sun umbrella). Note that some part Or-
nodes are shared between different And-nodes.

A parse tree is an instantiation of the AOG with the best
child node of each encountered Or-node being selected. See
the example illustrated by the red arrows in Fig. 1. All the
terminal-nodes in a parse tree represents a part configura-
tion when collapsed to image domain, as the parsing results
(rectangles in different colors) shown in top-right in Fig. 1.

3.2. Formulation of Object Tracking
Let Λ denote the image lattice on which the video frames

are defined. Denote a sequence of video frames within
time range [0, T] by I0:T = {I0, · · · , IT }. Let Ct =

(Bt, B
(1)
t , · · · , Bkt

t) be the configuration collapsed from
the parse tree of the tracked object in It where Bt is the
object bounding box Bt and (B

(1)
t , · · · , B(kt)

t) are a small
number kt of part bounding boxes within Bt.

The objective of tracking is to predict Bt in It, and we
treat (B

(1)
t , · · · , Bkt

t) as latent variables which are modeled
to leverage more information for computing Bt. Note that
we do not track (B

(1)
t , · · · , Bkt

t) explicitly.
We first derive the formulation from the generative per-

spective by considering a first-order Hidden Markov Model
as usual,

The prior model: B0 ∼ p(B0) , (1)
The motion model: Bt|Bt−1 ∼ p(Bt|Bt−1) , (2)

The likelihood: It|Bt ∼ p(It|Bt). (3)

Instead of following the traditional derivation
based on the prediction model p(Bt|I0:t−1) =∫
p(Bt|Bt−1)p(Bt−1|I0:t−1)dBt−1 and the updating

model p(Bt|I0:t) = p(It|Bt)p(Bt|I0:t−1)/p(It|I0:t−1)
(which is a marginal posterior probability), we seek to

maximize a joint posterior probability directly,

p(B0:t|I0:t) = p(B0:t−1|I0:t−1)
p(Bt|Bt−1)p(It|Bt)

p(It|I0:t−1)

= p(B0|I0)

t∏
i=1

p(Bi|Bi−1)p(Ii|Bi)

p(Ii|I0:i−1)
. (4)

By taking logarithm at both sides in Eqn.(4), we have,

B∗0:t = arg max
B0:t

log p(B0:t|I0:t)

= arg max
B0:t

{log p(B0) + log p(I0|B0)+

t∑
i=1

[log p(Bi|Bi−1) + log p(Ii|Bi)]}. (5)

where the image data term p(I0) and
∑t

i=1 p(Ii|I0:i−1) are
not included in the maximization as they are treated as con-
stant terms. In online tracking, we have groundtruth for B0

and thus p(I0|B0) can also be treated as known after the
object model is trained based on B0. Then, Eqn.(5) can be
reproduced as,

B∗1:t = arg max
B1:t

log p(B1:t|I0:t, B0) (6)

= arg max
B1:t

{
t∑

i=1

[log p(Bi|Bi−1) + log p(Ii|Bi)]}.

which leads to the spatial-temporal DP algorithm for
tracking-by-parsing with AOG.

4. Tracking-by-Parsing with AOG using
Spatial-Temporal DP Algorithm

By following the derivation in [32], we show that
only the log-likelihood ratio matters in computing the log-
likelihood log p(Ii|Bi). We can obtain,

p(Ii|Bi) = p(IΛBi
, IΛBi

|Bi) = p(IΛBi
|Bi)q(IΛBi

)

= q(IΛ)
p(IΛBi

|Bi)

q(IΛBi
)
, (7)

where ΛBi
is the remaining domain (i.e., ΛBi

∪ ΛBi
= Λ

and ΛBi
∩ ΛBi

= ∅), and q(IΛ) is the probability model of
scene background which does not need to be specified ex-
plicitly in the computation. This derivation gives an alterna-
tive explanation for the discriminant tracking v.s. tracking
by appearance modeling of object itself.

So, we will treat Eqn.(6) from the discriminative
perspective, i.e., we do not compute log p(Ii|Bi) and
log p(Bi|Bi−1) in the probabilistic way, instead we com-
pute the matching scores of online discriminatively trained

AOG. Denote by Score(Ii|Bi) = log
p(IΛBi

|Bi)

q(IΛBi
) . We can

Jogging Motorrolling

Sylvester

Figure 3. Examples of the initial AOGs learned for the “Jogging”, “Motorrolling” and “Sylvester” in the benchmark [34]. Depending on
both the object and the background, the initial AOGs for different objects have different complexity.

re-write Eqn.(6) in the minimization form,

B∗1:t = arg min
B1:t

Cost(B1:t|I0:t, B0;G) (8)

= arg min
B1:t

{
t∑

i=1

[Cost(Bi|Bi−1)− Score(Ii|Bi;G)]}.

where the scores are computed based on the online learned
AOG so we add G to the equation.

The spatial DP computes Score(Ii|Bi;G), and the tem-
poral DP solves the optimal solution of B∗1:t in Eqn.(8).
4.1. The Spatial DP Algorithm

To compute Score(Ii|Bi;G), we do parsing inside ΛBi

with the current AOG G with the optimal configuration
C∗i being sought. We denote this parsing process by
Parse(Ii|Bi;G) which is given in Algorithm.1 in the sup-
plementary material. The basic idea is that for a given can-
didate Bi, we want to find the best of all possible parse
trees in the AOG, and for each parse tree we want to find
the best part configuration (through local deformation of the
Terminal-nodes). The DP algorithm is used to solve these
two rounds of maximization efficiently.

In practice, at time t, given the previous bounding box
Bt−1, the spatial search space is defined by the feature
pyramid which is processed in a “center-surround” manner:
the “center” means the neighborhood of both pyramid lev-
els and corresponding spatial domain defined by Bt−1, and
the “surround” is the remaining portion in the feature pyra-
mid. We first run the spatial DP algorithm with the current
AOG inside the “center”. If the DP solution has high confi-
dence matching score based on the online learned threshold,
it will be accepted. Otherwise, it keeps all the candidates
with scores greater than some threshold (e.g., 70% of the
high confidence threshold), and then run DP algorithm in
the “surround” with all the candidates kept in the similar
manner, followed by running the temporal DP algorithm.
4.2. The Temporal DP Algorithm

Assume that all the candidates for B1, · · · , Bt are mem-
oized after running the spatial DP algorithm for tracking-
by-parsing in I1 to It, Eqn.(8) corresponds to the classic
DP formulation with −Score(Ii|Bi;G) being the local cost
term and Cost(Bi|Bi−1) the pairwise cost term.

To compute Cost(Bi|Bi−1), we use a thresholded mo-
tion model, as experimented in [16]: the cost is 0 if the tran-
sition is accepted by the measured median flow [19] (which
is a forward-backward extension of the Lucas-Kanade opti-
mal flow [5]) and +∞ otherwise.

In practice, we often do not need to run the temporal
DP in the whole time range [1, t], especially for long-term
tracking, since the tracked object might have changed sig-
nificantly, instead we only focus on some short time range
(e.g., the past 20 frames used in our experiments).

5. Online Learning of the AOG
In this section, we present the online learning of AOG

consisting of two components: (i) Learning the initial AOG
given the the input bounding box in the first frame. (ii) Up-
dating the AOG with the results from tracking-by-parsing.

Appearance feature and learning framework. We use the
modified HOG feature used in DPM [11], and adopt the
weakly-labeled latent SVM framework (WLLSVM) [12] to
estimate the appearance parameters.

Local deformation. In this paper, we do not use the
quadratic deformation term as done in the DPM, instead we
use local max when summing the scores over child nodes
for an And-node (as written in Algorithm.1 in the supple-
mentary). The local deformation range is proportional to
the side lengths of a terminal-node (e.g., 0.1 in this paper).

Denote by D+
t the online collected positive dataset, and

by D−t the online collected negative dataset at time t.

5.1. Learning the Initial AOG
We have D+

0 = {(I0, B0)}. We augment it by warping a
small number (20 in our experiments) of positives (i.e., cre-
ating new positives by adding random Gaussian noise and
random small affine transformations). The initial D−0 use
the whole remaining image IΛB0

for mining hard negatives
during training. This mining step improves the tracking sig-
nificantly which is also observed in [16].

The initial AOG, denoted by G0. The structure is learned
by pruning. We first train the full object template, denoted
by ω. Then, the appearance parameters for each terminal-
node v in the full AOG is initialized by cropping out the
corresponding portion in ω, denoted by ωv . We evaluate
the “goodness” of a terminal-node v by its variance, over

Frame: 46 Frame: 104 Frame: 117 Frame: 151

Frame: 211 Frame: 403 Frame: 487

During online learning

from Frame 1 to Frame

46, the most stable and

discriminative part (c) is

identified.

Focused

Inference using

the “alert” portion

of the A
O
G

The scheduling also improves the robustness of online learning: for example, the learned

models of the head-shoulder (e) and the lower leg (f) do not drift during the occlusion.

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

(e) (f)

(e) (f)

Figure 4. Illustration of the scheduling, which improves both the computing efficiency and the robustness of online learning of the AOG.

all positives, of the full object template score minus the
terminal-node score, which is used in the DPM cascade
[10] to order the parts. The smaller the variance is, the
more stable and important the terminal-node is. Then, we
threshold the variance to prune the terminal nodes and di-
vide the set of terminal-node based on the “on/off” states,
i.e., VT = V on

T ∪ V off
T . Based on V on

T , we learn the ini-
tial AOG. To maintain the structure, we require that all the
child nodes of an And-node need to be turned “on”, which
is implemented by two rounds of traversal of the full AOG:

i) Turn on/off all the And-nodes and Or-nodes in the full
AOG using DFS. An encountered Or-node turns on if
one of its child turns on. An encountered And-node
turns on if and only if all of its child nodes turn on.

ii) Retrieve the initial AOG using BFS. Start from the root
Or-node, add all turned-on child nodes of an encoun-
tered Or-node or And-node, and add any encountered
Terminal-node.

Note that some Terminal-nodes in V on
T might not be in-

cluded in the initial AOG, and they can be added back dur-
ing updating if the condition was satisfied. Fig. 3 shows
three examples of learned initial AOGs.

We re-train the appearance parameters of the whole ini-
tial AOG jointly using modified WLLSVM [12] and esti-
mate the threshold for all nodes in the initial AOG using the
PAA method [10]. After training, we keep the positive and
negative support vectors in the training cache which will be
reused in updating the AOG. With the learned initial AOG,
we start tracking-by-parsing as stated in Sec.4. During the
tracking, we update the AOG based on the tracking results.

5.2. Online Updating of the AOG
The goal of updating the AOG online is to account for

both the structural and appearance variations of the tracked
object, as well as to handle hard negatives (distractors) in
the background.

We will keep the appearance parameters of termi-
nal nodes in the initial AOG unchanged since they are
learned with groundtruth input, which will help locate a re-
appearing object (e.g., after moving out of the scene or be-
ing completely occluded). So, the appearance of a terminal-
node is represented by a mixture (i.e., appearance Or-node)
in updating.

At time t, with the tracking-by-parsing results, we update
the AOG in the following way,

i) Maintaining D+
t and D−t based on D+

t−1 and D−t−1:
(1) If the tracking result Bt has a high confidence
parsing score, it is added to D+

t and then all other
high-scoring candidates generated during the search
are added toD−t ; (2) Correct the previously augmented
examples in D+

t−1 and D−t−1 according to the consis-
tency with the temporal DP result (i.e., correct previ-
ously false positives and false negatives). This con-
trols the purity of the training dataset similar to the P-N
learning in TLD [19].

ii) Updating the training cache based on the parse trees
obtained from D+

t and D−t with the current model.
iii) Relearn the appearance parameters for all Terminal-

nodes in the current AOG.
iv) Updating the structure of the AOG: (1) Initialize all the

remaining Terminal-nodes based on the updated ob-
ject template; (2) Evaluate the “goodness” of all the
Terminal-nodes and turn them on/off as done in learn-
ing the initial AOG; (3) Retrieve the new structure of
the AOG using DFS and BFS.

v) Retrain the AOG if the structure has been updated in
step iv).

Please see the video demos in the supplementary material
for illustrating the AOG learning and updating. We will
study more theoretically-sound online learning framework
for the AOG in tracking, which is a very challenge problem
under general settings.

5.3. Scheduling in the AOG
When the tracked objects have large variations, the AOG

can grow big, especially in long-term tracking. To improve
the computational efficiency, we propose a simple yet ef-
fective scheduling scheme which do focused inference with
identified “alert” sub-graph of the AOG (Fig. 4).

The scheduling is based on the ordering of nodes in the
AOG and estimating a two-sided thresholds, i.e., early ac-
ceptance/early rejection threshold, for each node.

i) The Terminal-nodes in the AOG are sorted using the
variance as “goodness” measure as done in the learning.

ii) A two-sided threshold is estimated for each Terminal-
node and And-node using the decision policy method [33].

AOGTracker Struck[14] CXT[9] VTD[20] VTS[21] OAB[13] CPF[27] LSK[24] Frag[1] MIL[4] SPO[38]
Prec. 0.851 0.773 0.658 0.650 0.645 0.604 0.599 0.589 0.582 0.574 0.587
Suc. 0.748 0.694 0.579 0.583 0.581 0.540 0.502 0.556 0.530 0.496 0.488

Table 1. Overall performance comparison of the top 10 trackers evaluated on the 50-video benchmark [34]. We follow the evaluation
protocol proposed in [34] to compute the precision and success rate.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE

AOGTracker [0.851]

Struck [0.773]

CXT [0.658]

VTD [0.650]

VTS [0.645]

OAB [0.604]

CPF [0.599]

LSK [0.589]

SPO [0.587]

Frag [0.582]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE

AOGTracker [0.748]

Struck [0.694]

VTD [0.583]

VTS [0.581]

CXT [0.579]

LSK [0.556]

OAB [0.540]

Frag [0.530]

CPF [0.502]

MIL [0.497]

Figure 5. Plots of overall performance comparison for the 50
videos in the benchmark [34]. The proposed method (“AOG-
Tracker”) obtains better performance in terms of precision (left)
and success (right) plot.

iii) The tracking-by-parsing (Algorithm.1 in the supple-
mentary) is then modified: (1) Instead of following the DFS
completely to compute scores in the step 0, we schedule
the computation of the nodes according to the ordering; (2)
Bottom-up computing with DFS in the AOG starting from
the first Terminal-node in the ordering to prune the search
space; and (3) Top-down verification using the two-sided
threshold with the BFS in the AOG to exploit early stop.

By this scheduling, we can also improve the robustness
of online learning through finding good part or partial part
configuration to guide the updating of the AOG, especially
for handling occlusion and large variations of some parts.
See the illustration in Fig. 4.

With the scheduling scheme, our tracker can run 2 to 3
frames per second on a single CPU core.

6. Experiments
We test our method on a recent public benchmark [34]

consisting of 50 video clips which have different challeng-
ing aspects such illumination variation, scale variation, non-
rigid deformation, occlusion, and out-of-view, etc. For the
benchmark, most published tracking algorithms1 (30 pub-
licly available trackers) are evaluated including Struck [14],
IVT [29], MIL [4], TLD [19] and structure preserving
tracker [38], etc.. We follow the same evaluation protocol
proposed in [34]. Due to space limit, we show quantitative
comparison results only in this section, and qualitative re-
sults and video demos showing the details of online learning
of our method will be presented in the supplementary.

Overall, our method outperforms them consistently (see
Fig.5 and Table. 1). In addition, Fig. 6 shows the compari-
son on different subsets such as non-rigid deformation and
out-of-view subsets. Note that Fig. 5 and Fig. 6 show the
top 10 trackers only for clarity.

1https://sites.google.com/site/trackerbenchmark/benchmarks/v10

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE - scale variation (19)

AOGTracker [0.840]

Struck [0.751]

SPO [0.670]

VTD [0.647]

VTS [0.638]

CXT [0.630]

CPF [0.619]

LSK [0.597]

OAB [0.579]

MIL [0.532]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE - scale variation (19)

AOGTracker [0.663]

Struck [0.622]

CXT [0.562]

LSK [0.562]

VTD [0.557]

VTS [0.553]

CPF [0.530]

OAB [0.470]

SPO [0.455]

Frag [0.441]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE - occlusion (23)

AOGTracker [0.795]

Struck [0.688]

VTD [0.599]

VTS [0.598]

CPF [0.596]

SPO [0.589]

CXT [0.561]

Frag [0.556]

OAB [0.549]

LSK [0.543]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE - occlusion (23)

AOGTracker [0.716]

Struck [0.605]

VTS [0.555]

VTD [0.551]

CPF [0.525]

LSK [0.514]

Frag [0.509]

CXT [0.502]

SPO [0.496]

OAB [0.481]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE - illumination variation (19)

AOGTracker [0.886]

Struck [0.734]

SPO [0.658]

VTS [0.641]

VTD [0.640]

CXT [0.583]

LSK [0.570]

CPF [0.506]

OAB [0.489]

Frag [0.463]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE - illumination variation (19)

AOGTracker [0.760]

Struck [0.669]

VTS [0.592]

VTD [0.589]

LSK [0.526]

SPO [0.523]

CXT [0.506]

Frag [0.440]

OAB [0.432]

MIL [0.425]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE - out of view (5)

AOGTracker [0.929]

SPO [0.862]

CPF [0.555]

Struck [0.553]

CXT [0.549]

VTS [0.482]

VTD [0.465]

Frag [0.458]

SemiT [0.430]

LSK [0.429]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE - out of view (5)

AOGTracker [0.930]

SPO [0.861]

Struck [0.568]

CPF [0.543]

VTS [0.531]

CXT [0.518]

VTD [0.516]

Frag [0.510]

KMS [0.465]

SemiT [0.458]

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location error threshold

P
re

c
is

io
n

Precision plots of TRE - deformation (15)

AOGTracker [0.830]

Struck [0.693]

VTD [0.614]

CPF [0.596]

MIL [0.594]

VTS [0.593]

OAB [0.549]

Frag [0.531]

CXT [0.512]

LSK [0.496]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overlap threshold

S
u
c
c
e
s
s
 r

a
te

Success plots of TRE - deformation (15)

AOGTracker [0.704]

Struck [0.649]

VTD [0.579]

MIL [0.564]

VTS [0.563]

OAB [0.509]

Frag [0.498]

CPF [0.496]

LSK [0.488]

SPO [0.457]

Figure 6. Detail comparisons in different subsets divided based
on main variation of the object to be tracked (e.g., objects in
15 videos have the non-grid deformation including “Basketball”,
“Bolt”, “Couple”, “Crossing”, etc.). The details of the subsets re-
fer to [34]. The proposed method (“AOGTracker”) obtains better
or comparable performance in all the subsets.

For more close-view evaluation, we show four examples
of the center distance error per frame in Fig. 7 with the top 4
tracker compared, which show that our method can handle
occlusion, pose change and illumination well. The robust-
ness of our AOG tracker lies in the hierarchical and compo-
sitional structure which are discriminatively trained online

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

500

Frame

e
rr

C
e
n
te

r

david3-errCenter

AOGTracker

Struck

VTD

VTS

CXT

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

Frame

e
rr

C
e
n
te

r

suv-errCenter

AOGTracker

Struck

VTD

VTS

CXT

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Frame

e
rr

C
e
n
te

r

singer2-errCenter

AOGTracker

Struck

VTD

VTS

CXT

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

Frame

e
rr

C
e
n
te

r

skating1-errCenter

AOGTracker

Struck

VTD

VTS

CXT

0

OcclusionOcclusion OcclusionOcclusion
OcclusionOcclusion OcclusionOcclusion

Pose changePose change
IlluminaionIlluminaion

Pose changePose change IlluminaionIlluminaion

Figure 7. Comparisons on the center distance error per frame.

to account for the variations.

7. Discussion and Conclusion
This paper presents a tracking-learning-parsing frame-

work for simultaneously tracking and learning objects with
hierarchical models in the directed acyclic And-Or graph
structure. We present a spatial-temporal dynamic program-
ming algorithm for tracking-by-parsing with the AOG. We
also present the method of online learning the AOG in-
cluding its structure and appearance parameters. To handle
the complexity when the AOG grows big in tracking ob-
jects with large variations, we study a simple yet effective
scheduling scheme for inference, which improves both the
computational efficiency and the robustness of learning. In
experiments, we test our method on a recent public bench-
mark and experimental results show better performance.
Acknowledgment: This work is supported by DARPA
MSEE project FA 8650-11-1-7149, MURI grant ONR
N00014-10-1-0933, and NSF IIS1018751. We thank Dr.
Brandon Rothrock for helpful discussion.

References
[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based track-

ing using the integral histogram. In CVPR, 2006.
[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection

and people-detection-by-tracking. In CVPR, 2008.
[3] S. Avidan. Support vector tracking. PAMI, 26(8):1064–1072, 2004.
[4] B. Babenko, M.-H. Yang, and S. Belongie. Robust object track-

ing with online multiple instance learning. PAMI, 33(8):1619–1632,
2011.

[5] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying
framework. IJCV, 56(3):221–255, 2004.

[6] J. Berclaz, F. Fleuret, E. Türetken, and P. Fua. Multiple object track-
ing using k-shortest paths optimization. PAMI, 33(9):1806–1819,
2011.

[7] L. Cehovin, M. Kristan, and A. Leonardis. Robust visual tracking
using an adaptive coupled-layer visual model. PAMI, 35(4):941–953,
2013.

[8] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object track-
ing. PAMI, 25(5):564–575, 2003.

[9] T. B. Dinh, N. Vo, and G. G. Medioni. Context tracker: Exploring
supporters and distracters in unconstrained environments. In CVPR,
2011.

[10] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object
detection with deformable part models. In CVPR, 2010.

[11] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. PAMI,
32(9):1627–1645, 2010.

[12] R. Girshick, P. Felzenszwalb, and D. McAllester. Object detection
with grammar models. In NIPS, 2011.

[13] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-
line boosting. In BMVC, 2006.

[14] S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output
tracking with kernels. In ICCV, 2011.

[15] J. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the
circulant structure of tracking-by-detection with kernels. In ECCV,
2012.

[16] J. S. S. III and D. Ramanan. Self-paced learning for long-term track-
ing. In CVPR, 2013.

[17] M. Isard and A. Blake. Condensation - conditional density propaga-
tion for visual tracking. IJCV, 29(1):5–28, 1998.

[18] X. Jia, H. Lu, and M.-H. Yang. Visual tracking via adaptive structural
local sparse appearance model. In CVPR, 2012.

[19] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-learning-detection.
PAMI, 34(7):1409–1422, 2012.

[20] J. Kwon and K. M. Lee. Visual tracking decomposition. In CVPR,
2010.

[21] J. Kwon and K. M. Lee. Tracking by sampling trackers. In ICCV,
2011.

[22] J. Kwon and K. M. Lee. Highly nonrigid object tracking via patch-
based dynamic appearance modeling. PAMI, 35(10):2427–2441,
2013.

[23] X. Li, A. R. Dick, C. Shen, A. van den Hengel, and H. Wang. Incre-
mental learning of 3d-dct compact representations for robust visual
tracking. PAMI, 35(4):863–881, 2013.

[24] B. Liu, J. Huang, L. Yang, and C. A. Kulikowski. Robust tracking
using local sparse appearance model and k-selection. In CVPR, 2011.

[25] V. Mahadevan and N. Vasconcelos. Biologically inspired ob-
ject tracking using center-surround saliency mechanisms. PAMI,
35(3):541–554, 2013.

[26] X. Mei and H. Ling. Robust visual tracking and vehicle classification
via sparse representation. PAMI, 33(11):2259–2272, 2011.

[27] P. Pérez, C. Hue, J. Vermaak, and M. Gangnet. Color-based proba-
bilistic tracking. In ECCV, 2002.

[28] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globally-optimal
greedy algorithms for tracking a variable number of objects. In
CVPR, 2011.

[29] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning
for robust visual tracking. IJCV, 77(1-3):125–141, 2008.

[30] J. Shi and C. Tomasi. Good feature to track. In CVPR, 1994.
[31] X. Song, T. Wu, Y. Jia, and S.-C. Zhu. Discriminatively trained and-

or tree models for object detection. In CVPR, 2013.
[32] T. Wu and S. C. Zhu. A numerical study of the bottom-up and top-

down inference processes in and-or graphs. IJCV, 93(2):226–252,
2011.

[33] T. Wu and S.-C. Zhu. Learning near-optimal cost-sensitive decision
policy for object detection. In ICCV, 2013.

[34] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A bench-
mark. In CVPR, 2013.

[35] R. Yao, Q. Shi, C. Shen, Y. Zhang, and A. van den Hengel. Part-based
visual tracking with online latent structural learning. In CVPR, 2013.

[36] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM
Comput. Surv., 38(4), 2006.

[37] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-
object tracking using network flows. In CVPR, 2008.

[38] L. Zhang and L. van der Maaten. Structure preserving object track-
ing. In CVPR, 2013.

[39] S. C. Zhu and D. Mumford. A stochastic grammar of images. Foun-
dations and Trends in Computer Graphics and Vision, 2(4):259–362,
2006.

