
Mapping the Energy Landscape of Non-Convex
Optimization Problems

Maira Pavlovskaia1, Kewei Tu2, and Song-Chun Zhu1

1 Department of Statistics, University of California, Los Angeles, 8125 Math Science
Bldg, Los Angeles, CA 90095, USA,

{mariapavl,sczhu}@ucla.edu
2 School of Information Science and Technology, ShanghaiTech University, No. 8

Building, 319 Yueyang Road, Shanghai 200031, China
tukw@shanghaitech.edu.cn

Abstract. An energy landscape map (ELM) characterizes and visualizes
an energy function with a tree structure, in which each leaf node rep-
resents a local minimum and each non-leaf node represents the barrier
between adjacent energy basins. We demonstrate the utility of ELMs in
analyzing non-convex energy minimization problems with two case stud-
ies: clustering with Gaussian mixture models and learning mixtures of
Bernoulli templates from images. By plotting the ELMs, we are able to
visualize the impact of different problem settings on the energy landscape
as well as to examine and compare the behaviors of different learning al-
gorithms on the ELMs.

1 Introduction

In many computer vision, pattern recognition and learning problems, the energy
function to be optimized is highly non-convex. A large body of work has been
devoted to designing algorithms that are capable of efficiently finding a good
local optimum in the non-convex energy landscape. On the other hand, much
less work has been done in analyzing the properties of such non-convex energy
landscapes.

In this paper, inspired by the success of visualizing the landscapes of Ising and
Spin-glass models by [2] and [14], we compute Energy Landscape Maps (ELMs)
in the high-dimensional hypothesis spaces for a few model learning problems
in computer vision and pattern recognition — learning mixtures of Gaussian
and learning mixtures of Bernoulli templates. An ELM is a tree structure in
which each leaf node represents a local minimum whose energy determines the
y-axis position of the leaf node; each non-leaf node represents the energy bar-
rier between local minima. Figure 1 shows an example energy function and the
corresponding ELM. The ELM of an energy landscape reveals important char-
acteristics of the landscape, including

– the number of local minima and their energy levels;
– the energy barriers between adjacent local minima; and
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Fig. 1. (Left) An energy function. (Middle) Its corresponding ELM. The y-axis of the
ELM is the energy level. Each leaf node is a local minimum and the leaf nodes are
connected at the energy barrier between their energy basins. The probability mass or
volume of an energy basin is indicated by the size of the circle around the leaf node.
(Right) Partition of the spaces into bins according to basins and energy levels.

– the probability mass and volume of each local minimum.

Such information can be very useful in analyzing the intrinsic complexity of
the optimization problems (for either inference or learning tasks), analyzing the
effects of various conditions on the complexity, and visualizing the behavior of
different optimization algorithms (i.e. how they move in the landscape).

ELMs can be efficiently constructed by running a MCMC algorithm that fea-
tures a dynamic reweighting scheme allowing the sampler to cross energy barriers
and efficiently traverse the entire space. In the literature, Becker and Karplus
[2] presents the first work for visualizing multidimensional energy landscapes for
the spin-glass model. Liang [6, 7] generalizes the Wang-Landau algorithm [13] for
random walks in the state space. Zhou [14] uses the generalized Wang-Landau
algorithm to plot the landscape for Ising model with hundreds of local minima
and proposes an effective way for estimating the energy barriers. In contrast
to the above work that compute the landscapes in “state” spaces for inference
problems, our work is focused on the landscapes in “hypothesis” spaces (the sets
of all models) for statistical learning problems. We modify the previous MCMC
algorithm to handle several new issues that arise in plotting ELMs of continuous
hypothesis spaces.

2 ELM construction in hypothesis spaces

Let H be a hypothesis space for a learning problem and let E(x) be the energy of
a hypothesis x ∈ H. For example, in a n-component mixture of Gaussian cluster-
ing problem, given a training dataset, a posterior probability π(x) is defined and
x includes the model parameters such as the means and variances of the n un-
known Gaussians; the landscape is defined by energy function E(x) = − log π(x).
For simplicity, we bound H by limiting x to a finite range calculated from the
input data points.
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As Figure 1 (right) shows, the finite hypothesis space is partitioned into
energy basins Di and each basin is further partitioned into energy intervals
[uj+1, uj). Thus the space H is divided into bins Di,j

Di,j = {x : x ∈ Di, E(x) ∈ [uj+1, uj)}. (1)

Let φ(x) be the index mapping x to the bin index (i, j), and βij = π(Dij) the
probability mass of bin Di,j . Our goal is to design an MCMC algorithm with
equal probability visiting all bins, i.e. its state at time t follows a new equalized
probability,

xt ∼ π+(x) ∝ π(x)

βφ(x)
. (2)

The generalized Wang-Landau algorithm estimates βij by γij using stochastic
gradient. The algorithm goes as follows:

1. Initialize a sample x0 ∈ H and the bin weights γ0ij for the bins Di,j . Repeat
step 2-6:

2. At step t, sample y ∼ Q(xt, y) from some proposal distribution Q.
3. Perform steepest descent initialized with y to find the energy basin that y

belongs to. Let φ(y) be the index of the bin containing y.
4. Accept proposal y with probability α(xt, y):

α(xt, y) = min

(
1,
Q(y, xt)

Q(xt, y)

π(y)

π(xt)

γtφ(xt)

γtφ(y)

)
. (3)

5. If the proposal is accepted, increase the weight γt+1
φ(y) = γtφ(y) ∗ f for some

constant f > 1.
6. If xt and y belong to different basins Dk and Dl, then perform ridge descent

to update the estimated upper-bound of the energy barrier between the
two basins. In ridge descent we search for a local minimum along the ridge
between the two basins, by starting with a0 = xt, b0 = y and iterating to
find (at, bt):

at = argmina {E(a) : a ∈ Neighborhood(bt−1) ∩Dk}
bt = argminb {E(b) : b ∈ Neighborhood(at) ∩Dl}

until bt−1 = bt. The neighborhood of a sample is defined as the subspace
surrounding the sample with its size controlled by an adaptive radius.

7. After the algorithm converges, construct the ELM based on the energy of the
basins that have been discovered and the estimated energy barriers between
them. We check the convergence of the algorithm using the multivariate
extension of the Gelman and Rubin criterion [5].

Figure 2 illustrates the Markov chain produced by the algorithm. Note that the
modified acceptance probability in eqn.(3) will reject sample y if the Markov
chain has visited bin φ(y) many times, forcing the sampler to move into less
explored space.
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Fig. 2. Sequential MCMC samples xt, xt+1, . . . , xt+9. For each sample, we perform gra-
dient descent to determine which energy basin the sample belongs to. If two sequential
samples fall into different basins (xt+3 and xt+4 in this example), we estimate or up-
date the upper-bound of the energy barrier between their respective basins (B1 and
B2 in this example).

Unlike in previous work that samples from discrete state spaces, several new
issues arise in plotting the ELMs of continuous hypothesis spaces. For example,
many of the basins in the hypothesis space have a flat bottom which may result in
a large number of false local minima, and thus we merge local minima identified
by gradient descent based on the following criteria: (1) the distance between
two local minima is smaller than a constant ε; or (2) there is no barrier along
the straight line between two local minima. Besides, there may be constraints
between parameters (e.g., a probability vector should lie on the surface of a unit
simplex), and thus we may need to run our algorithm on a manifold. More details
of our algorithm can be found in [8].

3 ELMs of Gaussian Mixture Models

An n-component Gaussian Mixture Model (GMM) is a weighted mixture of n
Gaussians. The energy function of data clustering using GMM is the negative
log of the posterior, given by E(x) = − logP (x|zi : i = 1 . . .m)− logP (x) for m
input data examples {zi}. We use a Dirichlet prior on the weights of the model
and the Normal-inverse-Wishart prior on the means and variances of the model
components.

3.1 Experiments on Synthetic Data

We synthesize a 2-dimensional, 3-component GMM, draw m samples from it,
and run our algorithm to plot the ELM. We want to analyze how the sep-
arability c affects the energy landscape. The separability of the GMM repre-
sents the overlap between separate components of the model and is defined as

c = min
(

||µi−µj ||√
nmax(σ1,σ2)

)
[4]. We also look at the effect of partial supervision

on the energy landscape by assigning ground truth labels to a fraction of the
samples.



Mapping the Energy Landscape of Non-Convex Optimization Problems 5

Fig. 3. ELMs for 100 samples drawn from GMMs with low, medium and high separabil-
ity (c = 0.5, 1.5, 3.5). The relative probability mass of the energy basins corresponding
to the 5 lowest-energy minima are indicated by circle size around the local minima.

Comparing Different Ground-truth Models Figure 3 shows some of the
ELMs with the separability being {0.5, 1.5, 3.5} for m = 100 samples. The energy
landscape becomes increasingly simple (containing fewer local minima) as the
separability increases. The landscape for the high separability (c = 3.5) case
has relatively small energy barriers between the high-energy local minima and
a pronounced low-energy global minimum. Conversely, the landscape for the
low separability has a structure with high energy barriers between local minima
and multiple local minima with similar energy to the global minimum. This
indicates that the complexity of learning the GMM model should increase as the
separability decreases, as we would expect.

The probability mass of the 5 energy basins corresponding to the lowest-
energy local minima are shown in Figures 3 by the circles (similarly we can also
show the volume of each basin). The ratio of the mass of the lowest energy basin
to the mass of the remaining energy basins increases with separability. This is
also consistent with the intuition that high-separability landscapes have lower
complexity, as it is more likely that the global optimal solution can be found by
gradient descent from a randomly sampled starting point.

We examine the affects of partial supervision by assigning ground truth la-
bels (i.e. which Gaussian cluster a point belongs to) to a portion of the data
samples. Figure 4 shows the ELMs of a synthesized GMM (dimension = 2, num-
ber of components = 3, separability c = 1.0, number of samples = 100) with
{0%, 5%, 10%, 50%, 90%, 100%} labelled data points. Figure 5 shows the num-
ber of local minima in the ELM for the labeling of 1, . . . , 100 samples. This
shows a significant decrease in landscape complexity for the first 10 labels, and
diminishing returns from supervised input after the initial 10%.
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Fig. 4. ELMs of synthesized GMMs (separability c = 1.0, nSamples = 100) with
{0%, 5%, 10%, 50%, 90%, 100%} labelled data points.

Behavior of Learning Algorithms: EM, K-mean and SW-Cut Expectation-
maximization (EM) is one of the most popular algorithms for learning a GMM
from data. K-means is another popular learning algorithm of GMM which can
be seen as a degraded variant of EM with hard assignments in the E-step and the
assumption of identical spherical Gaussian components. The Swedsen-Wang Cut
(SW-cut) algorithm [1] is a generalization of the Swendson-Wang method [11]
to arbitrary probabilities. It is a MCMC method that has much faster conver-
gence rates than classic Markov Chain Monte Carlo methods such as the Gibbs
sampler in cases when model states are strongly coupled (such as the Ising-Potts
model) [9].

For each synthetic dataset, we ran the three algorithms for 200 times and
found the energy basins of the ELM that the learned models belong to. Hence
we obtain a histogram of the learned models on the leaf nodes of the ELM for
each learning algorithm as shown in Figure 6–7.

Figures 6 and 7 show a comparison of the EM, K-mean, and SW-cut al-
gorithms for n = 100 samples drawn from low (c = 0.5) and high (c = 3.5)
separability GMMs. The SW-cut algorithm performs best in each situation, al-
ways converging to the global optimal solution. In the low separability case, the
K-mean algorithm converges to one of the seven local minima, with a higher
probability of converging to those with lower energy. The EM algorithm almost
always finds the global minimum and thus outperforms K-mean. This can be
explained by the fact that K-mean is a degraded variant of EM with extra as-
sumptions that may not hold. However, in the high separability case, the K-mean
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Fig. 5. Number of local minima versus the percentage of labelled data points for a
GMM with separability c = 1.0.

(a) EM (b) k-means (c) SW-cut

Fig. 6. Low separability c = 0.5: histogram of EM, k-means, and SW-cut algorithm
results on the ELM.
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(a) EM (b) k-means (c) SW-cut

Fig. 7. High separability c = 3.5: histogram of EM, k-means, and SW-cut algorithm
results on the ELM.

algorithm converges to the true model the majority of the time, while the EM
almost always converges to a local minimum with higher energy than the true
model. This can be explained by a recent theoretical result showing that the
objective function of hard-EM (with k-means as a special case) is the summa-
tion of the standard energy function of GMM with an inductive bias in favor of
high-separability models [12, 10].

3.2 Experiments on Real Data

We ran our algorithm to plot the ELM for the well-known Iris data set from
the UCI repository [3]. The data set contains 150 points in 4 dimensions and
can be modeled as a 3-components 4-dimensional GMM. The three components
each represent a type of iris plant and the true component labels are known.
The points corresponding to the first component are linearly separable from the
others, but the points corresponding to the remaining two components are not
linearly separable.

Figure 8 shows the ELM of the Iris dataset. We visualize the local minima
by plotting the ellipsoids of the covariance matrices centered at the means of
each component in 2 of the 4 dimensions.

The 6 lowest energy local minima are shown on the right and the 6 highest
energy local minima are shown on the left. The high energy local minima are
less accurate models than the low energy local minima. The local minima (E)
(B) and (D) have the first component split into two and the remaining two
(non-separable) components merged into one. The local minima (A) and (F)
have significant overlap between the 2nd and 3rd components and (C) has the
components overlapping completely. The low-energy local minima (G-L) all have
the same 1st components and slightly different positions of the 2nd and 3rd
components.
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Fig. 8. ELM of the Iris dataset and corresponding local minima.

4 Learning Mixtures of Bernoulli Templates

An object image can be converted to a dense edge map or a sparse sketch map
using Gabor filters. We can quantize the edges/sketches into finite locations and
orientations, and thus each input image is transformed to a binary vector. A
Bernoulli template P ∈ {0, 1}n is an n-dimensional binary vector. A sample x
is generated from P with independent Bernoulli noise: the i-th coordinate xi
is equal to Pi with a fixed probability p and equal to 1 − Pi with probability
1− p. An K-component Mixture of Bernoulli Templates (MBT) B is a weighted
mixture of K Bernoulli templates defined by the set of templates {Pi} and
weights {wi|wi ∈ [0, 1]} for i ∈ {0, . . . ,K} with

∑
wi = 1. Samples sj are

drawn from B by first sampling a component Pi from the discrete distribution
of weights {wi}, then sampling from the template Pi as outlined above. We wish
to compute the energy landscape map of the space of MBTs with a fixed noise
level p. The energy function that we use is the negative log of the posterior, given
by E(B) = − logP (B|zi : i = 1 . . .M) for M samples {zi}. The probability of a
sample zi given a MBT is defined as:

P (zi|B) =

m∑
i=1

wip
∑n

j=1 I(zi(j)=Pi(j))(1− p)
∑n

j=1 I(zi(j)6=Pi(j)),

where Pi(j) is the j-th component of the i-th Bernoulli template in B, and
zi(j) is the j-th component of the i-th sample. When constructing the ELMs,
we discretize the hypothesis space by allowing the weights to take values wi ∈
{0, 0.1, . . . , 1.0}.

4.1 Experiment on synthetic data

We synthesized Bernouilli templates which represent animal faces as show in
Figure 9. Each animal face is a 9x9 grid with each cell containing up to 3 sketches.
The dictionary of sketches contains 18 elements, each of which is a straight line
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(a) cat (b) chilchilla (c) dog

(d) elephant (e) goat (f) lion

Fig. 9. Animal face templates - low overlap

(a) (b) (c)

(d) (e) (f)

Fig. 10. Mouse face templates - high
overlap

(a) landscape
map

(b) number of local minima

Fig. 11. The number of local minima in the energy landscape of learning MBT with
varying values of noise level p and number of samples.

connecting the endpoints or midpoints of the cell edges. The Bernouilli template
can therefore be represented as a 18 × 9 × 9 dimensional binary vector. There
are 10 animals in total, so we have a Bernoulli mixture model with the number
of component M = 10.

We construct the energy landscape maps of the Bernouilli mixture model
for varying numbers of samples n = 100, 300, . . . , 7000 and varying noise level
p = 0, 0.05, . . . , 0.5, 0.55. The number of local minima in each energy landscape
is tabulated in Figure 11 (b) and drawn as a heat map in Figure 11 (a). As
expected, the number of local minima increases as the noise level p increases,
and decreases as the number of samples decreases. In particular, with no noise,
the landscape is convex and with noise p > 0.45, there are too many local minima
and the algorithm does not converge.

We repeat the same experiment using variants of a mouse face as shown in
Figure 10. We swap out components of the mouse face (the eyes, ears, whiskers,
nose, mouth, head top and head sides) for three different variants. We thereby
generate 20 Bernouilli templates which have relatively high degrees of overlap.
We generate the ELMs of various MBTs containing three of the 20 templates
with noise level p = 0. In each MBT, the three templates have different degrees
of overlap. Hence we plot the number of local minima in the ELMs versus the
degree of overlap as show in Figure 12. As expected, the number of local minima
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Fig. 12. Number of local minima found for varying degrees of overlap in the Bernoulli
templates.

increases with the degree of overlap, and there are too many local minima for
the chains to converge past overlap c = 0.5.

4.2 Experiment on real data

We perform the Bernouilli templates experiment on a set of real images of animal
faces. We binarize the images by extracting the prominent sketches on a 9x9 grid.
Eight Gabor filters with eight different orientations centered in the centers and
corners of each cell are applied to the image. The filters with a strong response
above a fixed threshold correspond to edges detected in the figure; these are
mapped to the dictionary of 18 elements. Thus each animal face is represented
as a 18× 9× 9 dimensional binary vector. The Gabor filter responses on animal
face pictures are shown in Figure 13. The binarized animal faces are shown in
Figure 14.

We chose 3 different animal types – deer, dog and cat, with an equal num-
ber of images chosen from each category (Figure 15). The binarized versions of
these can be modeled as a mixture of 3 Bernouilli templates - each template
corresponding to one animal face type.

The ELM is shown in Figure 16 along with the Bernouilli templates corre-
sponding to three local minima separated by large energy barriers. We make
two observations: 1. the templates corresponding to each animal type are clearly
identifiable, and therefore the algorithm has converged on reasonable local min-
ima. 2. The animal faces have differing orientations across the local minima (the
deer face on in the left-most local minimum is rotated and tilted to the right
and the dog face in the same local minimum is rotated and lilted to the left),
which explains the energy barriers between them.

Figure 17 shows a comparison of the SW-cut, k-means, and EM algorithm
performance as a histogram on the ELM of animal face Bernouilli Mixture Model.
The histogram is obtained by running each algorithm 200 times with a random
initialization, then finding the closest local minimum in the ELM to the output
of the algorithm. The counts of the closest local minima are then displayed as a
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Fig. 13. Animal face images and corre-
sponding binary sketches indicates the
existence of a Gabor filter response
above a fixed threshold.

Fig. 14. Deer face sketches binarized
from real images.

Fig. 15. Animal face images

bar plot next to each local minimum. It can be seen that SW-cut always finds
the global minimum, while k-means performs the worst probably because of the
high degree of overlap between the sketches of the three types of animal faces.

5 Conclusion

We present a method for computing the energy landscape maps (ELMs) in hy-
pothesis spaces and thus visualize for the first time the non-convex energy mini-
mization problems in computer vision, pattern recognition and statistical learn-
ing. We demonstrate the methods in two cases: clustering with Gaussian mixture
models in low dimensional space, and learning mixtures of Bernoulli templates
from images in very high dimensional space. By plotting the ELMs, we have
shown how different problem settings, such as separability and levels of super-
vision, impact the complexity of the energy landscape. We have also examined



Mapping the Energy Landscape of Non-Convex Optimization Problems 13

Fig. 16. ELM of three animal faces (dog, cat, and deer). We show the Bernouilli
templates corresponding to three local minima with large energy barriers.

(a) SW-cut (b) EM (c) k-means

Fig. 17. Comparison of SW-cut, k-means, and EM algorithm performance on the ELM
of animal face Bernouilli Mixture Model.
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the behaviors of different learning algorithms in the ELMs. More experimental
results and analysis can be found in our technical report [8].
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