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Abstract

In this paper, we present a new framework – task-
oriented modeling, learning and recognition which aims
at understanding the underlying functions, physics and
causality in using objects as “tools”. Given a task, such
as, cracking a nut or painting a wall, we represent each
object, e.g. a hammer or brush, in a generative spatio-
temporal representation consisting of four components: i)
an affordance basis to be grasped by hand; ii) a functional
basis to act on a target object (the nut), iii) the imagined
actions with typical motion trajectories; and iv) the un-
derlying physical concepts, e.g. force, pressure, etc. In a
learning phase, our algorithm observes only one RGB-D
video, in which a rational human picks up one object (i.e.
tool) among a number of candidates to accomplish the task.
From this example, our algorithm learns the essential phys-
ical concepts in the task (e.g. forces in cracking nuts). In an
inference phase, our algorithm is given a new set of objects
(daily objects or stones), and picks the best choice avail-
able together with the inferred affordance basis, functional
basis, imagined human actions (sequence of poses), and the
expected physical quantity that it will produce. From this
new perspective, any objects can be viewed as a hammer
or a shovel, and object recognition is not merely memoriz-
ing typical appearance examples for each category but rea-
soning the physical mechanisms in various tasks to achieve
generalization.

1. Introduction

In this paper, we rethink object recognition from the per-
spective of an agent: how objects are used as “tools” in
actions to accomplish a “task”. Here a task is defined as
changing the physical states of a target object by actions,
such as, cracking a nut or painting a wall. A tool is a physi-
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Figure 1. Task-oriented object recognition. (a) In a learning phase,
a rational human is observed picking a hammer among other tools
to crack a nut. (b) In an inference phase, the algorithm is asked to
pick the best object (i.e. the wooden leg) on the table for the same
task. This generalization entails physical reasoning.

cal object used in the human action to achieve the task, such
as a hammer or brush, and it can be any daily objects and
is not restricted to conventional hardware tools. This leads
us to a new framework – task-oriented modeling, learning
and recognition, which aims at understanding the underly-
ing functions, physics and causality in using objects as tools
in various task categories.

Fig. 1 illustrates the two phases of this new framework.
In a learning phase, our algorithm observes only one RGB-
D video as an example, in which a rational human picks up
one object, the hammer, among a number of candidates to
accomplish the task. From this example, our algorithm rea-
sons about the essential physical concepts in the task (e.g.
forces produced at the far end of the hammer), and thus
learns the task-oriented model. In an inference phase, our
algorithm is given a new set of daily objects (on the desk in
(b)), and makes the best choice available (the wooden leg)
to accomplish the task.

From this new perspective, any objects can be viewed
as a hammer or a shovel, and this generative representa-
tion allows computer vision algorithms to generalize object
recognition to novel functions and situations by reasoning
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Figure 2. Given three tasks: chop wood, shovel dirt, and paint wall.
Our algorithm picks and ranks objects for each task among objects
in three groups: 1) conventional tools, 2) household objects, and
3) stones, and output the imagined tool-use: affordance basis (the
green spot to grasp with hand), functional basis (the red area ap-
plied to the target object), and the imagined action pose sequence.

the physical mechanisms in various tasks, and go beyond
memorizing typical examples for each object category as
the prevailing appearance-based recognition methods do in
the literature.

Fig. 2 shows some typical results in our experiments to
illustrate this new task-oriented object recognition frame-
work. Given three tasks: chop wood, shovel dirt, and paint
wall, and three groups of objects: conventional tools, house-
hold objects, and stones, our algorithm ranks the objects in
each group for a task. Fig. 2 shows the top two choices
together with imagined actions using such objects for the
tasks.

Our task-oriented object representation is a generative
model consisting of four components in a hierarchical
spatial-temporal parse graph:

i) An affordance basis to be grasped by hand;
ii) A functional basis to act on the target object;
iii) An imagined action with pose sequence and velocity;
iv) The physical concepts produced, e.g. force, pressure.
In the learning phase, our algorithm parses the input

RGB-D video by simultaneously reconstructing the 3D
meshes of tools and tracking human actions. We assume
that the human makes rational decisions in demonstration:
picks the best object, grasps the right place, takes the right
action (poses, trajectory and velocity), and lands on the tar-
get object with the right spots. These decisions are nearly

optimal against a large number of compositional alternative
choices. Using a ranking-SVM approach, our algorithm
will discover the best underlying physical concepts in the
human demonstration, and thus the essence of the task.

In the inference stage, our algorithm segments the input
RGB-D image into objects as a set of candidates, and com-
putes the task-oriented representation – the optimal parse
graph for each candidate and each task by evaluating differ-
ent combinations. This parse graph includes the best object
and its tool-use: affordance basis (green spot), functional
basis (red spot), actions (pose sequence), and the quantity
of the physical concepts produced by the action.

This paper has four major contributions:

1. We propose a novel problem of task-oriented object
recognition, which is more general than defining object
categories by typical examples, and is of great impor-
tance for object manipulation in robotics applications.

2. We propose a task-oriented representation which in-
cludes both the visible object and the imagined use
(action and physics). The latter are the ’dark matter’
[48] in computer vision.

3. Given an input object, our method can imagine the
plausible tool-use and thus allows vision algorithms to
reason innovative use of daily object – a crucial aspect
of human and machine intelligence.

4. Our algorithm can learn the physical concepts from a
single RGB-D video and reason about the essence of
physics for a task.

2. Task-oriented Object Representation

Tools and tool-uses are traditionally studied in cognitive
science [29, 4, 35, 2] with verbal definitions and case stud-
ies, and an explicit formal representation is missing in the
literature.

In our task-oriented modeling and learning framework,
an object used for a task is represented in a joint spatial,
temporal, and causal parse graph pg = (pgs, pgt, pgc) in-
cluding three aspects shown in Fig. 3:

i) A spatial parse graph pgs represents object decompo-
sition and 3D relations with the imagined pose;

ii) A temporal parse graph pgt represents the pose se-
quence in actions; and

iii) A causal parse graph pgc represents the physical
quantities produced by the action on the target object.

In this representation, only the object is visible as input,
all other components are imagined.

2.1. Tool in 3D space

An object (or tool) is observed in a RGB-D image in the
inference stage, which is then segmented from the back-
ground and filled-in to become a 3D solid object denoted
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Figure 3. The task-oriented representation of a hammer and its use
in a task (crack a nut) in a joint spatial, temporal, and causal space.

by X. The 3D object is then decomposed into two key parts
in the spatial parse graph pgs:

1) Affordance basis BA, where the imagined human
hand grasps the object with certain pose. Through offline
training, we have collected a small set of hand poses for
grasping. The parse graph pgs encodes the 3D positions and
3D orientations between the hand poses and the affordance
basis during the tool-use, using 3D geometric relations be-
tween the hand pose and the affordance basis, as it is done
in [45]. The parse graph pgs will have lower energy or high
probability when the hand hold the object comfortably (see
the trajectory of affordance basis BA in Fig.3).

2) Functional basis BF, where the object (or tool) is
applied to a target object (the nut) to change its physical
state (i.e. fluent). The spatial parse graph pgs also encodes
the 3D relations between the functional basis BF and the
3D shape of the target object during the action. We consider
three types of the functional basis: (a) a single contact spot
(e.g. hammer); (b) a sharp contacting line segment or edge
(e.g. axe and saw); and (c) flat contacting area (e.g. shovel).

We define a space ΩS = {pgs} as the set of all possible
spatial parse graph pgs which is a product space of all the
possible objects, their affordance bases, functional bases,
hand poses, and 3D relations above.

2.2. Tool-use in time

An tool-use is a specific action sequence that engages the
tool in a task, and is represented by a temporal parse graph
pgt. pgt represents the human action A as a sequence of
3D poses. In this paper, since we only consider hand-hold
objects, we collect some typical action sequences for the
arm and hand movements using tools by RGB-D sensors,
such as, hammering, shoveling, etc. These actions are then
clustered into average pose sequences. For each of the se-
quence, we record the trajectories of the hand pose (or af-
fordnace basis) and the functional basis.

We define a space ΩT = {pgt} as the set of possible pose
sequences and their associated trajectories of the affordance
basis BA and functional basis BF .

Figure 4. Thirteen physical concepts involved in tool-use and
their compositional relations. By parsing human demonstration,
the physical concepts of material, volume, concept area, and dis-
placement are estimated from 3D meshes of tool (blue), trajecto-
ries of tool-use (green) or jointly (red). The higher-level physical
concepts can be further derived recursively.

2.3. Physical concept and causality

We consider of thirteen basic physical concepts involved
in tool-use, which can be extracted or derived from the spa-
tial and temporal parse graphs as Fig. 4 illustrates.

Firstly, as the blue dots and lines in Fig. 4 illustrates, we
reconstruct the 3D mesh from the input 3D object and thus
calculate its volume, and by estimating its material category,
we get its density. From volume and density we further cal-
culate the mass of the objects and its parts (when different
materials are used).

Secondly, as the green dots and lines Fig. 4 illustrates,
we can derive the displacement from the 3D trajectory of
affordance basis and functional basis, and then calculate the
velocity and acceleration of the two bases.

Thirdly, as red dots and line shows, we can estimate the
contact spot, line and area from the functional basis and
target object, and further compute the momentum, and im-
pulse. We can then also compute basic physical concepts,
such as forces, pressure, and work etc.

Physical concept operators ∇. We define a set of op-
erators, including addition ∇+(·, ·), subtraction ∇−(·, ·),
multiplication∇×(·, ·), division∇/(·, ·), negation∇neg(·),
space integration ∇∫

S
(·), time integration ∇∫

T
(·), space

derivation ∇∂S
(·) and time derivation ∇∂T

(·). For ex-
ample, the concept of the force and acceleration are de-
fined as: force = ∇×(mass, acceleration), acceleration =
∇∂t

(velocity)

The causal parse graph pgc includes the specific physical
concepts used in a tool-use which is often an instantiated
sub-graph of the concept graph in Fig. 4.

Since the law of physics is universally applicable, the
major advantage of using physical concepts is the ability to
generalize to novel situations.
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Figure 5. An illustration of learning and inference. (a)-(d) We assume the human choice (shown in blue bounding box) of tool and tool-
use (action and affordance / functional bases) is near-optimal, thus most of other combinations of tool and tool-use (action, affordance /
functional bases) in the hypotheses spaces should not outperform human demonstration. Based on this assumption, we treat the human
demonstration as positive example, and random sample other tools and tool-uses in the hypothesis spaces as negative examples. (e) During
the inference, given an image of static scene in a novel situation, (f) the algorithm infers the best tool and imagines the optimal tool-use.

3. Problem definition
3.1. Learning physical concept

Given a task, the goal of the learning algorithm is to find
the true physical concept that best explains why a selected
tool and tool-use is optimal.

Rational choice assumption states that human choices
are rational and near-optimal. As shown in Fig.5 (a-d), we
assume that human chooses the optimal tool and tool-use
pg∗ (in blue box) based on the true physical concept, so that
most of other tools and tool-uses in the hypothesis spaces
should not outperform the demonstration.

For instance, let us assume the true physical concept to
explain the choice of a tool is to maximize “mass”, then
other tools should not offer more “mass” than the selected
one. If there is a heavier tool not picked by human, it im-
plies that “mass” is not the true physical concept.

During learning stage, we consider the selected tool and
tool-use as the only positive training example, and we ran-
domly sample n different combinations of tools and tool-
uses pgi, i = 1 · · ·n in the hypothesis spaces as negative
training samples.

Ranking function. Based on the rational choice as-
sumption, we pose the tool recognition as a ranking prob-
lem [17], so that the human demonstration should be better
than other tools and tool-uses with respect to the learned
ranking function.

The goal of the learning is to find a ranking function in-
dicating the essential purposes of tool-use in a given task.

R(pg) = ω · φ(pg), (1)

where ω are the weighting coefficients of the physical con-
cepts. Intuitively, each coefficient reflects the importance of
its corresponding physical concept for the task.

Learning ranking function is equivalent to find the
weight coefficients so that the maximum number of pair-

wise constraints is fulfilled.

∀i ∈ {1, · · · , n} : ω · φ(pg∗) > ω · φ(pgi) (2)

In this way, these constraints enforce the human demonstra-
tion pg∗ has the highest ranking score compared with the
other negative samples pgi under the true physical concept.

We approximate the solution by introducing nonnegative
slack variables, similar to SVM classification [17]. This
leads to the following optimization problem

min
1

2
ω · ω + λ

n∑
i

ξ2i (3)

s.t. ∀i ∈ {1, · · · , n} :

ω · φ(pg∗)− ω · φ(pgi) > 1− ξ2i (4)
ξi ≥ 0, (5)

where ξi is a slack variable for each constraint, and λ is
the trade-off parameter between maximizing the margin and
satisfying the rational choice constraints.

This is a general formulation for the task-oriented mod-
eling and learning problem, where the parse graph pg in-
cludes objects X, human action A and affordance / func-
tional basisBA /BF . In this way, this framework subsumes
following special cases: i) object recognition based on ap-
pearance and geometry φ(X), ii) action recognition φ(A),
iii) detecting furniture by their affordance φ(BA), and iv)
physical concept φ(pgc). In this paper, we only focus on
learning physical concepts.

In our experiment, we only consider the scenario that
the learner only observes one demonstration of the teacher
choosing one tool from a few candidates. Instead of feed-
ing a large dataset for training, we are more interested in
how much the algorithm can learn from such a small sample
learning problem. Therefore, we only infer a single physi-
cal concept for functional and affordance basis respectively
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by iterating over the concept space, while this formulation
can be naturally generalized to more sophisticated scenarios
for future study.

3.2. Recognizing tools by imagining tool-uses

Traditional object recognition methods assume that vi-
sual patterns of the objects in both training and testing sets
share the same distribution. However, such assumption does
not hold in tool recognition problem. The visual appear-
ances of tools at different situations have fundamental dif-
ferences. For instance, a hammer and a stone can be used to
crack a nut, despite the fact the their appearances are quite
different.

In order to address this challenge, we propose this algo-
rithm to recognize tools by essential physical concepts and
imagine tool-uses during the inference.

Recognize tools by essential physical concepts. Fortu-
nately, as domain general mechanisms, the essential phys-
ical concepts in a given task are invariant across different
situations. For instance, a hammer and a stone can be cat-
egorized as the same tool to crack a nut due to the similar
ability to provide enough “force”. In the inference, we use
the learned ranking function to recognize the best tool.

pg∗ = arg maxω · φ(pg), (6)

Imagine tool-use beyond observations. Given an ob-
served image of tool without actually seeing the tool-use,
our algorithm first imagines different tool-uses (human ac-
tion and affordance / functional bases), and then combines
the imagined tool-uses with observed tools to recognize the
best tool by evaluating the ranking function.

The imagined tool-uses are generated by sampling hu-
man action and affordance/functional bases from the hy-
pothesis spaces as shown in Fig.5(c-d). We first assign the
trajectories of imaged human hand movement to the affor-
dance basis, then compute the trajectory of functional ba-
sis by applying the relative 3D transformation between the
two bases. Lastly, we calculate the physical concepts recur-
sively as discussed in Section.2.3, and evaluate the ranking
function accordingly.

The ability of imagining tool-use is particularly impor-
tant for an agent to predict how they can use a tool, and
physically interact with their environment.

Moreover, such ability of imagining tool-use enables the
agent to actively explore different kinds of tool-use instead
of to simply mimic the observed tool-use in human demon-
stration. Although the tool-use in human demonstration is
assumed to be optimal, other tool-uses may be better in dif-
ferent situations. For example, the way you use a stone to
crack a nut may be quite different from the way you use a
hammer.

Figure 6. Spatial-temporal parsing of human demonstration. (a)
Using KinectFusion, we first reconstruct 3D scene, including the
tool and the target object. (b) Given a RGB-D video of tool-use
by human demonstration, (d) affordance / functiona basis can be
detected by (c) 3D tracking.

3.3. Parsing human demonstration

In this section we show how we use the off-the-shelf
computer vision algorithms to parse the input RGB-D video
of human demonstration.

3D reconstruction. We apply the KinectFusion algo-
rithm [27] to generate a 3D reconstruction of the static
scene, including a tool and an object. KinectFusion is GPU
optimized such that it can run at interactive rates. Each
frame of depth image captured by RGB-D sensors has a lot
of missing data. By moving the sensor around, the Kinect-
Fusion algorithm fills these holes by combining temporal
frames into a smooth 3D point cloud / mesh (Fig.6 (a)). In
this work, we only focus on medium sized tool that can
be held in one hand, and can be well reconstructed by a
consumer-level RGB-D sensor. By fitting the plane of the
table, the tool and the target object then can be extracted
from background.

3D tracking of tool and target object. Tracking the
3D mesh of tool and target object allows the algorithm to
perceive the interactions and detect status changes. In this
work, we use an off-the-shelf 3D tracking algorithm based
on Point Cloud Library [31]. The algorithm first performs
object segmentation using the first depth frame of the RGB-
D video, and then invokes particle filtering [26] to track
each object segment as well as estimating the 3D orienta-
tion frame by frame (Fig.6 (c)).

3D hand tracking. 3D tracking of hand positions and
orientations are achieved by 3D skeleton tracking [34]. The
skeleton tracking outputs a full body skeleton, including 3D
position and orientation of each joint. Without loss of gen-
erality, we assume the interacting hand to be the right hand.

Contact detection. Given the tracked 3D hand pose
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Figure 7. Sample tool instances in dataset. (a) typical tools (b)
household objects (c) natural stones.

/ tool / target object, we perform touch detection (Fig.6
(d)) by measuring the euclidean distance among them. The
touch detection between the human hand and the tool local-
izes the 3D location of the affordance basis, while the touch
detection between the tool and the target object yields the
3D location of the functional basis.

4. Experiment

In this section, we first introduce our dataset, and evalu-
ate our algorithm in three aspects: (i) learning physical con-
cepts; (ii) recognizing tools; and (iii) imagining tool-uses.

4.1. Dataset

We designed a new Tool & Tool-Use (TTU) dataset for
evaluating the recognition of tools and task-oriented ob-
jects. The dataset contains a collection of static 3D object
instances, together with a set of human demonstrations of
tool-use.

The 3D object instances include 452 static 3D meshes,
ranging from typical tools, household objects and stones.
Some of these object instances are shown in Fig.7. Some
typical actions are illustrated in Fig.5. Each action contains
a sequence (3-4 seconds) of full body skeletons. Both 3D
meshes and human actions are captured by consumer-level
RGB-D sensors.

Figure 8. Learning essential physical concepts of tool-use. The red
bars represent human judgments about what the essential physical
concepts are for each task. The blue bars represent weight coeffi-
cients of different physical concepts learned by our algorithm.

4.2. Learning physical concept

We first evaluate our learning algorithm by comparing
with human judgments. Forty human subjects annotated
the essential physical concepts for four different tasks, the
distribution of annotated the essential physical concepts is
shown as the blue bars in Fig.8. Interestingly, human sub-
jects have relative consistent common knowledge that force
and momentum are useful for cracking nuts, and pressure is
important for chopping wood. Our algorithm learned very
similar physical concepts as the red bars shown in Fig.8.
For the other two tasks i.e. shovel dirt and paint wall, al-
though the human judgments are relatively ambiguous, our
algorithm still produces relative similar results of learned
physical concepts.

Fig.9 shows an example of learning physical concept for
cracking a nut. Given a set of RGB-D images of ten tool
candidates in Fig.9 (a) and a human demonstration of tool-
use in Fig.9 (b), our algorithm imagines different kinds of
tool-use as shown in Fig.9 (c), and ranks them with respect
to different physical concepts. By assuming human demon-
stration is rational and near-optimal, our learning algorithm
selects physical concepts by minimizing the number of vio-
lations as the red area on the left of Fig.9 (c). For instance,
the plot of “force” shows ranked pairs of tool and tool-use
with respect to the forces applied on the functional basis.
The force produced by human demonstration (the black ver-
tical line) is larger than most of the generated tool-uses, thus
it is near-optimal. The instances on the right of Fig.9 (c) are
sampled tools and tool-uses. The red ones are the cases out-
perform human demonstration, while the gray ones are the
cases underperform human demonstration.
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Figure 9. Learning physical concept from single human demon-
stration for cracking a nut. (a) A set of tool candidates are given
by RGB-D images. (b) The human demonstration of tool-use is
assumed to be near-optimal. (c) The algorithm sorts all the sam-
ples of tool-use with respect to different physical concepts. The
black vertical bar represents the human demonstration of tool-use,
while the red area and gray area represent samples that outperform
and underperform human demonstration receptively. We showed
six sampled tool and tool-use, three of which outperform human
demonstration, and the others underperform human demonstra-
tion. In this cracking nut example, the “forces” is selected as the
essential physical concept because there are minimum number of
samples that violate the “rational choice assumption” in this case.

4.3. Inferring tools and tool-uses

In the Fig.2, we illustrate qualitative results of inferred
tool and tool-use for three tasks, i.e. chop wood, shovel dirt,
and paint wall. By evaluating in three scenarios: (a) typi-
cal tools, (b) household objects, (c) natural stones, we are
interested in the generalization ability of the learned model.

4.3.1 Recognizing tools

We asked four human subjects to rank tool candidates
shown in Fig.2. For the task of chopping wood in Fig.10,
we plot tool candidates in terms of their average ranking by
human subjects (x-axis) and their ranking generated by our
algorithm (y-axis).

The three columns show different testing scenarios. We
can see that our model learned from canonical cases of tool-
use can be easily generalized to recognize tools in novel
situation, i.e. household objects and natural stones. The
correlation between algorithm ranking and human ranking
is consistent across these three scenarios. Sometimes, the
algorithm works even better on the stone scenarios.

The three rows represent different levels of tool-use: (a)
the “tool-ranking with random use” evaluates the ranking of
tools by calculating the expected scores of random tool-use;
(b) the “tool-ranking with inferred use” evaluates the rank-

Figure 10. Recognizing tools for chopping wood. The scatters
show tool candidates ranked by our algorithm (y-axis) with re-
spect to the average ranking by human subjects (x-axis). The three
columns show different testing scenarios, while the three rows rep-
resent different levels of tool-use imagined by inference algorithm.

Table 1. Accuracy of tool recognition. This table shows the cor-
relation between the ranking generated by our algorithm and the
average ranking annotated by human subjects. The three rows rep-
resent different levels of tool-use imagined by our inference al-
gorithm. The qualitative and quantitative ranking results of tool
candidates are illustrated in Fig.2 and Fig.10 respectively.
correlation of ranking
algorithm vs. human

chop wood shovel dirt paint wall
tool object stone tool object stone tool object stone

tool + random use 0.07 0.14 0.20 0.52 0.32 0.09 0.12 0.11 0.31

tool + inferred use 0.48 0.25 0.89 0.64 0.89 0.14 0.10 0.64 0.20

tool + best use 0.83 0.43 0.89 0.64 0.89 0.14 0.10 0.64 0.20

ing of tools by calculating their optimal tool-use inferred by
our algorithm; (c) the “tool-ranking with best use” evalu-
ates the ranking of tools by their best uses given by human
subjects. The Table.1 summarizes the correlation between
human ranking and algorithm ranking on three tasks.

4.3.2 Imagining tool-uses

We also evaluated the imagined tool-uses in three aspects:
human action A, affordance basis BA and functional basis
BF .

The evaluation of human action is based on the classifi-
cation of action directions, which are “up”, “down”, “for-
ward”, “backward”, “left” and “right”. The classification
accuracy for this problem over all the experiments is 89.3%.
The algorithm can reliably classify the action of cracking a
nut as “down”. But there are some ambiguities in classify-
ing the action of shoveling dirt, because “left” and “right”
are physically similar.

The Fig.11 illustrates three example of imagined affor-
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Figure 11. Comparison of human predicted tool-use (a) and algo-
rithm imagined tool-use (b) for shoveling dirt.

Table 2. Error of imagining tool-use for affordance / functional
bases (BA and BF ) . The table shows the 3D distances between
their positions imagined by our algorithm and the positions anno-
tated by human subjects. The specific positions for sample tool
candidates are shown in Fig.11.

3D distance (cm)
algorithm vs. human

chop wood shovel dirt paint wall
tool object stone tool object stone tool object stone

BA - top 1 1.75 3.02 3.19 1.17 2.03 3.28 0.43 2.48 2.86

BA - top 3 1.04 2.17 2.81 0.97 0.52 2.21 0.31 2.32 2.67

BF - top 1 0.48 5.97 3.91 6.98 6.38 0.23 2.35 2.74 2.65

BF - top 3 0.27 5.92 3.95 2.85 3.29 0.31 1.43 2.64 2.71

dance basis BA and functional basis BF . Comparing to
human annotations, the algorithm finds very similar posi-
tions of affordance basis BA and functional basis BF re-
spectively. In Table.2 we show the 3D distances between
the positions imagined by our algorithm and the positions
annotated by human subjects in centimeter.

5. Discussions

In this paper, we present a new framework for task-
oriented object modeling, learning and recognition. An
object for a task is represented in a spatial, temporal, and
causal parse graph including: i) spatial decomposition of
the object and 3D relations with the imagine human pose;
ii) temporal pose sequence of human actions; and iii) causal
effects (physical quantities on the target object) produced
by the object and action. In this inferred representation,
only the object is visible, all other components are imagined
’dark’ matters. This framework subsumes other traditional
problems, such as: (a) object recognition based on appear-
ance and geometry; (b) action recognition based on poses;
(c) object manipulation and affordance in robotics. We ar-
gue that objects, especially man-made objects, are designed
for various tasks in a broad sense [29, 4, 35, 2], and there-
fore it is natural to study them in a task-oriented framework.

In the following we briefly review related work in the
literature of cognitive science, neuroscience, and vision
robotics.

5.1. Related work

1) Cognitiove Science and psychology. The perception
of tools and tool-uses has been extensively studied in cog-
nitive science and psychology. Our work is motivated by the
astonishing ability of animal tool-uses [11, 5, 47, 4, 35, 32].
For example, Santos et al.[33] trained two species of mon-
keys on a task to choose one of two canes to reach food un-
der various conditions that involve physical concepts. Weir
et al.[46] reported that New Caledonian crows can bend a
piece of straight wire into a hook and successfully used it
to lift a bucket containing food from a vertical pipe. These
discoveries suggest that animals can reason about the func-
tional properties, physical forces and causal relations of
tools using domain general mechanisms. Meanwhile, the
history of human tool designing reflects the history of hu-
man intelligence development [22, 9, 10, 42]. One argu-
ment in cognitive science is that an intuitive physics sim-
ulation engine may have been wired in the brain through
evolution [3, 39, 41], which is crucial for our capabilities of
understanding objects and scenes.

2) Neuroscience. Studies in neuroscience [20, 8, 7]
found in fMRI experiments that cortical areas in the do-
ral pathway are selectively activated by tools in contrast
to faces, indicating a very different pathway and mecha-
nism for object manipulation from that of object recogni-
tion. Therefore studying this mechanism will lead us to new
directions for computer vision research.

3) Robotics and AI. There is also a large body of work
studying tool manipulation in robotics and AI. Some related
work focus on learning affordance parts or functional object
detectors, e.g. [37, 44, 23, 38, 30, 15, 43, 24, 25]. They,
however, are still learning high level appearance features,
either selected by affordance / functional cues, or through
human demonstrations [1], not reason the underlying phys-
ical concepts.

4) Computer vision. The most related work in computer
vision is a recent stream that recognizes functional objects
(e.g. chairs) [14, 36, 12, 19, 45, 52, 21, 18] and functional
scene (e.g. bedroom) [49, 13, 6, 16] by fitting imagined hu-
man poses. The idea of integrating physical-based models
has been used for object tracking [40, 28] and scene under-
standing [50, 51] in computer vision. But our work goes
beyond affordance.

5.2. Limitation and future work

In this paper, we only consider handhold physical ob-
jects as tools. We do not consider other tools, such as, elec-
trical, digital, virtual or mental tools. Our current object
model is also limited by rigid bodies, and can not handle
deformable or articulated objects, like scissors, which re-
quires fine-grained hand pose and motion. All these request
richer and finer representations which we will study in fu-
ture work.
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