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Abstract

This paper proposes a method for generative learning
of hierarchical random field models. The resulting model,
which we call the hierarchical sparse FRAME (Filters, Ran-
dom field, And Maximum Entropy) model, is a generaliza-
tion of the original sparse FRAME model by decomposing
it into multiple parts that are allowed to shift their loca-
tions, scales and rotations, so that the resulting model be-
comes a hierarchical deformable template. The model can
be trained by an EM-type algorithm that alternates the fol-
lowing two steps: (1) Inference: Given the current model,
we match it to each training image by inferring the unknown
locations, scales, and rotations of the object and its parts by
recursive sum-max maps, and (2) Re-learning: Given the
inferred geometric configurations of the objects and their
parts, we re-learn the model parameters by maximum likeli-
hood estimation via stochastic gradient algorithm. Experi-
ments show that the proposed method is capable of learning
meaningful and interpretable templates that can be used for
object detection, classification and clustering.

1. Introduction
Motivation and objective. We are entering a new age

of computer vision applications, where machine learning
technology plays a critical role in achieving a high level
of prediction performance, e.g., [7, 8, 12, 13]. However,
some machine learning models are opaque and difficult for
people to understand. Explainable models are highly de-
sirable, if users are to understand, interpret and effectively
manage the behaviors of the models. Therefore, discovering
explainable models for visual data is an important problem
in computer vision and artificial intelligence.

Models with hierarchical and compositional represen-
tations, such as deformable part-based models [5] and
stochastic And-Or templates [11], have been shown to be
a powerful basis for achieving both prediction accuracy and
explainability. They are capable of learning reconfigurable
representations to deal with both structural and appearance

variations of objects. These models can be paired with
either discriminative learning method or generative learn-
ing method. Discriminative learning seeks to identify and
weigh the most discriminant features and structures for ex-
plaining the object categories, while generative learning en-
ables us to learn the parameters and interpretable patterns
for explaining the image data instead of predicting the im-
age categories. Moreover, generative learning is not only
important for making the model explainable, it can also be
used for unsupervised learning from unlabeled images.

Recently, Xie et al. proposed a sparse FRAME (Filters,
Random field, And Maximum Entropy) model [16, 17] as a
generative model for representing natural image patterns. It
can be considered a template consisting of a small number
of perturbable Gabor wavelets (sketches) at selected loca-
tions, scales and orientations. The learned knowledge in
the model can be visualized by sampling from the model.
However, the sparse FRAME models can only deal with
small deformations (e.g., edge perturbations), and may fail
when there exist large geometric changes (e.g., part defor-
mations). To address this limitation, we propose to extend
the original sparse FRAME model to a hierarchical version,
which we call the hierarchical sparse FRAME model, by
explicitly involving part-level representations and deforma-
tions.

Method overview. (1) Representation: The hierarchical
sparse FRAME model is a hierarchical compositional de-
formable template, which is composed of a group of part
templates that are allowed to shift their locations and rota-
tions relative to each other. Each part template is in turn
composed of a group of Gabor wavelets that are allowed to
shift their locations and orientations relative to each other.
(2) Inference: The model inference is to determine a cer-
tain geometric configuration of the template for a given ob-
ject such that the log-likelihood is maximized. This can
be efficiently achieved by a bottom-up/top-down dynamic
programming, which is implemented by recursive sum-max
maps. (3) Generative learning: The model is learned in
a generative manner in the sense that the learning is car-
ried out by maximum likelihood estimation and also it in-
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Figure 1: (a) Hierarchical sparse FRAME model: A hierarchical sparse FRAME model with 2 × 2 parts is learned from
roughly aligned observed images. The parts are visualized by displaying the synthesized images generated by the 4 part
models that are composed into the object model. (b) Inference: A testing image with bounding boxes showing the inferred
locations, rotations and scales of the object (red) and parts (blue). (c) A mixture of hierarchical sparse FRAME models is
learned by an EM-type algorithm from animal face images of four categories without manual labeling. The learned mixture
model is visualized as an And-Or graph, where an OR node (in black) represents a selection between difference alternatives
and an AND node (in blue) represents a composition of terminal nodes or children nodes. The object and part templates
shown in the And-Or graph are synthesized image patterns generated by the learned model via MCMC.

volves synthesizing image patterns via MCMC sampling.
(4) Unsupervised learning: As the model is a fully gen-
erative model, it can be learned in an unsupervised man-
ner, where the locations, scales and orientations of the ob-
ject, parts, and edges (Gabor wavelets) are unknown, by an
EM-type algorithm that alternates inference and re-learning
steps. A mixture of hierarchical sparse FRAME models can
also be learned unsupervisedly as an And-Or graph [22].

Figure 1 illustrates the basic idea of the hierarchical
sparse FRAME model and the mixture model. A three-
layer hierarchical model with 2 × 2 parts is visualized in
Figure 1(a) by displaying the synthesized images generated
from its part models by MCMC. Figure 1(b) displays an
example of inference of the hierarchical sparse FRAME
model on a testing image, with bounding boxes showing
the inferred locations, scales and rotations of the object
(red) and parts (blue). Figure 1(c) illustrates a mixture of
hierarchical sparse FRAME models as an And-Or graph,
which is learned from 50 animal face images of four cate-
gories, where the category labels are unknown. The black
solid dot represents an OR node for selection. The blue
empty squares denote AND nodes, which are compositions
of terminal nodes (Gabor wavelets) or children AND nodes
(parts). Each AND node (object or part) or each terminal
node (Gabor wavelet) is also associated with a geometric
OR node which accounts for its deformation. For clarity,
the geometric OR nodes are not visualized.

Related work. Most existing methods for learning hi-

erarchical representations of object patterns are based on
discriminative learning [5, 20, 9]. In this paper, we learn a
generative model for hierarchical representation of objects.
Our work is similar to [6, 21], which also learn hierarchi-
cal compositions of Gabor wavelets or edgelets. They learn
the models via bottom-up layer-by-layer schemes. Once the
lower layers are learned, they are fixed in the learning of
higher layers. In contrast, our iterative learning algorithm
re-learns the object and part templates, and re-selects the
Gabor wavelets in each iteration. Our work is also related
to And-Or template (AOT) [11] and hierarchical composi-
tional model [2]. To represent visual parts in the models,
the former uses hybrid image template (HIT) [10], and the
latter uses active basis template (ABT) [15]. Both HIT and
ABT are templates of Gabor wavelets and make the simpli-
fying assumptions that the selected Gabor wavelets are or-
thogonal and independent in order to avoid time-consuming
MCMC computation in learning. In our model, parts are
represented by sparse FRAME models, which do not make
the above simplifying assumptions, so that our model is
mathematically rigorous and is capable of visualizing the
learned model by synthesizing patterns via MCMC, which
makes our model more explainable.

2. Background of sparse FRAME model

This section reviews the background of the sparse
FRAME model [16], which serves as the foundation of the



hierarchical sparse FRAME model.

2.1. Inhomogeneous FRAME model

Let I be an image defined on a square or rectangular do-
main D. Let Bx,s,α denote a basis function such as Gabor
wavelet (or difference of Gaussian (DoG) filter) centered at
pixel x (a two-dimensional vector) and tuned to scale s and
orientation α. Given a dictionary of basis functions or filter
bank {Bx,s,α,∀x, s, α}, the dense version of the inhomoge-
neous FRAME model is a spatially non-stationary random
field that reproduces statistical properties of filter responses
at all the locations x, scales s and orientations α. The model
is of the following form

p(I;λ) =
1

Z(λ)
exp

(∑
x,s,α

λx,s,α|〈I, Bx,s,α〉|

)
q(I), (1)

where λ = (λx,s,α,∀x, s, α) are the weight parameters,
〈I, Bx,s,α〉 is the inner product between I and Bx,s,α, Z(λ)
is the normalizing constant, and q(I) is a known Gaussian
white noise reference distribution.

Given a set of roughly aligned training images {Im,m =
1, ...,M} from the same object category, where M is
the number of training images, we can learn the weight
parameters λ by maximizing the log-likelihood L(λ) =∑M
m=1 log p(Im;λ)/M , using the stochastic gradient as-

cent algorithm [19]

λ(t+1)
x,s,α = λ(t)

x,s,α + γt

(
1

M

M∑
m=1

|〈Im, Bx,s,α〉|

− 1

M̃

M̃∑
m=1

|〈Ĩm, Bx,s,α〉|

)
,

(2)

where γt is the step size, {Ĩm,m = 1, ..., M̃} are the
synthesized images sampled from p(I;λ(t)) using Hamil-
tonian Monte Carlo (HMC) algorithm [4]. M̃ is the num-
ber of independent parallel Markov chains that sample
from p(I;λ(t)). The difference

∑M
m=1 |〈Im, Bx,s,α〉|/M −∑M̃

m=1 |〈Ĩm, Bx,s,α〉|/M̃ is the Monte Carlo estimate of the
gradient of the log-likelihood L(λ) at λ(t).

The estimation of the normalizing constant is required
in unsupervised learning. Starting from λ(0) = 0 and
logZ(λ(0)) = 0, we can estimate logZ(λ(t)) along
the learning process by logZ(λ(t+1)) = logZ(λ(t)) +

log Z(λ(t+1))
Z(λ(t))

, where the ratio of the normalizing constants
at two consecutive steps can be approximated by

Z(λ(t+1))

Z(λ(t))
≈ 1

M̃

M̃∑
m=1

[
exp
( ∑
x,s,α

(λ(t+1)
x,s,α − λ(t)

x,s,α)

× |〈Ĩm, Bx,s,α〉|
)]
.

(3)

2.2. Sparse FRAME model

The sparse FRAME model is a sparsified version of the
dense model in (1), where only a small number of basis
functions are selected from the given dictionary. We can
explicitly write the sparsified model as

p(I;B, λ) =
1

Z(λ)
exp

(
n∑
i=1

λi|〈I, Bxi,si,αi
〉|

)
q(I),

where B = (Bxi,si,αi
, i = 1, ..., n) are the n basis func-

tions selected from a given dictionary (n is assumed to be
given, e.g., n = 200), and λ = (λi, i = 1, ..., n) are the cor-
responding weight parameters. The learning of the sparse
model involves the selection of basis functions and the esti-
mation of the corresponding weight parameters.

A two-stage learning algorithm [16] or a single-stage
learning algorithm [17] can be used to train the sparse
FRAME model. In this paper, we will use the two-stage
learning algorithm that consists of the following two stages:
(1) In the first stage, a shared sparse coding scheme is
used to select B = (Bxi,si,αi

, i = 1, ..., n) by simulta-
neously reconstructing all the observed images {Im,m =
1, ...,M}. To account for shape deformations, Bxi,si,αi

are
allowed to locally perturb their locations and orientations
on each observed image during reconstruction. Therefore,
we have Im =

∑n
i=1 cm,iBxi+∆xm,i,si,αi+∆αm,i

, where
(∆xm,i,∆αm,i) are the local perturbations of the location
and orientation of the i-th basis function Bxi,si,αi

in the
m-th training image, and cm,i are the reconstruction coef-
ficients of the selected wavelets. The selection is accom-
plished by minimizing the overall least squares reconstruc-
tion error

M∑
m=1

‖Im −
n∑
i=1

cm,iBxi+∆xm,i,si,αi+∆αm,i
‖2.

This can be achieved by a shared matching pursuit algo-
rithm. (2) After selecting B = (Bxi,si,αi , i = 1, ..., n), the
second stage estimates the corresponding weight parame-
ters λ = (λi, i = 1, ..., n) by maximum likelihood using
the stochastic gradient ascent algorithm as in equation (2)
and estimates logZ(λ) by equation (3).

The image log-likelihood L(I|B), which is computed by
n∑
i=1

λi max
∆x,∆α

|〈I, Bxi+∆x,si,αi+∆α〉| − logZ(λ),

serves as the template matching score for object recogni-
tion.

3. Hierarchical Sparse FRAME Model
3.1. Representation

Hierarchical random field model. In this section, we
will extend the original sparse FRAME model to a hi-



erarchical version which we call the hierarchical sparse
FRAME model. It is a composition of shiftable parts,
while the parts themselves are compositions of a number
of shiftable basis functions. The model is a probability dis-
tribution defined on I,

p(I;H, λ) =
1

Z(λ)
exp [f(I;H, λ)] q(I), (4)

where the scoring function f(I;H, λ) is

f(I;H, λ) =

K∑
j=1

nj∑
i=1

λ
(j)
i |〈I, Bx(j)

i ,s
(j)
i ,α

(j)
i
〉|,

where H = {(B
x
(j)
i ,s

(j)
i ,α

(j)
i
, i = 1, ..., nj), j = 1, ...,K}

represents a template of K groups of selected basis func-
tions. Each group represents a part template. nj is the
number of basis functions in group j. λ = {(λ(j)

i , i =
1, ..., nj), j = 1, ...,K} collects the parameters. Learning
such a hierarchical random field model requires selecting
basis functions from a given dictionary to form a hierarchy
and estimating their associated parameters. In our current
implementation, we simply divide the image domain into
K = d×d non-overlapping parts, so that the basis functions
within each part form a group, and the parts are allowed to
shift.

Hierarchical deformation. We may treat H as a hi-
erarchical deformable template, so that when it is fitted to
each training image Im, the part templates and the basis
functions are allowed to perturb their locations and orien-
tations to account for shape deformations. Learning model
(4) from roughly aligned training images requires inference
of the deformations of both parts and basis functions.

3.2. Hierarchical deformable template

Part template. Each part in the model can be consid-
ered a sparse FRAME model, so we can simply generalize
the notation for the original sparse FRAME templates to ob-
tain the one for the part templates. Given a sparse FRAME
template B = (Bxi,si,αi

, i = 1, .., n), for simplicity, we
shall temporarily assume B is only allowed spatial transla-
tion in encoding images. Suppose B appears at location X
in image I, then we can write the representation as

I =

n∑
i=1

ciBX+xi+∆xi,si,αi+∆αi + ε = CBX + ε,

where C = (ci, i = 1, ..., n) collects all coefficients, BX =
(BX+xi+∆xi,si,αi+∆αi

, i = 1, ..., n) is the deformed tem-
plate spatially translated to X . BX explains the part of I
that is covered by BX . For image I and location X , the
log-likelihood L(I|BX) is computed by

n∑
i=1

λi max
∆x,∆α

|〈I, BX+xi+∆x,si,αi+∆α〉| − logZ(λ).

We can generalize BX by using BX,S,A to denote the part
template at location X , scale S and rotation A. We will
use L(I|BX,S,A) to denote the log-likelihood of the part
template BX,S,A.

Object template. With the notation of part template, we
can denote a hierarchical sparse FRAME model, which is
a template of K part templates, by H = {B(j)

Xj ,Sj ,Aj
, j =

1, ..,K}, where (Xj , Sj , Aj) are the location, scale and ro-
tation of the j-th part template in the object template H.
Then we can represent image Im by a template of K parts:

Im =

K∑
j=1

Cm,jB
(j)
Xj ,Sj ,Aj

+ εm, (5)

where each B
(j)
Xj ,Sj ,Aj

is assumed to deform its basis func-
tions by local max pooling when it encodes the image.

Since the object template H is deformable in the sense
that all the parts are allowed to perturb their locations, scales
and rotations to account for the deformation in the image,
we can extend (5) to

Im =

K∑
j=1

Cm,jB
(j)
Xj+∆Xm,j ,Sj+∆Sm,j ,Aj+∆Am,j

+ εm,

where (∆Xm,j ,∆Sm,j ,∆Am,j) are perturbations of the
location, scale and rotation of the j-th part template
B

(j)
Xj ,Sj ,Aj

, and assumed to take values within limited and
properly discretized ranges (default setting: ∆Xm,j ∈
[−1, 1] × [−1, 1] pixels, ∆Sm,j ∈ {−1, 0, 1} × 0.1, and
∆Am,j ∈ {−1, 0, 1} × π/16). We use L(Im|B(j)

Xj ,Sj ,Aj
)

to denote the log-likelihood of part B(j)
Xj ,Sj ,Aj

. Further, we
assume the parts do not overlap with each other, i.e., the
subspaces spanned by the basis functions in different parts
are orthogonal to each other, then the log-likelihood score
of the image Im given the object template H is

L(Im|H) =

K∑
j=1

max
∆X,∆S,∆A

L(Im|B(j)
Xj+∆X,Sj+∆S,Aj+∆A).

(6)

3.3. EM-type learning algorithm

Objective function. Equation (6) assumes all objects are
aligned with only part-level deformations. In unsupervised
learning, objects in the training images can be non-aligned
in the sense that they might appear at different locations,
even with different scales and rotations. For notation sim-
plicity, we temporarily assume H is only allowed spatial
translation in matching objects. We will use HX to denote
the object template at location X , and let L(Im|HX ) be
the log-likelihood score of HX . The learning of the hier-
archical sparse FRAME model is to learn the K part tem-



plates {B(j), j = 1, ...,K} from non-aligned training im-
ages {Im,m = 1, ...,M}, while inferring the object loca-
tions Xm, the part perturbations (∆Xm,j ,∆Sm,j ,∆Am,j),
and the perturbations of basis functions, by maximizing the
objective function defined as the sum of the log-likelihood
given H over all the training images,

∑M
m=1 L(Im|HXm

),
which is

M∑
m=1

 K∑
j=1

L(Im|B(j)
Xm+Xj+∆Xm,j ,Sj+∆Sm,j ,Aj+∆Am,j

)

 ,
(7)

subject to the constraint that there are no overlapping parts
in each Im. The learning can be done by an EM-type algo-
rithm that iterates the inference step and the re-learning step
in order to maximize the objective function (7):

E-step: Inference. Given the current hierarchical sparse
FRAME model H = {B(j)

Xj ,Sj ,Aj
, j = 1, ..,K}, we match

it to each image Im by inferring the location X̂m of the ob-
ject template in Im via X̂m =

arg max
X

K∑
j=1

max
∆X,∆S,∆A

L(Im|B(j)
X+Xj+∆X,Sj+∆S,Aj+∆A),

and the perturbations in locations, scales and rotations of K
parts via

(∆Xm,j ,∆Sm,j ,∆Am,j)

= arg max
∆X,∆S,∆A

L(Im|B(j)

X̂m+Xj+∆X,Sj+∆S,Aj+∆A
),

as well as the perturbations of all basis functions in each
part. The inference can be efficiently accomplished by re-
cursive sum-max maps described in Algorithm 1, which is
a bottom-up/top-down procedure. For notation simplicity,
we omit the scales and rotations of both the object template
and its part templates in the description of Algorithm 1.

M-step: Re-learning. Given the inferred deformations
(i.e., object bounding box and part bounding boxes), we
can first align the objects and parts by morphing the cor-
responding image patches. We then learn an original sparse
FRAME model on the aligned training images, which in-
volves the selection of basis functions and the parame-
ters estimation, and then divide the object template into
K = d× d non-overlapping part templates.

The EM-type algorithm is initialized by randomly as-
signing an initial bounding box of object to each training
image. It is run for a few of iterations until convergence.

If the scales and rotations of the objects are also inferred
by the arg max operation in E-step, the learning algorithm
can deal with learning from non-aligned objects with un-
known locations, scales, and rotations. Figure 2 displays
one example of learning from non-aligned images. The ob-
ject template consists of 2 × 2 part templates. Each part

template is of size 50 × 50. The number of non-aligned
training images is 26. The total number of the selected ba-
sis functions (Gabor wavelets) is 300. The number of itera-
tions is 6. Figure 2 (a) displays 2 × 2 parts of synthesized
images generated by the learned model. Figure 2(b) dis-
plays 2 × 2 parts of sketch templates which illustrate the
selected Gabor wavelets by shared matching pursuit. Fig-
ure 2(c) illustrates 12 examples of 26 non-aligned training
images from cat category, with bounding boxes showing
the inferred locations, scales, and rotations of the objects
(black) and their parts (colored) after the model is learned.
Figure 2(d) shows the inference results of the learned model
on 2 testing images, with bounding boxes indicating the ge-
ometric configurations of the detected objects (black) and
their parts (colored).

(a) (b) (d)

(c)
Figure 2: Learning a hierarchical sparse FRAME model
from non-aligned images. (a) 2 × 2 parts of synthesized
images generated by the learned model. (b) 2 × 2 parts of
sketch templates where each Gabor wavelet is illustrated by
a bar. (c) 12 examples of 26 non-aligned training images
from cat category, with bounding boxes showing the in-
ferred locations, scales, and rotations of the objects (black)
and parts (colored) by the learned model in E-step. (d) In-
ference results of the learned model on 2 testing images.

4. Experiments
4.1. Evaluating mixture models by clustering tasks

A mixture of hierachical sparse FRAME models can be
trained in an unsupervised manner by an EM-type algo-
rithm that iterates the following two steps: (1) classifying
images into different clusters based on the current mixture
model, (2) re-learning the model of each cluster from im-
ages. Mixture models can be evaluated by clustering tasks,
and we use a benchmark clustering dataset [17] that con-
sists of 12 clustering tasks, where the number of clusters of
each task varies from 2 to 5, and each cluster has 15 images.



Algorithm 1 Inference algorithm for hierarchical sparse
FRAME model
Input: A hierarchical sparse FRAME model H = {B(j)

Xj
, j = 1, ..,K},

where B(j) = (B
x
(j)
i ,s

(j)
i ,α

(j)
i

, i = 1, ..., nj), model parameters

λ = {(λ(j)
i , i = 1, ..., nj), j = 1, ...,K}, and a testing image I.

Output: Location X̂ of the object template H on image I, perturbations
{∆Xj , j = 1, ...,K} of the parts, and perturbations of the basis func-

tions in all parts {(∆x(j)
i ,∆α

(j)
i ), i = 1, ..., nj , j = 1, ...,K}.

1: Up-1 compute feature map SUM1 of GaborB on I for all locations x,
scales s and orientations α:

SUM1(x, s, α) = |〈I, Bx,s,α〉|, ∀x, s, α

2: Up-2 compute MAX1 by local max-pooling to account for the shifts
of Gabor wavelets:

MAX1(x, s, α) = max
∆x,∆α

SUM1(x+ ∆x, s, α+ ∆α), ∀x, s, α

3: Up-3 compute the matching score SUM2 of part template B(j) on the
image I for all locations X:

SUM2(j)(X) =

nj∑
i=1

λ
(j)
i MAX1(X + x

(j)
i , s

(j)
i , α

(j)
i )

− logZ(λ(j)), ∀X, j

4: Up-4 compute the MAX2 by local max-pooling to account for the
shifts of parts:

MAX2(j)(X) = max
∆X

SUM2(j)(X + ∆X),∀X, j

5: Up-5 compute the matching score SUM3 of object template H on the
image I for all locations X :

SUM3(X ) =
K∑
j=1

MAX2(j)(X +Xj),∀X

6: Up-6 compute the optimum matching score of H:

MAX4 = max
X

SUM3(X )

7: Down-1 compute the location of the object on the image I:

X̂ = arg max
X

SUM3(X )

8: Down-2 compute the perturbations of all parts on the image I:

∆Xj = arg max
∆X

SUM2(j)(X̂ +Xj + ∆X), ∀j

9: Down-3 compute the perturbations of Gabor wavelets in all parts on
the image I:

(∆x
(j)
i ,∆α

(j)
i ) = arg max

∆x,∆α
SUM1(X̂

+Xj + ∆Xj + x
(j)
i + ∆x, s

(j)
i , α

(j)
i + ∆α), ∀i, j

The numbers of clusters are assumed known in these tasks.
The image ground-truth category labels are provided for the
sake of computing the clustering accuracies but assumed
unknown to the learning algorithm. Conditional purity and
conditional entropy [14] are used to measure the clustering
performance. Let x be the ground-truth category label and y
be the inferred category label of an image. The conditional

purity is defined as
∑
y p(y) maxx p(x|y), and the condi-

tional entropy is
∑
y p(y)

∑
x p(x|y) log(1/p(x|y)). Both

p(y) and p(x|y) can be estimated from the training images.
Higher purity and lower entropy are expected for a better
clustering algorithm.

For each task, a model-based clustering is performed by
fitting a mixture of hierarchical sparse FRAME models with
2 × 2 parts in an unsupervised setting. We infer the un-
known locations, scales, and rotations of objects and parts,
as well as category labels in the learning process. M̃ = 100
chains of sampled images are generated to estimate the pa-
rameters and normalizing constants. The ranges of pertur-
bations for both Gabor wavelets and part templates are 1
pixel in locations and π/8 in orientations. Typical template
sizes are 100 × 100. Typical number of wavelets for object
template is 300. The range of rotations for object templates
is π/8. In classification, we search over 4 different resolu-
tions of the images to account for different scales of objects.

We compare our model with (a) the original sparse
FRAME model without shiftable parts [16], (b) the sparse
FRAME model learned via generative boosting [17], (c) the
active basis model [15], (d) two-step EM [1], (e) k-means
with HoG features [3], and (f) AND-OR template (AOT)
[11]. Table 1 summarizes the comparisons by showing the
average clustering accuracies based on 5 repetitions for 12
tasks. The results show that our method performs better
than the other models. An improvement is obtained when
we generalize the original sparse FRAME model to the hi-
erarchical version by explicitly modeling the part-level de-
formations.

4.2. Object, part, and key point localization

The inference step plays an important role in the unsu-
pervised learning of our model. We evaluate the accuracy
of the inference of our model on detection tasks, in compar-
ison to two baseline methods, which are And-Or template
(AOT) [11] and part-based latent SVMs (LSVM) [5].

The performance of detection is measured by evaluating
the accuracy of localizing key points, parts, and objects. We
collect an animal face detection dataset with 8 categories,
where each category includes 10 training images and 30
testing images. For each image, roughly twenty identifi-
able key points are selected manually as pixel-level ground
truths by a human labeler. The key points are manually
grouped into different semantic parts as ground truths for
parts. These key points are not used in training the models.
They are used only for evaluating detection performance.
Once our model is trained from the training images, we as-
sociate each key point with the most likely nearest Gabor
wavelet in the template. Similar strategy is used for And-Or
template, since its bottom level representational units are
also Gabor wavelets. For LSVM, each key point is associ-
ated with the most likely nearest part, and then we record



Table 1: Comparison of conditional purity and conditional
entropy on clustering tasks

(a) Conditional purity
Task Ours Sparse Generative Active Two-step k-means AOT

FRAME Boosting Basis EM +HoG

1 0.993 0.967 0.887 0.667 0.873 0.760 0.813
2 0.993 0.980 0.907 0.787 0.820 0.640 0.773
3 0.993 0.960 0.973 0.960 0.713 0.793 0.907
4 0.920 0.907 0.920 0.729 0.720 0.800 0.876
5 0.996 0.987 0.982 0.658 0.858 0.840 0.849
6 1.000 1.000 1.000 0.836 0.800 0.933 1.000
7 0.920 0.917 0.850 0.830 0.773 0.807 0.830
8 0.993 0.953 0.920 0.903 0.730 0.780 0.770
9 0.960 0.893 0.953 0.923 0.850 0.840 0.880

10 0.907 0.797 0.883 0.797 0.869 0.715 0.824
11 0.960 0.872 0.923 0.888 0.757 0.784 0.960
12 0.909 0.907 0.880 0.805 0.813 0.768 0.712

Avg. 0.962 0.928 0.923 0.815 0.798 0.788 0.849

(b) Conditional entropy
Task Ours Sparse Generative Active Two-step k-means AOT

FRAME Boosting Basis EM +HoG

1 0.025 0.123 0.213 0.585 0.345 0.479 0.371
2 0.025 0.165 0.246 0.453 0.404 0.636 0.425
3 0.025 0.250 0.082 0.139 0.530 0.434 0.192
4 0.170 0.202 0.177 0.594 0.594 0.491 0.305
5 0.017 0.050 0.067 0.658 0.302 0.333 0.365
6 0.000 0.000 0.000 0.260 0.355 0.092 0.000
7 0.140 0.150 0.208 0.321 0.421 0.272 0.313
8 0.025 0.118 0.163 0.176 0.552 0.519 0.346
9 0.106 0.191 0.067 0.169 0.280 0.265 0.216

10 0.220 0.425 0.286 0.447 0.301 0.516 0.359
11 0.055 0.191 0.112 0.225 0.486 0.387 0.064
12 0.189 0.222 0.290 0.354 0.459 0.477 0.543

Avg. 0.083 0.174 0.159 0.365 0.419 0.408 0.291

the most likely location of the key point in that part. With
these associations, we can predict the key points via the
templates of these models for each testing image. We train
the hierarchical sparse FRAME models with 3 × 3 non-
overlapping moving parts from aligned images. The ranges
of perturbations for both Gabor wavelets and part templates
are 2 pixels in locations and π/8 in orientations. Typical
template sizes are 100 × 100. Typical number of wavelets
for object template is 370.

We plot imprecision-recall curves and use area under
curve (AUC) to measure the performance of the localiza-
tion of key points. Figure 3 shows the imprecision-recall
curves for key points, parts, and object in deer and cow cat-
egories. A higher curve indicates larger AUC and better
performance. The horizontal axis of the curve is the toler-
ance for the normalized key point deviation (divided by the
size of the template), which is the distance between the pre-
dicted location and the ground-truth location of key point.
The vertical axis is the recall rate, which is the percentage
of the predicted key points within a certain tolerance. For
curves of parts and object, the deviation of the part is com-
puted by averaging the deviations of key points inside the
part. The deviation of the object is computed by averaging
the deviations of all the key points. Table 2 shows the com-
parisons of accuracies of localization of key points, parts,
and object. Our approach outperforms the other methods
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Figure 3: Comparison of imprecision-recall curves of dif-
ferent models for key points, parts, and object in the cate-
gories of deer and cow.

in terms of average AUC on the detection tasks. Figure 4
shows a comparison of the templates of hierarchical sparse
FRAME models, LSVM models, and And-Or Templates
learned from cat, lion, tiger, and wolf categories. Figure
5 displays some detection results with the learned models.
We can see that our model can locate the objects and inter-
nal parts with higher precision.

(a) ours

(b) LSVM

(c) AOT

Figure 4: Comparison of templates learned by different hi-
erarchical models. (a) shows the templates of the hierarchi-
cal sparse FRAME models, which are generated by sam-
pling from the learned models via HMC sampling. (b)
shows the HoG feature templates for LSVM. (c) displays
the symbolic sketch templates for And-Or templates, where
each bar represents the selected Gabor wavelet. (From left
to right column: cat, lion, tiger, and wolf.)

4.3. Evaluating unsupervisedly learned models via
classification

The model can be used for unsupervised hierarchical fea-
ture learning. Supervised classifiers learned on top of these
features can be used for classification. We use the LHI-



Table 2: Comparison of AUCs for localization of object, parts and key points

Tasks object part key point
ours AOT LSVM ours AOT LSVM ours AOT LSVM

cat 0.954 0.949 0.700 0.955 0.950 0.718 0.954 0.949 0.700
lion 0.879 0.842 0.834 0.908 0.856 0.830 0.907 0.857 0.834
tiger 0.954 0.948 0.744 0.956 0.950 0.744 0.954 0.948 0.744
wolf 0.857 0.774 0.741 0.888 0.826 0.750 0.887 0.825 0.741
deer 0.738 0.675 0.559 0.736 0.673 0.570 0.738 0.676 0.565

cougar 0.960 0.936 0.831 0.961 0.939 0.825 0.960 0.938 0.831
cow 0.757 0.549 0.663 0.762 0.546 0.670 0.763 0.556 0.673
bear 0.769 0.607 0.744 0.776 0.605 0.745 0.773 0.611 0.751
Avg. 0.859 0.785 0.727 0.868 0.793 0.732 0.867 0.795 0.730

ours

LSVM

AOT

Figure 5: Comparison of localizing objects, parts, and keypoints. From top to bottom, we display the results of hierarchical
sparse FRAME models, LSVM models, and AOT templates. For each testing image, the detected bounding boxes for the
object (red) and parts (blue) are shown. Best viewed in color.

Animal-Faces dataset [10], which has around 2200 images
of 20 categories of animal faces. Each category exhibits
rich appearance variations and shape deformations, e.g., (a)
flip and rotation transformations and (b) sub-categories. We
randomly select half of the images per category for train-
ing and the rest for testing. For each category, we learn
a mixture model of 5 or 11 hierarchical sparse FRAME
models with 2 × 2 moving parts in an unsupervised man-
ner. We then combine the object templates from all the
learned mixture models into a codebook of 20×5 = 100 or
20× 11 = 220 codewords. (Each object templte is a code-
word.) The maps of template matching scores from all the
codewords in the codebook are computed for each image,
and then they are fed into spatial pyramid matching (SPM)
[18], which equally divides an image into 1, 4, 16 areas,
and the maximum scores at different image areas are con-
catenated into a feature vector. SVM classifiers with `2 loss
are trained on these feature vectors, and are evaluated on
the testing data in terms of classification accuracies using
the one-versus-all rule.

Table 3 lists a comparison of our models with some base-
line methods, with the same training/testing data split, the
same approach of classifier training, and the same number
of clusters in the mixture model learned from each category.
The results show that our models outperform the original
sparse FRAME models without parts and the AOT models
in terms of classification accuracy on this dataset.

Table 3: SVM Classification accuracy on features that are
unsupervisedly learned from animal face dataset with 20
categories.

# clusters AOT ours w/o parts ours

5 65.80% 70.62% 74.33%
11 62.54% 72.56% 75.83%

5. Conclusion
This paper proposes a generative learning framework ap-

plied to hierarchical representations of object patterns. Our
model is defined as a hierarchical extension of the original
sparse FRAME model. The model is capable of capturing
geometric deformations and can be learned in an unsuper-
vised manner. It can be visualized by MCMC sampling.
Compared to previous generative hierarchical leaning meth-
ods, our method performs better in terms of accuracies of
localization of object, parts, and key points in detection, ob-
ject classification, and clustering. Project page: The data,
code, and more results and details can be found at http:
//www.stat.ucla.edu/˜jxie/hsFRAME.html
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