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Abstract

In the physical world, cause and effect are insepara-
ble: ambient conditions trigger humans to perform actions,
thereby driving status changes of objects. In video, these
actions and statuses may be hidden due to ambiguity, oc-
clusion, or because they are otherwise unobservable, but
humans nevertheless perceive them. In this paper, we extend
the Causal And-Or Graph (C-AOG) to a sequential model
representing actions and their effects on objects over time,
and we build a probability model for it. For inference, we
apply a Viterbi algorithm, grounded on probabilistic detec-
tions from video, to fill in hidden and misdetected actions
and statuses. We analyze our method on a new video dataset
that showcases causes and effects. Our results demonstrate
the effectiveness of reasoning with causality over time.

1. Introduction
Humans, motivated by triggering conditions [6], per-

form actions to cause changes in fluents (specifically the
time-varying properties of objects and humans [15]). In
this paper, we apply short-term causal knowledge consis-
tently over the course of a video in order to jointly infer
actions and fluents from video, even when they are un-
observable. This improves detection and moves toward
higher-level cognition, answering the questions of “why”
and “how”.

To study the causal relationships between actions and
fluents, we introduce a new causality video dataset in Sec-
tion 3, some examples of which are shown in Figure 1. In
this new dataset, object fluents are connected to actions as
preconditions or triggers (e.g., an empty cup gets filled by
a thirsty person) or as effects (e.g., using the mouse or key-
board turns the monitor on). Because of limitations on visi-
bility and detectability, the values of these fluents are often
hidden (e.g., the fill-level of a cup).

Changes in fluent value may be caused by human action
(e.g., a light turns on when a person flips the switch) or
by an internal mechanism (e.g., a screensaver activates on
a monitor). Non-changes are explained by inaction (e.g., a
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Figure 1. Fluents are time-varying properties of objects and may
be visible or hidden (e.g., invisible or viewpoint occluded); they
change as a result of causing actions. Some actions may be
easily detectable, while others are ambiguous (e.g., motions too
small/occluded, or confused for other actions). Under the context
of causal relationships between actions and fluents, detections im-
prove.

light that is on stays on until it’s turned off) or by maintain-
ing action (e.g., continued computer use keeps the monitor
awake). Actions can be detectable (e.g., using a computer)
or hard to detect (e.g., making a phone call). Some actions
are even defined by their causal effects: a “blowing” action
is not detectable, but can be reasoned from the expanding
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Figure 2. Example causal inference. Over time, observed actions are used to infer values of hidden fluents, and values of observed fluents
are similarly used to infer hidden actions.

balloon.
Connecting triggering conditions to actions to effects,

Figure 2 shows an inference possible by long-term reason-
ing. Seeing a man raise a phone to his head, we can infer
he’s talking to someone on the phone, perhaps because it
rang. The man moved the mouse to wake the monitor, his
thirst motivated him to fill the cup and drink, and he threw
something away. Without seeing the person flipping a light
switch (the switch is not detectable), we still reason that he
performed that action based on the observed effect. By the
end of the clip, we might infer that the monitor is inactive.

1.1. Related work

Inferring causal relationships from video combines cur-
rent computer vision detection algorithms with artificial in-
telligence and human thought.

Computer vision. Vision researchers have made great
strides by studying context. Recognition rates improve for
small objects when taken in the context of human actions
and scenes [11] or for pedestrians when taken in the context
of the scene [22]. The context of causality has been used in
the spatial domain to aid segmentation [26].

Using causality, event recognition papers unidirection-
ally infer actions [2, 12], but they do not jointly infer causes
and effects, nor do they propagate results over time. Mea-
sures of causality have been used to learn patterns of low-
level actions in repeated events [19], and some early vi-
sion works used Newtonian mechanics to distinguish ac-
tions [14].

Further, action datasets (e.g., Olympic Sports Dataset
[17] and UCF-101 [25]) largely ignore cause and ef-
fect relationships, focusing instead on human motion
(e.g., HMDB51 [13]), complex activities (e.g., basket-
ball dataset[4]), or human interactions (e.g., UT-Interaction

Dataset [21]).
Artificial intelligence. AI researchers use first-order

logic to reason with causality [15], but this precludes the
probabilistic solutions important in computer vision for
maintaining ambiguity. Placing probability atop first-order
logic, Markov logic networks [20] have been applied to ac-
tions [28], but their network structure is pre-defined (not
reconfigurable) and inference is slow.

While Bayesian networks are commonly used to rep-
resent causality [18], reconfigurations within a grammar
model represent a greater breadth of possibilities than a sin-
gle instance of a Bayesian network with pre-defined struc-
ture [10], making it more suitable for vision applications.
The And-Or Graph graphically embodies grammar mod-
els and has been used for objects, scenes, and actions [30].
Even though HMMs and DBNs also perform event recog-
nition [1, 3], grammar models are reconfigurable and ac-
commodate high-level structure, both of which are needed
for reasoning over time-varying detections of actions and
fluents.

Cognitive science. Causal connections are so strong
in humans that they can even override spatial perceptions
[24]. Studies in developmental psychology show humans
innately form causal models through correlation [9], re-
stricted by heuristics such as only considering causes that
are human actions [5, 23]. Learning this perceptual causal-
ity was introduced to vision in a simple experimental set-
ting [8] with a grammar model, the Causal And-Or Graph
(C-AOG) [7].

1.2. Contributions

In this paper, we develop a probability model for the C-
AOG [7] that integrates with real detections. We extend
the C-AOG to a sequential model, allowing long-term infer-
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Figure 3. A C-AOG for an office at time t. Fluent values are consequences of their children. Arcs connect children of And-nodes. A single
selection at the Or-nodes (red, bold lines here) provides a parse graph, explaining the current instance of time. Terminal leaf nodes ground
the C-AOG on video, linking input from detected features. Step functions indicate types of fluent changes: step up for turning “on”, step
down for “off”.

ence of both actions and fluents from video data, connect-
ing triggering fluents to actions to their effects. We present
a Viterbi algorithm to fill in hidden fluents and actions and
correct misdetections. For the evaluation of causal relation-
ships, we introduce a dataset that combines both actions and
fluents (Section 3).

2. Inferring perceptual causality

The Causal And-Or Graph (C-AOG) adds a causal layer
to And-Or Graph representations for objects and actions,
identifying human actions as causes for fluent changes and
providing a stochastic grammar representation of perceptual
causality [7, 8]. In this section, we formalize the sequential
C-AOG by grounding a probability model for it on com-
puted features, by extending the C-AOG over time, and by
providing a Viterbi algorithm for inference.

2.1. Perceptual causality: the C-AOG

Given a short video sequence, V [t − δ, t], the C-AOG
represents causal explanations for fluents at time t where
causing actions occur within the δ time window (e.g., mod-
eling that using the keyboard causes the monitor to display
and the light remains on at t, as shown with thick red in
Figure 3).

In the C-AOG, Or-nodes represent alternate means of
causation (e.g., a monitor can be woken by someone using
a mouse or a keyboard). And-nodes group sub-actions and
conditions (e.g., the sub-actions used to detect “use key-
board”). Terminal leaf nodes represent low-level features
for detecting actions and fluent changes in video. Horizon-
tal links connect nodes with temporal relationships (e.g., a
person nears the computer before using it). Arrows point
from causes to effects.

A parse graph (pg) from the C-AOG is formed by mak-
ing a selection at each Or-node (e.g., the thicker, red lines
in Figure 3) and captures the causal reason that the fluent

changed value at time t. The best parse graph at t is given
by selecting the best children per

P (pgt|V [t− δ, t]) ∝ P (pgt; Θ)
∏

l∈L(pgt)

P (l|pgt) (1)

where L(pg) is the set of terminal leaf nodes included in pg.
As explained in the next section, this posterior is a product
of the prior defined over the C-AOG (with parameter vector
Θ) and the likelihood of all leaf nodes for fluent and action
detectors.

2.2. Inference of a single parse graph: the energies

P (pg; Θ) defines a prior on causality, indicating a level
of prior belief for the current fluent value and why the flu-
ent took that value. We calculate P (pg; Θ) with the energy
E(pg), where P (pg) ∝ exp(−E(pg)). E(pg) is recursively
propagated to the top-level nodes in the C-AOG by the fol-
lowing rules:

Or-nodes. The energy of an Or-node, O, is E(O) =
maxv∈ch(O) (E(v) + 〈Θv, λv〉) where ch(O) represents the
children of Or-node O. Θv indicates how likely each child
is of causing the parent, and λv indicates which child is
selected. 〈Θv, λv〉 returns the prior probability of selecting
that particular child. Θv can be learned by MLE, giving
the proportion of training examples that included child λv .
The learned Θv favors the status quo, i.e., that the fluent
maintained status a priori.

And-nodes. The energy of an And-node, A, with chil-
dren ch(A) passes probabilities from all children up to the
top node, and is given by E(A) =

∑
v∈ch(A) E(v|A).

Temporal relations. Top-level actions are detected as
triads of sub-actions, with each allowing a variable number
of pose detections. Relations preserve the temporal order of
sub-actions. For relation R across nodes ṽ = vi1 , . . . , vik ,
E(R) = ψṽ(ṽ), and is described further in Section 3.5.

Leaf nodes. Terminal leaf nodes anchor the C-AOG
to features extracted from video. The fluent energies,



E(lF |F ), and the action energies, E(lA|A) are calculated
from the detected features, trained separately with machine
learning approaches as described in Section 3.5. Treated in-
dependently, E(lA|A) and E(lF |F ) sum to provide E(l|pg).
E(A) and E(O) recursively compute energies for all in-

cluded nodes. Decomposing the recursion,

E(pgt|V [t− δ, t]) =
∑

lF∈LF (pg)

E(lF |F )

+
∑

lA∈LA(pg)

E(lA|A) +
∑
ṽ∈R

ψṽ(ṽ)

+
∑

v∈O(pg)

〈Θv, λv〉 ,

(2)

where LF (pg), LA(pg), R(pg), and O(pg) are the sets
of included fluent leaves, action leaves, relations, and Or-
nodes, respectively.

Detections of actions and fluents are jointly considered
for pg where temporal spacing between the two is within a
latent time, δ, which can be pre-learned by optimizing the
hit rate as latency increases. Latent time between flipping
a switch and the light turning on is kept near instantaneous,
whereas latent time between pushing an elevator call button
and the elevator’s arrival affords more leniency.

2.3. Reasoning over time

Over time, a fluent takes a sequence of values
(F1, . . . , Fn) and a series of actions (A1, . . . , Ak) are per-
formed. The C-AOG models causal relationships as the flu-
ent value transitions from Ft−1 to Ft. In this section, we
bind the C-AOGs sequentially to model a sequence of parse
graphs, PG = (pg1, . . . , pgn), explaining a longer video.
Greedily connecting the pg yields two concerns: (1) Subse-
quent parse graphs must be consistent, and (2) The process
is non-Markovian.

2.3.1 Consistency of transitions between parse graphs

Subsequent pgt−1 and pgt from PG both contain the fluent
value at t − 1. Combining the parse graphs pgt and pgt−1
shown in Figure 4 requires pg′ to maintain consistency—
the final value of the former must match the incoming value
of the latter. For example, multiple detections of flipping a
light switch cannot all cause the light to turn on unless the
light is turned off between them. The following state tran-
sition probability enforces consistency between subsequent
parse graphs:

P (pgt|pgt−1) =

{
0, if pgt−1, pgt inconsistent
1, otherwise.

(3)
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Figure 4. Inconsistent state transition.

2.3.2 Non-Markovian duration

Fluents such as the computer monitor are non-Markovian:
rather than following an exponential fall-off, the screen-
saver activates after a set amount of time (usually 5 minute
increments), following a predictable distribution such as
shown in Figure 5. Further, while a Markov process can in-
sert the hidden trigger “thirst” between two subsequent ob-
servations of “drink”, it has difficulty consistently matching
human estimates as to where the insertion should go.
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Figure 5. Fluent durations.

Both problems can be resolved by modeling the dura-
tion for which a given fluent maintains a particular value,
P (τ |F ). We assume subsequent durations are indepen-
dent, given the fluent value. P (τ |F ) can be approximated
with step functions, discretizing the probability model. The
models for P (τ |F ) can be directly coded (e.g., screensaver)
where commonsense knowledge is available, and learned by
MLE otherwise.

2.3.3 Hidden semi-Markov model for inference of the
sequential parse graphs

PG1

τ1

L1

PG2 PG3

τ2 τ3

L2 L3

Figure 6. Hidden semi-Markov model.

A hidden semi-Markov model [16] can accommodate the
non-Markovian duration terms while enforcing consistency.



The graphical model shown in Figure 6 captures our as-
sumed dependencies. In this model, PGt from the C-AOG
is repeated for a duration of τt. Lt represents the sequence
of observed fluents and actions under PGt. The following
conditional probability distributions govern the state transi-
tions as well as handle a counter for the duration:

P (PGt = pg|PGt−1 = pg′, τt−1 = d)

=

{
1(pg, pg′), if d > 0 (remain in same state)
P (pg|pg′), if d = 0 (transition per Eq. 3).

(4)

P (τt = d′|PGt = pg)

=

{
1(d′, d− 1), if d > 0 (decrement)
P (τ |F ), if d = 0 (per Sec. 2.3.2).

(5)

d and d′ count down the duration, and 1 is the Dirac
delta function. The optimal sequence explaining the video
is given by

PG∗, τ̃∗ = argmax
PG,τ̃

P (PG, τ̃ |V ), (6)

where τ̃ = (τ1, . . . , τn) represents the durations corre-
sponding to elements of PG. To calculate PG∗ and τ̃∗,
we run a Viterbi algorithm with equations

Vt(pg, τ) (7)

, maxpg′,τ ′

P
PGt = pg, τt = τ,

PGt−1 = pg′, τt−1 = τ ′,

L1:t = l1:t


 (8)

=P (lt−τ+1:t|pg)

max
pg′,τ ′

P (pg|pg′)P (τ |F )Vt−τ (pg′, τ ′). (9)

By defining Vt(pg) , maxτ Vt(pg, τ), we can separate the
maximization over τ from the state space:

Vt(pg) = max
τ

[
P (lt−τ+1:t|pg)P (τ |F )

max
pg′

P (pg|pg′)Vt−τ (pg′)

]
. (10)

Derivations are provided in the supplemental materials.
By precomputing P (lt−τ+1:t|pg) (see action detection in
Sec. 3.5), the complexity is O(T · |PG|2 · |τ |) where |τ | is
the maximum duration considered. This model can be ap-
proximated by an HMM with the addition of more nodes,
increasing complexity.

To reduce complexity, we index t over detected change
points (time points with either a fluent change or action de-
tection). In order to accommodate this simplification, we
assume at most one missed fluent change occurred between
them. In particular, we consider it possible that a light gets
turned off between two detections of turning on, but we ig-
nore the chance that there would be multiple missed detec-
tions of on/off. If pgt−1 and pgt are inconsistent, we try

to optimally insert a new change point, t′ ∈ (t − 1, t) as
shown in Figure 4, interpreting the inconsistency as missed
information. P (τ |F ) informs where to insert this change.

In general, all instances between these change points are
best explained by the non-action causal parse graph: the
fluent maintains status because no change-inducing action
occurred. By jointly optimizing the parse graphs over time,
we avoid early decisions, allowing new information to re-
vise previous conflicts.

3. The causality video dataset and experiments

3.1. The causality video dataset

This paper introduces a new video dataset (examples
shown throughout) to evaluate reasoning amid hidden flu-
ents and actions. The 4D-Kinect data from multiple scenes
includes RGB images with depth information and extracted
human skeletons. Table 1 lists the 13 objects and the cor-
responding fluents included in the dataset and summarizes
the number scenes, clips, and frames of each. The average
clip length is approximately 300 frames. Fluents changes
last an average of 13 frames, and actions take an average
of 98 frames to complete. A small training set provides
between 3 and 10 instances of each fluent change, action,
and causal relationship. Fluents with a small number of
clips are case studies, and not included in summary results.
The dataset is available at http://vcla.stat.ucla.
edu/Projects/CausalReasoning/.

Unlike the activity recognition datasets mentioned
in Section 1.1, this causality dataset showcases cause
and effect relationships between actions and object re-
sponses/fluent changes. This dataset includes long-term
scenes that require reasoning over time.

Placed among human-centric causal contexts, the in-
cluded fluents reflect a cross-section of those that are de-
tectable (e.g., the light is on or off), confusable (e.g., the
refrigerator door fluent is confused with the office door flu-
ent), and inferable (e.g., that the waterstream is on is in-
ferred when the filling cup action is detected).

This dataset specifies the particular values fluents can
take, discretizing the continuum in intuitive ways. For ex-
ample, it is nearly impossible to infer beyond a cup having
more/less/same, just as it is hard to quantify the amount of
fill of a balloon (empty/not).

The dataset includes ambiguity in actions. Some view-
points occlude actions, providing ambiguity where the ac-
tion would otherwise be detectable (e.g., a person posi-
tioned in front of a computer, occluding the action of using
the computer). Some actions are confused for others (e.g.,
taking a drink and making a phone call have similar poses).
Other actions are hard to detect (e.g., a person presses a
small button to start the microwave).



Table 1. Dataset Included Action/Fluent Relationships

Object Fluent Values Causing Actions nScenes nClips nFrames

door open/closed open door, close door 4 50 10611
light on/off turn light on/off 4 34 16631
screen on/off use computer 4 179 56632
phone active/off use phone 5 68 30847
cup more/less/same fill cup, drink 3 48 16564
thirst thirsty/not drink 3 48 16564
waterstream on/off fill cup 3 40 14061
trash more/less/same throw trash out 4 11 2586
microwave open/closed,

running/not
open door, close door
turn on

1 3 4245

balloon full/empty blow up balloon 1 3 664
fridge open/closed open door, close door 1 2 2751
blackboard written on/clear write on board, erase 1 2 5205
faucet on/off turn faucet on/off 1 2 3013

3.2. Ground truth: Human annotation

To evaluate results, we collected multiple human anno-
tations by showing video clips with actions, fluent changes,
and non-actions. Participants provided an estimation on a
scale of 0 to 100 for actions and fluent changes in each clip
(e.g., Did the human dispense water to the cup? Is the cup
more full, less full, or the same as in the previous clip? Is
the human thirsty?). Between 1 and 7 clips were shown se-
quentially to create larger video sequences that included up
to 4 objects. Participants were encouraged to revise their
answers when new information warranted.

The annotators were both computer vision students and
lay-people. There were 21 total annotators. Each video had
between 5 and 7 independent annotators.

The responses by annotators varied, producing a higher
number of distinct annotations for ambiguous (occluded)
scenes than for “detectable” ones. Figure 9 shows an ex-
ample of this. When asked for the monitor’s status, humans
produced the probabilities shown in the heat maps at the
bottom of Figure 9. The computer screen is not visible, and
humans (generally and specifically) exhibited large variabil-
ity in examining hidden values. While they all agreed that
the actor in this case was using the computer, they lacked a
consensus as to whether the screen was on or off or transi-
tioning between the two. Each distinct response provides a
different interpretation for the events in the scene (such as
the two ways to interpret the Necker cube).

We base ground truth on human annotations in order to
preserve these multiple interpretations. Requiring a com-
puter to land on a single (seemingly arbitrary according to
what is visible in the scene) physical interpretation fails to
reflect the nature of the problem. We accept each human
answer as a possible ground truth (i.e., a valid interpretation
of the scene), preserving all annotations.

3.3. Protocol for experiment evaluation

We compare each computer (noise, detection, C-AOG,
sequential C-AOG) to its own nearest-human response, that
is, the human whose response for the video sequence is clos-
est to the computer’s as measured by the Manhattan dis-
tance. It is important to compare a computer to a single
human for an entire video because we expect reasoning to
occur across the clips.

Hits are calculated when a computer response exactly
matches the nearest human response for a single query.

Ground truth positives are registered when the nearest
human awarded more than 50% to a single answer, where
50% indicates a preference for the choice. This threshold
was used to determine whether a miss was a “false positive”
or a “false negative”; and whether a hit was a “true positive”
or a “true negative”.

3.4. Baseline: Noise

“Noise” answers all queries as equally likely, and pro-
vides a comparison lower bound.

3.5. Baseline: Detection

We use machine learning algorithms for the bottom-up
detection of fluent changes and actions.

Fluents: To calculate E(lF |F ), we use a 3-level spatial
pyramid to compute features with 1, 4, and 16 blocks. Peo-
ple detected by the Kinect are removed. The feature vector
contains the mean, maximum, minimum, and variance of
intensity and depth changes between subsequent frames at
each level, using 6 window sizes from 5 to 30 frames. The
GentleBoost algorithm is trained on 3 to 7 examples of each
fluent change.

Actions: To compute E(lA|A), we calculate pose fea-
tures from the relative locations of each joint of the hu-
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Figure 7. Human poses and depth images (before and after a flu-
ent change) for actions as captured by the Kinect, together with
sample frames.

man skeleton as detected by the Kinect, shown in Fig-
ure 7. To calculate E(R), we bind the nodes by modeling
ψ(ṽ) = P (vn|vn−1, dn−1) (where dn−1 is the duration the
pose has been classified as vn−1) with logistic regression
over n, similar to [29]; model parameters were trained with
a multi-class SVM. Dynamic programming beam search
[27] runs over the video, retaining only the top k perform-
ing action parse graphs. It is important to keep k high as
beam search runs the risk of omitting the true action detec-
tion; we used k = 1, 000, 000. These values are propagated
up the graph, providing a per-frame probability of each ac-
tion category, over which we slide windows of 50, 100, and
150 frames to recognize complete top-level actions at dif-
ferent scales. These top-level action detections provide the
“detection” baseline for actions and are used to precompute
P (lt−τ+1:t|pg), assigned according to the highest-scoring
parse graph after the beam search.

Non-maximum surround suppression provides fluent and
action detections for the “detection” baseline. The action
and fluent detections exhibit missed and incorrect detections
typical in vision.

3.6. Results

Bottom-up fluent and action detections in Figure 8 are
improved (and clarified) by applying the sequential C-AOG
developed in this paper. The action detectors (second and
third plots) use pose to detect open/close actions, with-
out distinguishing objects. Using the sequential C-AOG
to combine these action detections with those of the mi-
crowave fluent (first plot) shows only some should be la-
beled “opening/closing the microwave”.

Figure 9 shows results from detectors and the sequential
C-AOG for light and screen fluents. The fluent detectors
erroneously detect multiple light and monitor changes as the
light turns on (once) and the camera adjusts; the sequential
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Figure 8. Microwave. Results from fluent and action detectors,
superimposed with causal reasoning results. Step functions mark
fluent changes–up for turning on, down for turning off.
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Table 2. Hit rates for actions and fluents. Cup action is a combination of thirst and waterstream. Italics mark the undetectable fluents.

trash door cup light screen thirst phone waterstream Average
A

ct
io

n Noise 0.10 0.00 N/A 0.00 0.12 0.03 0.00 0.00 0.04
Detection 0.62 0.45 N/A 0.57 0.61 0.41 0.33 0.38 0.48

Seq. C-AOG 0.87 0.58 N/A 0.80 0.67 0.76 0.40 0.88 0.71

Fl
ue

nt Noise 0.00 0.00 0.00 0.00 0.25 0.08 0.00 0.00 0.04
Detection 0.00 0.42 0.00 0.43 0.17 0.11 0.00 0.00 0.14

Seq. C-AOG 0.77 0.53 0.62 0.61 0.74 0.57 0.19 0.81 0.61

Table 3. Average PR over fluents and actions combined.

Precision Recall

Detection 0.29 0.31
C-AOG 0.55 0.61

Seq. C-AOG 0.63 0.69

C-AOG mostly corrects these.
Table 2 shows performance on individual actions and flu-

ents. In all categories (as well as overall—see Table 3), us-
ing the sequential C-AOG to jointly infer actions and fluents
outperforms the independent fluent and action detections.
Only the door, light, and screen fluents were detectable
(undetectable fluents shown with italics). On these exam-
ples, action and fluent detections integrate and compete to
provide higher overall performance under the sequential C-
AOG. For undetectable fluents, the sequential C-AOG com-
bines action detections with the prior causal understanding
and consistency over time.

Low detection rates in Table 2 indicate how challeng-
ing the dataset is. Nonetheless, “detection” outperforms
“noise”, and the sequential C-AOG outperforms both.

Table 2 also highlights that humans had difficulty anno-
tating some clips. Categories where “noise” had a non-zero
hit rate (e.g., trash) indicate that noise matched at least one
human perfectly, or that some humans were completely un-
certain for some queries. This underscores the need for
multiple annotations and how there is no so-called perfect
ground truth.

Finally, Table 2 provides evidence that different anno-
tations were used as ground truth for different computers.
Since the thirst fluent is hidden, “detection” and “noise”
both consider it equally likely for the agent to be thirsty, not
thirsty, or transitioning between the two. However, action
detections allowed “detection” to be compared to a differ-
ent human than “noise”.

Table 3 compares overall precision and recall for results
obtained using detectors alone, the C-AOG, and the sequen-
tial C-AOG developed in this paper. The sequential C-AOG
outperforms both raw detectors and the non-sequential C-
AOG, highlighting the need to bind the C-AOG over time.

4. Discussion and summary
In this paper, we introduced a probability model for the

sequential C-AOG, enabling joint inference of hidden flu-
ents and actions from video. This generative model con-
nects cognition to vision over time with higher-level rea-
soning.

Analogous to how humans infer actions and fluents given
limited visual cues, joint inference with our Viterbi algo-
rithm revised conclusions from early information, improved
existing detections, and filled in those that were hidden or
missed. Inference of hidden fluents (both as triggers and as
effects) provides deeper cognition that can be used to un-
derstand, predict, and replicate human actions.

This paper introduced a video dataset to study cause and
effect relationships, bridging the gap left by current action
datasets.

While the size of this dataset prohibited the use of deep
learning detectors (e.g., CNN), it nevertheless reflects what
is possible for human knowledge acquisition: humans can
learn causal relationships from a small number of examples.
Further, “strong” detectors for fluents would have made lit-
tle difference since most of the fluent misdetctions were oc-
cluded.

Action ambiguities make detection challenging. While
we trained actions with 4D-Kinect data for generalizabil-
ity, actions were still limited to the ways our system saw
them. How people turn a light on might not look the same
from one room or context to the next, yet the relation to the
fluent is the same: when the light turns on, we match the
words “turn the light on” to the observed action. Classify-
ing actions according to their causal effects can provide a
meaningful way to resolve ambiguity for judging actions.
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Appendix: The Viterbi algorithm

In this section, we expand our development of our Viterbi algorithm for the hidden semi-Markov
model (HSMM), following the notation and development used in [1]. Let Vt(pg, τ) be the maximum
likelihood that partial state sequence ends at t in state pg of duration τ .

In the paper, we showed the HSMM in Figure 1 below.

PG1

τ1

L1

PG2 PG3

τ2 τ3

L2 L3

Figure 1: Hidden semi-Markov model

To help develop the Viterbi equations, however, we introduce Ct to indicate that τt is complete and,
hence, the state is now allowed to change to PGt+1 and select a new duration τt+1.

PG1

τ1

L1

C1

PG2 PG3

τ2 τ3

C2 C3

L2 L3

Figure 2: Hidden semi-Markov model with completion nodes

We denote variables as follows:

• PGt is the random variable for the state space, covering parse graphs from the C-AOG.

• τt is the duration that the sequence remains in state PGt. It is set following P (τ |Ft) and
then deterministically counts down.

• Ct is a binary indicator for whether PGt = pg is complete and the system is moving to a
new pg′ and τ ′.

• l1:t is the subsequence emitted from 1 to t, and incorporates detections for actions and
fluents.

• d is a counter for the current duration countdown

• 1(a, b) is the Dirac delta function

Under Figure 2, the hidden semi-Markov model is governed by the following 4 conditional probability
distributions:
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1. Transition states:

P (PGt = pg|PGt−1 = pg′, Ct−1 = c) =

{
1(pg, pg′), if c = 0 (remain in same state)
P (pg|pg′), if c = 1 (transition)

(1)
2. Reset the duration counter:

P (τt = d′|PGt = pg, Ct−1 = 1) = P (τ = d′|F ) (2)

3. Continue counting down:

P (τt = d′|τt−1 = d, PGt = pg, Ct−1 = 0) =

{
1(d′, d− 1), if d > 0

undefined, if d = 0
(3)

4. Set to complete when counter is at 0:
P (Ct = 1|τt = d) = 1(d, 0) (4)

Using Ct, we define:

Vt(pg, τ) , max
pg′,τ ′

P (PGt = pg, Ct = 1, τt = τ, (5)

PGt−1 = pg′, τt−1 = τ ′, Ct−1 = 1, l1:t)

= max
pg′,τ ′

[P (lt−τ+1:t|PGt = pg) (6)

P (PGt = pg, τt = τ, PGt−1 = pg′, τt−1 = τ, Ct−1 = 1, l1:t−τ )]

= max
pg′,τ ′

[P (lt−τ+1:t|PGt = pg) (7)

P (PGt = pg, τt = τ |PGt−1 = pg′, τt−1 = τ)

P (PGt−1 = pg′, τt−1 = τ ′, Ct−1 = 1, l1:t−τ )]

= P (lt−τ+1:t|PGt = pg) (8)
max
pg′,τ ′

[P (PGt = pg, τt = τ |PGt−1 = pg′)

P (PGt−1 = pg′, τt−1 = τ ′, Ct−1 = 1, l1:t−τ )]

= P (lt−τ+1:t|PGt = pg)

max
pg′,τ ′

P (PGt = pg, τt = τ |PGt−1 = pg′)Vt−τ (pg
′, τ ′) (9)

= P (lt−τ+1:t|pg) max
pg′,τ ′

P (pg, τ |pg′)Vt−τ (pg′, τ ′) (10)

Since we assume the conditional independence
P (pg, τ |pg′) = P (pg|pg′)P (τ |pg, pg′) = P (pg|pg′)P (τ |pg) = P (pg|pg′)P (τ |F ), (11)

Vt(pg, τ) becomes
Vt(pg, τ) = P (lt−τ+1:t|pg) max

pg′,τ ′
P (pg|pg′)P (τ |F )Vt−τ (pg′, τ ′) (12)

= P (lt−τ+1:t|pg)P (τ |F ) max
pg′,τ ′

P (pg|pg′)Vt−τ (pg′, τ ′) (13)

= P (lt−τ+1:t|pg)P (τ |F )max
pg′

[
P (pg|pg′)max

τ ′
Vt−τ (pg

′, τ ′)
]
. (14)

(15)

To separate the duration from the state space, define:

Vt(pg) , max
τ

Vt(pg, τ). (16)

Therefore,

Vt(pg) = max
τ

[
P (lt−τ+1:t|pg)P (τ |F )max

pg′
[P (pg|pg′)Vt−τ (pg′)]

]
. (17)
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