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Abstract

This paper addresses the problem of inferring 3D
human attention in RGB-D videos at scene scale.
3D human attention describes where a human is
looking in 3D scenes. We propose a probabilis-
tic method to jointly model attention, intentions,
and their interactions. Latent intentions guide hu-
man attention which conversely reveals the inten-
tion features. This mutual interaction makes atten-
tion inference a joint optimization with latent inten-
tions. An EM-based approach is adopted to learn
the latent intentions and model parameters. Given
an RGB-D video with 3D human skeletons, a joint-
state dynamic programming algorithm is utilized to
jointly infer the latent intentions, the 3D attention
directions, and the attention voxels in scene point
clouds. Experiments on a new 3D human attention
dataset prove the strength of our method.

1 Introduction
Inferring 3D human attention is an important issue in many

applications. For example, in a task of human-robot collabo-
ration, perceiving where the human is looking in the 3D scene
is crucial for the robot to infer the human’s intentions, and
therefore to communicate or interact with the human.

Inferring 3D human attention at scene scale is a challeng-
ing problem. First, in 3D space, human attention has weak
observable features but huge degrees of freedom. As Figure 1
shows, at the scale of daily-activity scenes, it is hard to obtain
effective features of eyes or faces that are directly related to
the human attention. Moreover, the human activity sequence
data captured by RGB-D sensors are noisy. Different human
activities present various poses, motions, and views, which
makes it hard to precisely estimating the attention across dif-
ferent activities.

Human attention is related to human intentions [Land et al.,
1999]. The attention driven by different intentions presents d-
ifferent observation features and motion patterns. Land et al.
[Land et al., 1999] divided the roles of human fixations into
four categories: locating objects, directing hands, guiding an
object to approach another, and checking an object’s status.
As Figure 1 shows, when the person’s intention is to locate

checking the mug's status

checking the book's status

locating the dispenser

Figure 1: Human attention and intentions in a 3D scene.

the dispenser, his attention sweeps from the table to the dis-
penser; while fetching water from the dispenser, his intention
is to check if the mug is full and his attention steadily focuses
on the mug.

The driving rules of intentions acting on attention can be
independent of activity categories. For example, in Figure 1,
the attention driven by the intention checking status always
presents as steadily focusing, even in different activities. This
phenomenon makes it possible to infer the attention with the
same rules across different activities. However, these driving
rules are hidden and should be learned from data.

This paper proposes a probabilistic method to infer 3D hu-
man attention by jointly modeling attention, intentions, and
their interactions. The attention and intention are represent-
ed with features extracted from human skeletons and scene
voxels. Human intentions are taken as latent variables which
guide the motions and forms of human attention. Conversely,
the human attention reveals the intention features. Attention
inference is modeled as a joint optimization with latent hu-
man intentions.

We adopt an EM-based [Bishop, 2006] approach to learn
the model parameters and mine the latent intentions. Giv-
en an RGB-D video with human skeletons captured by the
Kinect camera, a joint-state dynamic programming algorithm



is utilized to jointly infer the latent intention, the 3D attention
direction, and the attention voxel in each video frame.

We collected a new dataset of 3D human attention. This
dataset includes 14 categories of human activities and 150
RGB-D videos with 3D human skeletons. The experimental
results on this dataset prove the strength of our method.

1.1 Related Work
Attention in psychology and cognition. Human attention

has been intensively studied in psychology and cognitive sci-
ence [Yarbus, 1967; Land et al., 1999; Scholl, 2001; Yu and
Smith, 2015]. Some studies indicate that human attention is
related to human intentions and objects [Land et al., 1999;
Scholl, 2001]. Land et al. [Land et al., 1999] defined four
roles of human fixations. Scholl [Scholl, 2001] presented that
attention was object-based. These works inspire us to study
computational models for attention inference.

2D Attention. To model attention in images or videos,
bottom-up and top-down cues are utilized [Itti et al., 1998;
Hou and Zhang, 2008; Liu et al., 2011; Damen et al., 2016;
Recasens et al., 2015; Duan et al., 2013; Mnih et al., 2014;
Benfold and Reid, 2009; Marin-Jimenez et al., 2014; Zhang
et al., 2015; Li et al., 2013; Borji et al., 2012; Fathi et al.,
2012; Belardinelli et al., 2015]. Visual saliency focuses on
the attention of humans who look at the image [Itti et al.,
1998; Hou and Zhang, 2008; Liu et al., 2011]. Recasens et
al. [Recasens et al., 2015] combined saliency maps and hu-
man head information to follow gazes in 2D images. Fathi et
al. [Fathi et al., 2012] jointly modeled gazes and actions in
videos.

In some cases, incorporating top-down information, like
human activities, into attention modeling might be ineffec-
tive. This is because a human who is performing an activity
does not necessarily look at the targets that are related to the
activity. Our model incorporates latent intentions into human
attention and mines the hidden driving rules to infer attention.

3D Attention. Many works have been done on 3D human
attention [Sugano et al., 2014; Jeni and Cohn, 2016; Funes-
Mora and Odobez, 2016; Mansouryar et al., 2016; Chen et
al., 2008; Lanillos et al., 2015]. Funes-Mora and Odobez
[Funes-Mora and Odobez, 2016] estimated gaze directions
based on head poses and eye images. Chen et al. [Chen et al.,
2008] estimated 3D gaze directions with eye features.

Many studies estimate 3D gazes based on eye or face fea-
tures. In daily-activity scenes where the captured videos are
with low resolution, the eye or face features are hard to be
obtained. Our method utilizes human skeleton and scene fea-
tures to infer not only attention directions but also the atten-
tion voxels in scenes. It does not need eye or face features
and therefore can be applied in larger scenes.

2 Attention and Intention Representation
Each video frame includes RGB-D data and a 3D human

skeleton, which are recorded by a Kinect camera. The 3D hu-
man skeleton is a collection of 3D location coordinates of the
body joints, as shown in Figure 2 (a). The scene point clouds
defined by the scene depth data are converted into voxels, as
shown in Figure 2(b). A voxel is a cube in 3D point clouds
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Figure 2: Attention and intention representation. (a) The attention
direction and voxel. (b) Scene point clouds and voxels. (c) The
voxel height and distance. (d) The voxel features.

and it is like a pixel in 2D images. We define attention and
intention features based on the 3D human skeletons and the
scene voxels.

2.1 Attention
In 3D space, human attention includes two attributes: the

direction and the voxel, as shown in Figure 2(a). The atten-
tion direction is a 3D vector with unit length which describes
the sight line direction from the human head to what is looked
at. In the attention direction, the voxel at which the sight line
intersects with the scene point clouds is the attention voxel.

In daily activities, the directions of human body parts im-
ply the attention directions. For example, when a human is
manipulating an object with the hands, the directions from
the head to the hands strongly signal the attention direction.
We define the observation features of attention directions with
eight directions extracted from human skeletons, such as the
normal vector of the head and shoulder plane, the directions
from the head to the hands, etc.

To normalize the data, all human skeletons are aligned to a
reference skeleton with similarity transformation. The eight
observation directions are defined on the aligned skeletons.
The encapsulation of the eight normalized direction vectors
is the observation feature of the attention.

2.2 Intention
In our work, intentions are discrete latent variables and de-

scribe the human attention motivation. The observation fea-
ture of an intention is the encapsulation of the attention fea-
ture and the voxel feature. The attention feature is defined in
Section 2.1. It characterizes the attention direction patterns in
intentions.

The voxel feature is defined with the attention voxel and
its neighbouring voxels, as shown in Figure 2(c) and Fig-
ure 2(d). The voxel feature is composed of the height part
and the distance part. Around the attention voxel, we define a
Nx×Ny×Nz cubic grid of voxels, whereNx,Ny, andNz
are voxel numbers along the axis X , Y , and Z, respectively.
The height feature is a Nx × Ny × Nz-dimensional vector



Figure 3: Joint probabilistic model of human attention and latent
intentions.

whose entries correspond to the Nx × Ny × Nz voxels in
the cubic grid. The value of each entry is the height of the
corresponding voxel relative to the floor. The distance fea-
ture is defined in a similar way but the vector entry value is
the distance from the voxel to the human head.

The height feature reflects the spatial configuration of
the attention voxels. The distance feature characterizes the
human-scene interaction.

3 Model
Let X = (x1, ...,xτ ) be a video sequence of length τ .

Each video frame xt includes a 3D human skeleton and the
scene voxels. Given X, the goal is to infer the attention
direction and the attention voxel in each video frame. Let
Y = (y1, ...,yτ ) be the attention direction sequence, where
yt denotes the attention direction in frame xt.

In each frame, we introduce a latent variable lt to repre-
sent the latent intention. l = (l1, ..., lτ ) denotes the intention
sequence of all the frames in X.

We use a probabilistic model to jointly represent X, l, Y,
and their relations in time and 3D space, as shown in Figure 3.
The joint probability is

p(X, l,Y|θ) = p(l1)

τ∏
t=1

p(ψ(xt)|lt,yt)
τ∏
t=2

p(lt|lt−1)

· p(y1|l1)
τ∏
t=1

p(φ(xt)|yt, lt)
τ∏
t=2

p(yt|yt−1, lt, lt−1).

(1)

θ is the set of model parameters. ψ(xt) and φ(xt) are the
intention and attention features, respectively, extracted from
frame xt as defined in Section 2. They are abbreviated as ψt
and φt below. p(ψt|lt,yt) represents the intention identifica-
tion and p(φt|yt, lt) is the attention observation probability.
p(lt|lt−1) and p(yt|yt−1, lt, lt−1) describe transition rela-

tions of intentions and attention in two successive frames, re-
spectively. p(l1) and p(y1|l1) characterize the initial states of
the intention and the attention, respectively.

As Figure 3 shows, our model is a joint representation of
the intention and the attention. The intentions guide not only
the attention observations but also the attention transitions.
Conversely, the intention observation features depend on the
voxels observed by the human.

Our model is similar but different from the switching dy-
namic models [Kim, 1994; Ghahramani and Hinton, 2000].

In our model, the latent variables of attention and intentions
have different observation features.

3.1 Attention Model
We model human attention under the framework of the lin-

ear dynamic system (LDS) [Bishop, 2006]. Different from
the conventional LDS, we introduce an additional layer of la-
tent variables to control the observation and motion patterns.

Initial attention y1 is modeled as:

y1 = µl1 + u,

u ∼ N (0,Vl1),
(2)

where µl1 is the prior value of y1 conditioned on intention l1.
u is the noise which follows Gaussian distribution with mean
0 and covariance Vl1 . The initial attention probability is

p(y1|l1) = N (y1|µl1 ,Vl1). (3)

Attention observation describes the generation relation of
the attention and the observation, which is formulated as:

φt = Cltyt + v,

v ∼ N (0,Σlt),
(4)

where v is the noise which follows Gaussian distribution with
mean 0 and covariance Σlt . The generation matrix Clt is
governed by the intention lt, which reflects the intention con-
straints on the attention observations. The attention observa-
tion probability is

p(φt|yt, lt) = N (φt|Cltyt,Σlt). (5)

Attention transition describes the temporal relations be-
tween attention in successive frames, which is formulated as

yt = Alt−1,ltyt−1 + w,

w ∼ N (0,Γlt−1,lt),
(6)

where w is the noise which follows Gaussian distribution
with mean 0 and covariance Γlt−1,lt . The transition ma-
trix Alt−1,lt is related to the intentions in successive frames,
which reflects the intention constraints on the attention mo-
tions. The transition probability model is

p(yt|yt−1, lt, lt−1) = N (yt|Alt−1,ltyt−1,Γlt−1,lt). (7)

3.2 Intention Model
Intention model is composed of three parts: initial inten-

tion, intention identification, and intention transition.
Initial intention describes the prior knowledge about the

intention in the first frame. It is formulated as:

p(l1 = i) = λi, (8)

where λ is a discrete probability vector, and its ith entry λi

represents the probability of the ith intention category.
Intention identification is formulated as

p(ψt|lt,yt) ∝ p(lt|ψt,yt,ω). (9)

p(lt|ψt,yt,ω) is the posterior probability and ω is the pa-
rameter of a linear classifier. The classifier is trained with
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Figure 4: Joint-state dynamic programming. (a) Seed voxels in a video. The warmer colors indicate more recent time. (b) Candidate voxels.
(c) Inference on a sequence, where two intention states are used to illustrate the algorithm.

Support Vector Machine and the scores output by the classi-
fier are converted to probabilities [Chang and Lin, 2011].

The intention observation is dependent on the attention
voxels related to the attention direction yt, which reflects the
joint relations between the intentions and the attention.

Intention transition describes the relations of intentions
in two successive frames, which is represented as

p(lt = j|lt−1 = i) = Λij , (10)

where Λ is the transition matrix. The entry Λij in the ith row
and jth column is the probability of the transition from the
ith intention category to the j intention category.

4 Inference
Given an RGB-D video X, we aim to infer the 3D human

attention in each video frame, which is formulated as

Y∗ = argmax p(Y|X,θ), (11)

where
p(Y|X,θ) =

∑
l
p(l,Y|X,θ).

Dynamic programming is one of the most widely-used
algorithms to interpret temporal sequences [Forney, 1973].
However, the attention and intentions are correlated, which
means the conventional dynamic programming is inapplica-
ble in our task.

We adopted a joint-state dynamic programming method to
solve Equation (11). The general procedures of the algorith-
m include: 1) in each video frame, a seed voxel is proposed,
as shown in Figure 4 (a); 2) the seed voxel generates candi-
date attention voxels in a cube around the seed, as shown in
Figure 4 (b); 3) the candidate voxels and all intentions are
combined to form joint states; a joint state includes an atten-
tion voxel (direction) and an intention; 4) the dynamic pro-
gramming [Forney, 1973] is performed on these joint states
to produce the attention voxels (directions) and the latent in-
tentions, as shown in Figure 4 (c).

In each frame, we use attention features extracted from hu-
man skeletons to propose possible attention directions, which
intersect with the scene to produce the seed voxels. Around
the seed voxel, we define a cube containing M neighbouring
voxels as candidate attention voxels. Connecting the human

head and these candidate voxels generates a set of candidate
directions Yt = {y(1)

t , ...,y
(M)
t }. In each frame, the joint

state space is formed with Yt and all possible intentions.

5 Learning
Let θ = {µi,Vi,Ci,Σi,Aij ,Γij ,ω,λ,Λ} be all the pa-

rameters of the model. The subscripts i, j indicate parameter-
s of different intentions. Given N videos and their attention
sequences {(X1,Y1), ..., (XN ,YN )}, the goal is to learn θ
from the N samples by maximizing the likelihood function,

θ∗ = argmax

N∑
n=1

ln p(Xn,Yn|θ), (12)

where
p(Xn,Yn|θ) =

∑
ln

p(Xn, ln,Yn|θ).

ln is the latent intention sequence of the nth video sample.
Inspired by the general EM algorithm [Bishop, 2006], we

optimize Equation (12) with the following steps.
1) Initialize ln for each training sequence (n = 1, ..., N)

and compute corresponding θold with Equation (14).
2) Compute the optimal latent intention sequence ln

∗
for

each training sequence (n = 1, ..., N),

ln
∗
= argmax p(ln|Xn,Yn,θold). (13)

3) Compute new parameter θnew by optimizing

θnew = argmax
∑N

n=1
ln p(Xn, ln

∗
,Yn|θ) (14)

4) If the convergence condition is met, stop and output the
results; else set θold = θnew and return to step 2).

In step 1), we use k-means to cluster the intention features
and produce the initial intention labels. In step 2), we com-
pute the optimal latent intention sequence ln

∗
with the dy-

namic programming. In step 3), Equation (14) is optimized
by computing derivatives of the log likelihood function with
respect to the parameters.



Direction Error Voxel Error
Multi-Reg 0.63 0.84
LDS-KF 0.66 0.89

Our Method 0.60 0.79

Table 1: The overall performance comparison of different methods
on attention prediction.

6 Experiment
6.1 3D Attention Dataset

We collected a 3D attention dataset. Volunteers freely per-
formed daily activities in several scenes. A Kinect camera
was used to capture the RGB-D videos and 3D human skele-
tons. We also scanned and synthesized the point clouds of
the whole scenes where the activities were performed. The
groundtruth of 3D attention locations were manually annotat-
ed in the synthesized scenes.

This dataset includes a total of 150 RGB-D videos with 3D
human skeletons and 14 activity categories: drink water with
mug, drink water from fountain, mop floor, fetch water from
dispenser, fetch object from box, write on whiteboard, move
bottle, write on paper, watch TV, throw trash, use computer,
use elevator, use microwave, and use refrigerator.

6.2 Evaluation
Our evaluations include predictions of attention directions

and attention voxels. We use the average distance between
the predicted value and the groundtruth value as the predic-
tion error. Each attention direction vector is normalized to
unit length. For attention voxels, the distance is defined be-
tween the centers of the predicted voxel and the groundtruth
voxel. Sequence data is transformed into the whole synthe-
sized scene. The voxel features of intentions are computed in
the synthesized scenes.

We compare our method with two methods: Multivariate
Regression (Multi-Reg) and LDS with Kalman Filter (LDS-
KF) [Arulampalam et al., 2002]. Multi-Reg estimates the at-
tention directions with a multivariate linear model. Kalman
Filter estimates the attention directions in a linear dynamic
system. The comparison methods use the same attention fea-
tures with our method.

Table 1 shows the overall performance of different methods
on attention predictions. Our method achieves better results
than the other methods. Compared to the Kalman method, our
method achieves impressive improvement in performance by
introducing latent intentions.

Table 2 and Table 3 show the performance on different ac-
tivity categories. In many activity categories, our method
achieves better performance than other methods. These re-
sults prove that the proposed method can be used in different
activity categories.

Figure 5 visualizes examples of the attention voxel predic-
tion. The human attention in video 1 moves a large range
while in video 2 it focuses on a small area. Though the two
videos present different attention patterns, our method can
reasonably predict the attention.

Figure 6 visualizes examples of the attention direction pre-
diction. Those skeletons are noisy, contorted, and present

various poses, such as bend down, sit, stand, raise leg, etc.
Despite the challenges, our method achieves reasonable pre-
dictions. These examples also show that our method esti-
mates the human attention independent of specific activity
categories, which is a favorable characteristic in real appli-
cations.

7 Conclusion
This paper presents a method to infer 3D human attention

in RGB-D videos. We model the attention inference as a joint
optimization with latent intentions. An EM-based learning al-
gorithm is utilized to learn the latent intentions and the mod-
el parameters. We adopt a joint-state dynamic programming
algorithm to infer the latent intentions and the 3D human at-
tention. We collected a new dataset of 3D human attention
in RGB-D videos. Experimental results prove the strength of
our method. Our future work will focus on the related issues
of human mind modeling and human-robot collaboration.
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