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Abstract— Contact forces of the hand are visually unobserv-
able, but play a crucial role in understanding hand-object inter-
actions. In this paper, we propose an unsupervised learning ap-
proach for manipulation event segmentation and manipulation
event parsing. The proposed framework incorporates hand pose
kinematics and contact forces using a low-cost easy-to-replicate
tactile glove. We use a temporal grammar model to capture
the hierarchical structure of events, integrating extracted force
vectors from the raw sensory input of poses and forces. The
temporal grammar is represented as a temporal And-Or graph
(T-AOG), which can be induced in an unsupervised manner. We
obtain the event labeling sequences by measuring the similarity
between segments using the Dynamic Time Alignment Kernel
(DTAK). Experimental results show that our method achieves
high accuracy in manipulation event segmentation, recognition
and parsing by utilizing both pose and force data.

I. INTRODUCTION

Consider a complex manipulation event of a person open-
ing a medicine bottle with safety lock (Fig. 1). During this
process, a number of movement primitives were performed:
grasp, push-and-twist, push-and-twist, twist, and finally pull
the lid off the bottle. Even with the most state-of-the-
art action understanding and recognition algorithms (see
survey [1], [2]), it is still challenging to segment such action
sequence and parse the manipulation event. This is due to
three major difficulties: i) severe occlusions happen during
fine manipulation, especially self-occlusions, ii) in subtle
manipulation tasks, visual data may not be able to reveal
adequate knowledge to capture the quintessence. Certain
actions are hard to detect using skeleton data alone but need
additional force readings e.g., whether an action of pushing
was performed during twisting the lid, and iii) ground truth
data is difficult to obtain using vision sensor alone, often-
times impossible to obtain the needed information (e.g., the
force readings, and accurate finger poses during occlusions).

In this paper, we present an unsupervised learning method
for manipulation event segmentation, recognition and pars-
ing. The method not only accounts for the aforementioned
challenges, but also captures the temporal hierarchical struc-
ture of the manipulation sequence using a grammar model—
a temporal And-Or graph (T-AOG). Specifically, we inves-
tigate the manipulation actions of opening different types
of medicine bottles. Some examples are shown in Fig. 4a.
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Fig. 1: (a) A sequence of movement primitive demonstrated
by an agent for a manipulation task–opening a medicine
bottle captured by a tactile glove. (b) Reconstructed force
and pose data using the tactile glove. Our purposed method
segments and parses the noisy inputs of force and pose in
an unsupervised fashion.

Bottle 1 has no safety lock and can be opened by simply
twisting the lid. Bottle 2 requires pressing the lid while
twisting. Pinching the safety lock is needed to open Bottle
3. Importantly, some actions (e.g., pressing, pinching) are
difficult to observe visually, thus require additional sensing
for action recognition.

To obtain the force readings during manipulations, we
propose to study hand-object interactions with additional
force information through a low-cost, easy-to-replicate tac-
tile glove [3]. Although some efforts have been shown to
recover the forces during interactions using vision-based
methods [4], [5], [6], [7], [8], it remains an open problem
without adopting a hardware-based solution. Using a tactile
glove can reliably retrieve contact forces to overcome the
limitation of using visual data alone.

By observing the data collected using the tactile glove,
such as the force exerted on the palm, we can learn that a
push-down action is performed as well as a set of motion
primitives that can best describe the action sequences. Thus,
our system is able to “see”, in numerical terms, the forces
during hand-object interactions. We argue that this is an
important step in recognizing manipulation actions with
visually latent force information.

Still, it is nearly impossible to understand and transfer
the raw data (poses and forces) retrieved from the tactile
glove directly to a robot due to different embodiments.
Therefore, we need to reconstruct the semantic meanings of
manipulation events from the human demonstration, allowing
the transfer of abstract knowledge to a robot.

To recover the semantic meaning and model the temporal



Fig. 2: Unsupervised learning pipeline of hand-object motion recognition. After collecting the raw data using a tactile glove,
a spatial (HC (S)) and temporal (HC (T)) hierarchical clustering is performed on both force and pose data. An aligned cluster
analysis (ACA) is adopted to further reduce the noise. Event segmentation (ES (S) and ES (T)) is achieved by merging
motion primitives based on the distance measured by DTAK. Finally, a grammar is induced (GI) based on the segmented
events, forming a T-AOG.

structure of actions in a hand-object interaction, we repre-
sent the manipulation sequence using a T-AOG, a temporal
grammar model that captures the hierarchical structure of the
action sequences. Its terminal nodes are motion primitives,
e.g., twisting and pressing, which is learned by unsupervised
clustering over extracted features of the pose and force
sensory inputs. To evaluate the effectiveness of our model,
we compare the segmentation and labeling results of different
sensory data with several baseline methods.

A. Related Work

a) Action Recognition: A number of approaches have
been proposed for action recognition in various applications.
This literature is too wide to survey here; we refer readers
to two recent surveys for recognizing and parsing human ac-
tions [1], [2]. Recently, due to additional sensory input, RGB-
D sensors such as Kinect are capable of estimating 3D poses
from a single image [9]. Further studies have demonstrated
impressive results of pose estimation and action recognition
from RGB-D videos [10], [11], [12], [13], [14], [15]. These
works, however, focuses on body-size action recognition
without force sensing. In contrast, the presented work ad-
dresses the hand-size finer-grained manipulation actions with
reconstructed forces.

b) Vision-based Force Estimation: Brubaker et al. es-
timated contact forces and internal joint torques using a
mass-spring system [16], [17], [18]. More recently, Zhu
et al. [6] and Pham et al. [7] proposed to use numerical
differentiation methods to estimate hand-object interactions
during manipulation tasks. In computer graphics, sophisti-
cated physics-based soft-body simulation can calculate con-
tact force from video [5], [4]. These work, however, requires
prior knowledge of geometry and physical properties of the
manipulated objects. By using a tactile glove, estimating
forces in the present study does not rely on such assumptions.

c) Learning from Demonstration (LfD): A robot
must recognize and understand the actions sufficiently in
order to imitate the tasks from the demonstrations. LfD (also
imitation learning, learning by watching, or apprenticeship
learning) is too expansive to survey here; we refer readers
to a survey [19]. In the last few years, with the recent

rise of Convolutions Neural Networks, there are increasing
interests in providing and parsing demonstrations using pure
visual data [20] by learning action plans [21] and physical
interactions [22] in complex and higher-level tasks, e.g., cloth
folding [23]. However, it is yet still difficult to convey force
information from vision-based methods reliably.

d) Kinesthetic Teaching and Teleoperation: To ad-
dress the above issue, the robotics community has been
developing kinesthetic teaching or teleoperation approaches
to recognize low-level motion primitives during hand-object
interactions. These approaches are capable of transferring
certain rich physical information such as force knowledge
to robots. Manschitz et al. [24] presented a method to
teach robots to unscrew a light bulb by moving primitives,
which are represented by sequences of graphs. A more
recent work was presented in [25]. Chebotar et al. [26] used
spectral clustering and PCA to reduce the dimensionality in
learning tactile feedback during performing scraping task.
More challenging hand-object interaction tasks involving the
manipulation of deformable objects were discussed using a
similar approach [27]. Learning impedance behaviors and
trajectory following skills was presented in [28] by combin-
ing robot’s dynamical system and stiffness estimation.

B. Contributions

This paper makes three contributions:
1) We incorporate invisible force in addition to the conven-

tional pose-based methods for event segmentation and
parsing during fine-grained manipulation tasks. We show
in the experiment that a better performance of motion
recognition is achieved by jointly considering hand pose
and force data.

2) We propose an unsupervised learning framework to learn
a temporal grammar model (T-AOG) for hand-object
interactions. The framework incorporates automatic clus-
tering, segmentation, labeling, and high-level grammar in-
duction. The grammar structure is shown to significantly
improve the action recognition results compared to using
clustering method alone.

3) We introduce a general method for modeling noisy and
heterogeneous sensory data of hand-object manipulation.
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Fig. 3: Illustration of the T-AOG. The T-AOG is a temporal
grammar in which the terminal nodes are motion primitives
of hand-object interactions.

C. Overview

The remainder of this paper is organized as follows.
In Section II, we introduce the representation T-AOG. In
Section III, we present the learning algorithm consisting of
hierarchical clustering and grammar induction. The inference
algorithm of motion recognition is introduced in Section IV.
In Section V, we demonstrate the data with additional force
sensing indeed outperforms the data with either pose or force
data only. Furthermore, our analysis shows the parsing results
using T-AOG help improve the performance significantly
compared with using clustering only.

II. REPRESENTATION

We introduce a structural grammar model Temporal And-
Or Graph (T-AOG) [29] to represent the temporal structure
of a task. An AOG is a directed graph which describes
a stochastic context free grammar (SCFG), providing a
hierarchical and compositional representation. Formally, the
AOG is defined as a five-tuple G= (S, V,R, P,Σ), where
S is a start symbol; V is a set of nodes which includes
the non-terminal nodes V NT and terminal nodes V T : V =
V NT ∪V T ; R= {r :α→β} is a set of production rules that
represent the top-down sampling process from a parent node
α to its child nodes β; P : p(r) = p(β|α) is the probability
for each production rule; Σ is the language defined by
the grammar, i.e., the set of all valid sentences given the
grammar.

In an AOG, the non-terminal nodes can be divided into
two types: V NT =V AND∪V OR. An And-node is used to
represent the compositional relations. A node v is an And-
node if the entity represented by v can be decomposed into
multiple parts, which are represented by its child nodes. An
Or-node is used to represent alternative configurations. A
node v is an Or-node if the entity represented by v has
multiple mutually exclusive configurations represented by its
child nodes. The terminal nodes represent the entities that

are not further decomposed or have different configurations.
A parse graph pg is an instance of the AOG, where the
And-nodes are decomposed and one of the child nodes is
selected for the Or-nodes.

In particular, a T-AOG represents a set of all possible se-
quences to execute a certain task. The start node S represents
an event category (e.g., opening a bottle). The terminal nodes
V T represents the set of motion primitives that a human or
a robot can perform (e.g., approaching, twisting). An And-
node is decomposed into sub-events or motion primitives as
its child nodes. An Or-node encodes alternative solutions to
perform a sub-task. A pg for an event is a sub-graph of T-
AOG that captures the temporal structure of the scenario.

As shown in Fig. 3, features are extracted from the raw
input sensory data and further segmented for semantic pars-
ing. Pose and force features Γ are extracted based on a raw
sensory input sequence I in time interval [1, T ]. Each frame
is labeled with motion primitive at. Aggregating together,
we obtain a label sequence A= {at}. The segmentation
of the sensory input sequence is defined as T = {γk}, k=
1, · · · ,K, where γk = [t1k, t

2
k] represents a time interval in

which the motion primitive remains the same. Later in this
paper, we use aγk to denote the motion label for the segment
Iγk .

III. LEARNING OF HAND-OBJECT INTERACTIONS

The unsupervised learning pipeline is illustrated in Fig. 2.
Given training sequences of raw sensory input of poses and
forces, our goal of learning is to unsupervisedly learn i)
the motion primitives in the sequences of hand-object in-
teractions, ii) the event segmentation in every sequence, and
iii) the high-level grammar structure (T-AOG) that captures
every observed sequences of the hand-object interactions.

A. Unsupervised Learning of Motion Primitives

To recognize motion primitives of hand-object interac-
tions, we adopt the agglomerative hierarchical clustering,
capable of successively merging the similar features from
the low-level features, without knowing the exact number of
clusters in advance. The Wards agglomerative method is used
to determine whether a merge is needed in each iteration:

4(A,B) =
∑

i∈A∪B

||~xi− ~mA∪B ||2−
∑
i∈A

||~xi− ~mA||2

−
∑
i∈B

||~xi− ~mB ||2

=
nAnB
nA+nB

||~mA− ~mB ||2,

(1)

where A, B denote two clusters in the current iteration,
mA, mB are the cluster centers, and 4(A,B) is the cost
of merging clusters A and B.

By default, the hierarchical clustering always groups data
points using spatial distance alone, without considering the
temporal consistency. This becomes an issue when dealing
with manipulation data, which naturally comes with temporal
constraints. To alleviate this issue, we apply the Aligned
Cluster Analysis (ACA) [30] to reduce the noisiness based
on Dynamic Time Alignment Kernel (DTAK) [11], resulting
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Fig. 4: (a) The experimental setup for data collection. We
use Vicon system to obtain the poses of human’s wrist and
object’s parts. The camera is used to record the data col-
lection procedure. (b) Visualization of force vectors, which
contains both pose and force features.

in a refined segmentation. The ACA is an extension of kernel
k-means clustering that could be solved as a versatile energy
minimization problem using coordinate descent algorithm:

s∗= argmin
s

J(G, s) =

k∑
c=1

m∑
i=1

gciDc(X[si,si+1)), (2)

where GT
k×n1k =1n is the indicator matrix, gci = 1 if sam-

ple Xi belongs to cluster c, and Dc measures the kernel
distance between sample point and cluster center. In practice,
Equation 2 could be solved in a dynamic programming
manner, which leverages the relationship between G and s
by solving the Bellman’s equation [11]:

J(v) = min
v−nmax<i≤v

(J(i−1)+min
g

k∑
c=1

gcD
2
ψ(X[i,v], żc)), (3)

where D2
ψ(X[i,v], ˙zc) is the squared kernel distance between

segment Xi,v and class center c, and nmax defines the
maximum segment length of clustering.

B. Event Segmentation

The semantic label of each segment is required to learn
a high-level temporal grammar based on the segmented
sequences. Although event segmentation of a single seg-
mented motion sequence is straightforward by following its
clustering label, it is still difficult to extract the semantic
meaning of one segment when having multiple segmented
motion sequences performing the same task.

Considering two segmented sequences X[S1,S2...Sn] and
Y[S1,S2...Sm], we assign semantic labels by merging those
segments into clusters where each cluster contains segments
that are ‘close’ in distance. Specifically, we adopt the
DTAK [30] criterion D(XSi ,YSj ) to estimate the similarity
of segments across different trials of motion primitives
segmentation:

D(XSi ,YSj ) = τ[
XSi

,YSj

], (4)

where XSi
,YSj

are candidate segments that may be grouped
together, τ[XSi

,YSj
] is the similarity metric between two

segments calculated recursively using DTAK kernel matrix.
Note that it could also be applied to the situation that X and

Y are the same motion sequence that only differ in segment
index i and j.

Based on the distance metric of DTAK, we further apply
k-means algorithm to cluster those segments such that each
cluster represents one semantic label. The semantic labels of
each segmented motion sequence can therefore be obtained
by cluster IDs of the corresponding segments.

C. Grammar Induction

After acquiring the semantic labels of multiple segmented
motion sequences, we build a T-AOG grammar model using
an unsupervised structural learning method [31]. We aim to
learn a grammar from a set of sequence of instances that
maximize the posterior probability. An initial grammar is
built in which the root node is an Or-node, and each branch is
an And-node that represents a sequence instance. This initial
grammar leads to the maximal likelihood of the training data
but has a very small prior probability because of its large
size. Starting from the initial grammar, new intermediate
non-terminal nodes are generated in a bottom-up fashion
to increase its posterior probability. At each iteration, a
grammar fragment rooted at a non-terminal node is added
into the grammar. In practice, we find it is sufficient to use
greedy search with random restarts to identify good grammar
fragments.

IV. INFERENCE

Given a sequence of pose and force data Γ as an input, our
goal is to find the best motion label sequence A∗, i.e., find
the optimal label sequence of the segments that best explains
the observation given the learned grammar G by maximizing
the posterior probability:

A∗= argmax
A

p(A|Γ,G) = argmax
A

p(Γ|A)p(A|G), (5)

where p(Γ|A) is the likelihood given the motion label
sequence, and p(A|G) is the parsing probability of the parse
graph given the grammar. The first term is given by:

p(Γ|A) =

K∏
k=1

p(Γγk |aγk ) =

K∏
k=1

t2k∏
t=t1

k

p(Γt|aγk ), (6)

where k is the segment index, γk is the kth segment as
introduced in Section II. This term is given by a Gaussian
distribution fitted to the learned clusters in the training
examples.

The second term p(A|G) in Equation 5 is the Viterbi
parsing likelihood, i.e., the probability of the best parse of
the string terminals.

Since it is intractable to directly compute the optimal label
sequence, we infer the approximately optimal Â∗ in two
steps: i) use the unsupervised clustering method to obtain the
segmentation and initialized labels, and ii) refine the labels
according to Equation 5 by Gibbs sampling with simulated
annealing to find the labeling that maximizes the posterior
probability.



Fig. 5: Qualitative evaluation. Event segmentation and recog-
nition of opening Bottle 1, 2, and 3, from left to right, re-
spectively. P denotes pose only feature, F force only feature,
P/F force vector feature, PA with parsing, and GT ground
truth. Each segment represents one type of motion primitive
which color is determined by the ground truth sequence.

A. Gibbs Sampling with Simulated Annealing

After initializing the labels by clustering, we find the best
parse by Gibbs sampling with simulated annealing. Given
an input sequence, we assign one segment label according
to the posterior probability (Equation 5) at each iteration.
Specifically,

a′γk ∼ p(Γγk |aγk )p(A′|G), (7)

where a′γk is the new label of segment Γγk , and A′ is the
new label sequence obtained by changing the kth label to
a′γk in the current labeling sequence A. To find the parse
with the maximum probability, we adopt simulated annealing
to the sampling process by dividing the log probability by
a temperature T . We decrease the temperature through the
sampling process until the labeling sequence converges.

V. EXPERIMENTS

A. Human Data Acquisition

a) Tactile Glove: To capture both pose and force in
hand-object interactions, we utilize an open-source tactile
glove [3]. The tactile glove employs a network of 15 IMUs
to measure the rotations between individual phalanxes. Hand
pose is reconstructed using forward kinematics. With 6
customized force sensors using Velostat, a piezoresistive
material, the force exerted by hand is recorded in two regions
(proximal and distal) on each phalange and a 4×4 regions
on the palm. The data is collected and visualized using the
Robot Operating System (ROS).

b) Experimental Setup: We utilize a Vicon motion
capture system to obtain the relative poses between the wrist
of hand and object parts. Fig. 4a describes the schematic of
the experimental environment setup in human data acquisi-
tion. Six Vicon cameras are placed on top left and top right
in front of the area of interests.

c) Force Vectors: Force vectors are computed as the
extracted features from the force and pose data (see Fig. 4b).
Each force scalar measured on hand is normalized and treated
as the magnitude of the force vector. The orientation of the
force vector is set to be perpendicular to the fingers. All the
force vectors are expressed with respect to one fixed frame
by applying the chain product of homogeneous transforms.
Hence, we are able to combine the heterogeneous pose and
force information into one compact form of feature vector.

Fig. 6: Key frames of opening various bottles with T-AOG.
The numbers indicate the cluster labels and the red arrows
indicate the merges triggered by the parsing of T-AOG.

B. Evaluation

The performance is evaluated by the frame-wise recog-
nition accuracy, i.e., comparing the predicted event label
with the ground truth frame by frame. The ground truth
segmentation is manually labeled. Based on this protocol, we
evaluate the correspondence in three metrics: i) Pose feature
as the Euler angles of each phalanx, ii) Force feature as the
magnitude of the force, and iii) the combination of Pose
and Force in the form of force vectors. For fair comparison,
the results reported below use the cluster number k= 5 and
maximum segment length nmax = 200.

C. Event Segmentation and Recognition with Clustering

Fig. 5 visualizes the event recognition results by segment-
ing each motion primitive of the trials in opening Bottle
1, 2, and 3. Quantitative results are shown in Table I. The
segmentation using only pose data has the worst performance
compared with the ground truth. The use of force data shows
a significant improvement compared to the pose only data.
This result indicates the benefits of the force information
during hand-object manipulation. Combining both pose and
force data together outperforms that only uses either pose or
force data.

D. Segmentation, Recognition and Parsing with T-AOG

To further reduce noise, mislabeling, and incoherence, T-
AOG is integrated to refine the segmentation, recognition and
parsing of the motion sequences by maximizing the posterior
probability.

TABLE I: Quantitative Evaluation. With clustering only, we
use the hand pose, in the forms of Euler angles of each
phalanx; hand force, as scalars; and the combination of
pose and force as force vectors as feature inputs. Including
force factor yields higher correspondence with ground truth
sequence. Parsing the events with T-AOG on top of the
clustering, the performance improves significantly.

Clustering only With T-AOG
Pose only Force only Pose and Force Pose and Force

Bottle 1 55.3% 67.5% 70.3% 78.6%
Bottle 2 62.0% 70.9% 76.2% 82.5%
Bottle 3 54.1% 71.1% 72.9% 78.5%



Fig. 6 shows the motion frames during the interactions in
opening three types of bottles. The number in each frame
denotes its motion label which is produced by the proposed
clustering pipeline. Additionally, we highlight the changes
after applying the proposed annealing inference framework,
indicated by the red arrow, which reveals the directions of
label merging.

Experimental results after integrating a T-AOG parsing are
both qualitatively and quantitatively presented. As depicted
in Fig. 5, comparing to model-free clustering methods, the
T-AOG based parsing approach recovers some noisy and
mislabeled segments, resulting in more coherent results.
Last column of Table I shows the quantitative results. The
performance of both segmentation and recognition using T-
AOG have a marked improvement compared to the methods
only by clustering, demonstrating the usefulness of learning
a grammar model for events parsing and inference.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an unsupervised approach for
manipulation event segmentation, recognition and parsing.
Hand-object interaction sequences are segmented in an un-
supervised learning fashion, based on which a temporal
grammar is further induced. Through a tactile glove, our
work explicitly incorporates forces imposed by hands in
addition to its pose.

The experiments demonstrate that force is indeed an im-
portant factor as it significantly improves motion primitives
segmentation. In addition, learning a grammar model T-AOG
from the clustering results for parsing the motions can reduce
noisiness and eliminate mislabeling and ultimately lead to a
more coherent event segmentation and parsing.

In the future, the proposed approach could be used to
improve the traditional event segmentation, recognition and
parsing in computer vision by inferring the force from the
videos [8]. It is also possible to use the segmentation as the
demonstrations to teach robots with LfD to open medicine
bottles [32] or more complex tasks, e.g., tool uses [33] and
folding clothes [23].
Acknowledgement: The work reported herein was supported
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