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Abstract
We propose a deformable generator model to disentangle
the appearance and geometric information from images
into two independent latent vectors. The appearance gener-
ator produces the appearance information, including color,
illumination, identity or category, of an image. The geo-
metric generator produces displacement of the coordinates
of each pixel and performs geometric warping, such as
stretching and rotation, on the appearance generator to
obtain the final synthesized image. The proposed model
can learn both representations from image data in an un-
supervised manner. The learned geometric generator can
be conveniently transferred to the other image datasets to
facilitate downstream AI tasks.

1 Introduction
A fundamental challenge in developing a conceptual un-
derstanding of our world is learning the factorial structure
of the observations without supervision [3, 27]. Concep-
tual understanding requires a disentangled representation
which separates the underlying explanatory factors and ex-
plicitly represents the important attributes of the real-world
data [1, 5]. For instance, given an image dataset of human
faces, a disentangled representation can include the face’s
appearance attributes, such as color, light source, identity,
gender, and the geometric attributes, such as face shape
and viewing angle. A disentangled representation is useful

∗The work was done while the author worked as a visiting scholar at
UCLA.

not only for building more transparent and interpretable
generative models, but also for a large variety of down-
stream AI tasks such as transfer learning and zero-shot
inference where humans excel but machines struggle [23].
Many exciting applications require generative models that
can synthesize novel instances while certain key factors
of variation are held fixed. Potential applications include
generating a face image with desired attributes, such as
color, face shape, expression and view, or transferring the
face shape, expression, or view learned from one person
to another person.

Generative models have shown great promise in learn-
ing disentangled representations of images. The generative
models used for unsupervised disentangling usually fall
into two categories: the Generative Adversarial Net (GAN)
framework [9, 11, 24, 29, 33] and the Variational Autoen-
coder (VAE) framework [18, 22, 28, 31]. InfoGAN [6], a
representative of the former family, is motivated by the
principle of the maximization of the mutual information
between the observations and a subset of latent vectors.
However, its disentangling performance is sensitive to the
choice of the prior and the number of latent vectors. The
β-VAE [14], from the latter family, learns disentangled
representations by utilizing a VAE objective with an extra
KL penalty to encourage the latent distribution (variational
posterior) to be close to the standard normal distribution,
giving a more robust and stable solution for disentangling.

In contrast to the existing methods which use one latent
vector to encode the factors of variation, our work intro-
duces a deformable generator network that disentangles
the appearance and geometric information from an image
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into two independent latent vectors in an unsupervised
manner. Motivated by the Active Appearance Models
(AAM) [7, 20] which uses a linear model for jointly cap-
turing the appearance and shape variation in an image,
the proposed model introduces two nonlinear generators
to extract the appearance and geometry information sepa-
rately. Unlike the AAM method [7, 19, 20] which requires
hand-annotated facial landmarks for each training image,
the proposed deformable generator model is purely unsu-
pervised and learns from images alone.

2 Model and learning algorithm
This section provides the details of the model and the
associated learning and inference algorithm.

2.1 Model

Figure 1: An illustration of the proposed model. The
model contains two generator networks: one appearance
generator and one geometric generator. The two genera-
tors are connected with a warping function to produce the
final image. The warping function includes a geometric
transformation operation for image coordinates and a dif-
ferentiable interpolation operation. The refining operation
is optional for improving the warping function.

The proposed model contains two generator networks:
one appearance generator and one geometric generator.
The two generators are connected with a warping function
to produce the final images or video frames, as shown

in Figure 1. Suppose an arbitrary image or video frame
X ∈ RDx×Dy×3 is generated with two independent latent
vectors, Za ∈ Rda which controls its appearance, and
Zg ∈ Rdg which controls its geometric information. Vary-
ing the geometric latent vector Zg and fixing the latent
vector Za of appearance, we can transform an object’s ge-
ometric information, such as rotating it with some angles
and changing its shape. Varying the Za and fixing the Zg ,
we can change the identity or the category of the object,
while keeping it within the same geometric status, such
as the same viewing angle or the same shape. Thus, the
appearance information and the geometric information are
disentangled in the ideal situation.

The model can be expressed as

X = F (Za, Zg; θ)

= Fw(Fa(Za; θa), Fg(Z
g; θg)) + ε (1)

where Za ∼ N(0, Ida), Zg ∼ N(0, Idg ), and ε ∼
N(0, σ2ID) (D = Dx×Dy×3) are independent. Fw is the
warping function, which employs the features generated by
the geometric generator Fg(Zg; θg) to warp the geometry
of the image from the appearance generator Fa(Za; θa) to
obtain the final output image X .

2.2 Warping function
A warping function usually includes a geometric transfor-
mation operation for image coordinates and a differentiable
interpolation (or resampling) operation. The geometric
transformation describes the destination coordinates (x, y)
for every location (u, v) in the source coordinates. The
geometric operation only modifies the positions of pixels
in an image without changing their colors and illumination.
Therefore, the color and illumination information and the
geometric information are naturally disentangled by the
geometric generator and the appearance generator in the
proposed model.

The geometric transformation Φ can be a rigid affine
mapping, as is used in the spatial transformer networks
[17], or a non-rigid deformable mapping, which is the case
in our work. Specifically, the coordinates displacement
(dx, dy) (or the dense optical flow field) of each regular
grid (x, y) in the output warping imageX are generated by
our geometric generator Fg(Zg; θg). The point-wise trans-
formation in this deformable mapping can be formulated
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as (
u

v

)
= Φ(Zg,θg)

(
x

y

)
=

(
x+ dx

y + dy

)
(2)

where (u, v) are the source coordinates of the image gen-
erated by the appearance generator Fa(Za; θa).

Since the evaluated (u, v) by Eq.(2) does not usually
have integer coordinates, each pixel’s value of the output
warping image X can be computed by a differentiable
interpolation operation. Let Xa = Fa(Za; θa) denotes the
image generated by the appearance generator. The warping
function Fw can be formulated as

X(x, y) = Fi(Xa(x+ dx, y + dy)), (3)

where Fi is the differentiable interpolation function. In this
study, we employ a differentiable bilinear interpolation of
the form

X(x, y) =

Dy∑
j

Dx∑
i

Xa(i, j)M(1−|u− i|)M(1−|v−j|)

(4)
where M(·) = max(0, ·), and from Eq.(2), we have u =
x + dx,v = y + dy. The details of back-propagation
through this bilinear interpolation can be found in [17].

The displacement (dx, dy) is used in the deformable
convolutional networks [8]. The computation of coordi-
nates displacement (dx, dy) is known as the optical flow
estimation [4, 10, 15, 16, 30, 32]. Our work is concerned
with modeling and generating the optical flow, in addition
to estimating the optical flow.

The displacement (dx, dy) can be caused by the mo-
tion of the objects in the scene. It can also be caused
by the change of viewpoint relative to 3D objects in the
scene. Therefore, it is natural to incorporate motion and
3D models into the geometric generator where the change
or variation of Zg depends on the motion and 3D informa-
tion.

2.3 Inference and learning
To learn this deformable generator model, we introduce
a learning and inference algorithm for two latent vectors,
without designing and learning extra inference networks.
Our method is motivated by a maximum likelihood learn-
ing algorithm for generator networks [13]. Specifically,

the proposed model can be trained by maximizing the
log-likelihood on the training dataset {Xi, i = 1, . . . , N},

L(θ) =
1

N

N∑
i=1

log p(Xi; θ)

=
1

N

N∑
i=1

log

∫
p(Xi, Z

a
i , Z

g
i ; θ)dZai dZ

g
i .(5)

The uncertainties in inferring Zai and Zgi are taken into
account by the above observed-data log-likelihood.

We can evaluate the gradient of L(θ) according to the
following well-known result which is related to the EM
algorithm:

∂

∂θ
log p(X; θ)

=
1

p(X; θ)

∂

∂θ

∫
p(X,Za, Zg)dZadZg

= Ep(Za,Zg|X;θ)

[
∂

∂θ
log p(X,Za, Zg; θ)

]
(6)

Since the expectation in Eq.(6) is usually analytically in-
tractable, we employ Langevin dynamics to draw sam-
ples from the posterior p(Za, Zg|X; θ) and compute the
Monte Carlo average to obtain an approximation. For
each observation X , the latent vectors Za and Zg can be
sampled from p(Za, Zg|X; θ) alternately by Langevin dy-
namics: fixing Zg and sampling Za from p(Za|X;Zg, θ)
∝ p(X,Za;Zg, θ), then fixing Za and sampling Zg from
p(Zg|X;Za, θ) ∝ p(X,Zg;Za, θ). The latent vectors are
inferred and updated as follows:

Zat+1 = Zat +
δ2

2

∂

∂Za
log p(X,Zat ;Zgt , θ) + δEat

Zgt+1 = Zgt +
δ2

2

∂

∂Zg
log p(X,Zgt ;Zat , θ) + δEgt (7)

where t is the number of steps of the Langevin sampling,
E is standard Gaussian noise added to prevent the chain
from becoming trapped in local modes, and δ is the step
size of Langevin dynamics. The log of the joint density in

3



Eq.(7) can be evaluated by

log p(X,Za;Zg, θ) = log [p(Za)p(X|Za, Zg, θ)]

= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Za‖2 + C1

log p(X,Zg;Za, θ) = log [p(Zg)p(X|Za, Zg, θ)]

= − 1

2σ2
‖X − F (Za, Zg; θ)‖2 − 1

2
‖Zg‖2 + C2 (8)

where F and σ are defined in Eq.(1), and both C1 and C2

are constants. It can be shown that, given sufficient tran-
sition steps, the Za and Zg obtained from this procedure
follow their joint posterior distribution.

Obtaining independent samples of the posterior den-
sity in each training iteration is infeasible due to the high
computational cost of the MCMC updates. In this paper,
the MCMC transitions of both Za and Zg start from the
updated latent vectors from the previous learning itera-
tion. The persistent updating results in a chain that is long
enough to sample from the posterior distribution, and the
warm initialization vastly reduces the computational bur-
den of the MCMC updates. The convergence of stochastic
gradient descent based on persistent MCMC has been stud-
ied by [34].

For each training example Xi, we run the Langevin dy-
namics in Eq.(7) to get the corresponding posterior sample
Zai and Zgi . The sample is then used for gradient computa-
tion in Eq.(6). More precisely, the parameter θ is learned
through Monte Carlo approximation:

∂

∂θ
L(θ) ≈ 1

N

N∑
i=1

∂

∂θ
log p(Xi, Z

a
i , Z

g
i ; θ)

=
1

N

N∑
i=1

1

σ2
(Xi − F (Zai , Z

g
i ; θ))

∂

∂θ
F (Zai , Z

g
i ; θ). (9)

The whole algorithm iterates through two steps: (1)
inferential step which infers the latent vectors through
Langevin dynamics, and (2) learning step which learns
the network parameters θ by stochastic gradient descent.
Gradient computations in both steps are powered by back-
propagation. Algorithm 1 describes the details of the learn-
ing and inference algorithm.

Algorithm 1 Learning and inference algorithm
Require:

(1) training examples {Xi ∈ RDx×Dy×3, i =
1, . . . , N}
(2) number of Langevin steps l
(3) number of learning iterations T

Ensure:
(1) learned parameters θ
(2) inferred latent vectors {Zai , Z

g
i , i = 1, . . . , N}

1: Let t← 0, initialize θ.
2: Initialize {Zai , Z

g
i , i = 1, . . . , N}

repeat
3: Inference back-propagation: For each i, run l
steps of Langevin dynamics to alternatively sample
Zai from p(Zai |Xi;Z

g
i , θ), while fixing Zgi ; and sam-

ple Zgi from p(Zgi |Xi;Z
a
i , θ), while fixing Zai . Start-

ing from the current Zai and Zgi , each step follows
Eq.(7).
4: Learning back-propagation: Update θt+1 ←
θt + ηtL

′(θt), with learning rate ηt, where L′(θt) is
computed according to Eq.(9).
5: Let t← t+ 1

until t = T

2.4 Deformable Variational Auto-encoder

The proposed deformable generator scheme is general
and agnostic to different models. In fact, our method
can also be learned by VAE [18] to obtain deformable
variational auto-encoder, by utilizing extra inference net-
work to infer (Za, Zg) through re-parametrization. Specif-
ically, we learn another q(Za, Zg|X;φ) to approximate
the intractable posterior p(Za, Zg|X; θ). The appear-
ance and geometric latent vectors are assumed to be inde-
pendent Gaussian in the approximated distribution, i.e.,
q(Za, Zg|X;φ) = q(Za|X;φ)q(Zg|X;φ), where the
means and variances are modeled by inference network
with parameters φ. This deformable VAE model is a nat-
urally extension of the proposed deformable generator
framework developed. We show some preliminary results
in Sec.3.1.1. Notice that the proposed scheme can also be
used in adversarial learning methods [11], by designing a
separate discriminator network for shape and appearance.
We leave it as our further work. In this work, we focus on
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the current learning and inference algorithm for the sake
of simplicity, so that we do not resort to extra networks.

3 Experiments
In this section, we first qualitatively demonstrate that our
proposed deformable generator framework consistently
disentangles the appearance and geometric information.
We then analyze and evaluate the proposed model quan-
titatively. The deformable generator network structures
and parameters are listed in the Appendix. We set the
value of the interpolation parameter γ to 10 in the experi-
ments, i.e., we vary the components of the latent vectors
within the range [−γ, γ] when visualizing the effects of
the components.

3.1 Qualitative experiments

3.1.1 Experiments on CelebA

We first train the deformable generator on the 10,000 im-
ages from CelebA benchmark dataset [25]. Some examples
in CelebA are shown in Figure 2, which are processed by
the OpenFace [2] and cropped to 64× 64 pixels. To study

Figure 2: Example training images from CelebA. The
training set contains 10000 images from CelebA, and they
are cropped to 64×64 pixels by the OpenFace. These faces
have different colors, illuminations, identities, viewing
angles, shapes, and expressions.

the performance of the proposed method for disentangling
the appearance and geometric information, we investigate
the effect of different combinations of the geometric latent
vector Zg and the appearance latent vector Za. (1) Set

the geometric latent vector Zg to zero, and each time vary
one dimension of the appearance variable Za from [−γ, γ]
with a uniform step 2γ

10 , while holding the other dimensions
of Za at zero. Some typical generated images are shown
in Figure 3. (2) Set Za to be a fixed value, and each time
vary one dimension of the geometric latent vector Zg from
[−γ, γ] with a uniform step 2γ

10 , while keeping the other
dimensions of Zg at zero. Some representative generated
results are shown in Figure 4. The full images correspond-
ing to each dimensions of Za and Zg are attached in the
appendix.

Figure 3: Each dimension of the appearance latent vector
encodes appearance information such as color, illumina-
tion and gender. In the fist line, from left to right, the
color of background varies from black to white, and the
gender changes from a woman to a man. In the second
line, the moustache of the man becomes thicker when the
corresponding dimension of Za approahces zero, and the
hair of the woman becomes denser when the correspond-
ing dimension of Za increases. In the third line, from left
to right, the skin color changes from dark to white. In
the fourth line, from left to right, the illumination lighting
changes from the left-side of the face to the right-side of
the face.

As we can observe from Figure 3, (1) although the train-
ing faces from CelebA have different viewing angles, the
appearance latent vector only encodes front-view infor-
mation, and (2) each dimension of the appearance latent
vector encodes appearance information such as color, il-
lumination and identity. For example, in the fist line of
Figure 3, from left to right, the color of background varies
from black to white, and the identity of the face changes
from a women to a man. In the second line of Figure 3,
the moustache of the man becomes thicker when the value
of the corresponding dimension of Za decreases, and the
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Figure 4: Each dimension of the geometric latent vector
encodes fundamental geometric information such as shape
and viewing angle. In the fist line, the shape of the face
changes from fat to thin from left to the right. In the second
line, the pose of the face varies from left to right. In the
third line, from left to right, the vertical tilt of the face
varies from downward to upward. In the fourth line, the
face width changes from stretched to cramped.

hair of the woman becomes denser when the value of the
corresponding dimension of Za increases. In the third
line, from left to right, the skin color varies from dark to
white, and in the fourth line, from left to right, the illumi-
nation lighting changes from the left-side of the face to the
right-side of the face.

From Figure 4, we have the following interesting obser-
vations. (1) The geometric latent vectors does not encode
any appearance information. The color, illumination and
identity are the same across these generated images. (2)
Each dimension of the geometric latent vector encodes fun-
damental geometric information such as shape and viewing
angle. For example, in the fist line of Figure 4, the shape
of the face changes from fat to thin from left to the right;
in the second line, the pose of the face varies from left to
right; in the third line, from left to right, the tilt of the face
varies from downward to upward; and in the fourth line,
the expression changes from stretched to cramped.

The appearance and geometric information could also
be effectively disentangled by the introduced deformable
VAE. For the extra inference network, or encoder net-
work, we use the mirror structure of our generator model
in which we use convolution layers instead of convolution
transpose layers. The generator network structure as well
as other parameters are kept the same as the model learned
by alternating back-propagation. Figures 5 and 6 show
interpolation results following the same protocol described

before. From the results in Figures 3 and 4, we find that

Figure 5: Appearance interpolation results by deformable
VAE. Each dimension of the appearance latent vector en-
codes appearance information such as illumination, color,
and gender. In the fist line, from left to right, the illumi-
nation varies from bright to dark, and the gender changes
from a woman to a man. In the second line, the color
changes from blue grey to golden yellow. In the third line,
from left to right, the illumination lighting changes from
the right-side of the face to the left-side of the face. In the
fourth line, from left to right, the size of sunglasses varies
from large to small, finally without sunglasses. In the fifth
line, the hair of the woman becomes denser when the corre-
sponding dimension of Za decreases, the moustache of the
man becomes thicker when the corresponding dimension
of Za increases. In the sixth line, the hair of the woman
becomes denser when the corresponding dimension of Za

decreases, the eyebrow of the man becomes denser when
the corresponding dimension of Za increases.

the appearance and geometric information of face images
have been disentangled effectively. Therefore, we can ap-
ply the geometric warping (e.g. operations in Figure 4)
learned by the geometric generator to all the canonical
faces (e.g. generated faces in Figure 3) learned by the
appearance generator. Figure 7 demonstrates the effect
of applying geometric warping to the generated canoni-
cal faces in Figure 3. Comparing Figure 3 with Figure
7, we find that the rotation and shape warping operations
do not modify the identity information of the canonical
faces, which corroborates the disentangling power of the
proposed deformable generator model.
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Figure 6: Geometry interpolation results by deformable
VAE. Each dimension of the geometric latent vector en-
codes fundamental geometric information such as shape
and viewing angle. In the fist line, the shape of the face
changes from fat to thin from left to the right. In the sec-
ond line, the pose of the face varies from left to right. In
the third line, from left to right, the vertical tilt of the face
varies from downward to upward. In the fourth line, the
face expression changes from happiness to sadness. In the
fifth line, from left to right, the eyes vary from close to
open. In the sixth line, the eyes change from looking right
to looking left.

Furthermore, we evaluate the disentangling ability of
the proposed model by transferring and recombining geo-
metric and appearance vectors from different faces. Specif-
ically, we first feed 7 unseen images from CelebA into our
deformable generator model to infer their appearance vec-
tors Za1 , Za2 ,. . . ,Za7 and geometric vectors Zg1 , Zg2 ,. . . ,Zg7
using the Langevin dynamics (with 300 steps) in Eq.(7).
Then, we transfer and recombine the appearance and ge-
ometric vectors and use {Za1 , Z

g
2}, . . . , {Za1 , Z

g
7} to gen-

erate six new face images, as shown in the second row of
Figure 8. We also transfer and recombine the appearance
and geometric vectors and use {Za2 , Z

g
1},. . . , {Za7 , Z

g
1} to

generate another six new faces, as shown in the third row
of Figure 8. From the 2nd to the 7th column, the images
in the second row have the same appearance vector Za,
but the geometric latent vectors Zg are swapped between
each image pair. As we can observe from the second row
of Figure 8, (1) the geometric information of the original
images are swapped in the synthesized images, and (2) the
inferred Zg can capture the view information of the unseen

(a) Rotation warping.

(b) Shape warping.

Figure 7: Applying the (a) rotation warping and (b) shape
warping operations learned by the geometric generator to
the canonical faces generated by the appearance genera-
tor. Compared with Figure 3, only the pose information
varies, and the identity information is kept in the process
of warping.

images. The images in the third row of Figure 8 have the
same geometric vector Zg1 , but the appearance vectors Za

are swapped between each image pair. From the third row
of Figure 8, we observe that (1) the appearance informa-
tion are exchanged. (2) The inferred Za capture the color,
illumination and coarse appearance information but lose
more nuanced identity information. Only finite features are
learned from 10k CelebA images, and the model may not
contain the features necessary to closely model an unseen
face.

Figure 8: Transferring and recombining geometric and
appearance vectors. The first row shows the 7 unseen faces
from CelebA. The second row shows the generated faces
by transferring and recombining the first row’s 2th-7th
faces’ geometric vectors with the first row’s 1th face’s
appearance vector. The third row shows the generated
faces by transferring and recombining the first row’s 2th-
7th faces’ appearance vectors with the first row’s 1th face’s
geometric vector.
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The learned geometric information can be directly ap-
plied to the faces of animals such as cats and monkeys,
as shown in Figure 9. The monkey and cat faces rotate
from left to right when the rotation warping learned from
human faces is applied. The shape of both the monkey and
cat faces changes from fat to thin when the shape warping
learned by the geometric generators is used.

Figure 9: Applying the learned geometric warping from
CelebA to animal faces. The first two rows show a monkey
face after applying the rotation and shape warping learned
from CelebA. The third and the fourth rows show a cat
face after applying the rotation and shape warping learned
from CelebA.

3.1.2 Experiments on expression dataset

We next study the performance of the proposed deformable
generator model on the face expression dataset CK+ [26].
Following the same experimental protocol as the last sub-
section, we can investigate the change produced by each
dimension of the appearance latent vector (after setting
the value of geometric latent vector to zero) and the ge-
ometric latent vector (after setting the appearance latent
vector to a fixed value). The disentangled results are shown
in Figure 10. The training faces from CK+ have labels
of expressions, but we do not use any such labels in our
unsupervised learning method. Although the dataset con-
tains faces of different expressions, the learned appearance
latent vector usually encodes a neutral expression. The
geometric latent vector controls major variation in expres-
sion, but does not change the identity information.

To test whether appearance and geometric information
are disentangled in the proposed model, we try to transfer
the learned expression from CK+ to another face dataset,
Multi-Pie [12], by fine-turning the appearance generator

(a) Interpolation of appearance latent vectors.

(b) Interpolation of geometric latent vectors.

(c) Transfering the expression in (b) to the face images in Multi-PIE
dataset.

Figure 10: Interpolation examples of (a) appearance latent
vectors and (b) geometric latent vectors. (c) Transfer the
learned expression to the face images in Multi-PIE dataset.

on the target face dataset while fixing the parameters in
the geometric generator. Figure 10(c) shows the result
of transferring the expressions of 10(b) into the faces of
Multi-Pie. The expressions from the gray faces of CK+
have been transferred into the color faces of Multi-Pie.

3.1.3 Experiment on CIFAR-10

We further test our model on the CIFAR-10 [21] dataset,
which includes various object categories and has 50,000
training examples. We randomly sample Za from
N(0, Ida). For Zg , we interpolate one dimension from −γ
to γ and fix the other dimensions to 0. Figure 11 shows
interpolated examples generated by model learned from
the car category. For each row, we use different Za and
interpolate the same dimension of Zg. The results show
that each dimension of Zg controls a specific geometric
transformation.
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Figure 11: Synthesized examples generated by the model learned from the car category of CIFAR-10 dataset. For each
row, we interpolate the same dimension of Zg from −γ to +γ, and fix the other dimensions of Zg to zero.

3.2 Quantitative experiments
3.2.1 Covariance between the latent vectors and geo-

metric variation

To quantitatively study the covariance between each di-
mension of the latent vectors (Zg, Za) and input im-
ages with geometric variation, we select images with
ground-truth labels that record geometric attributes, specif-
ically the multi-view face images from the Multi-Pie
dataset [12]. For each of the 5 viewing angles {−30◦,
−15◦, 0◦, 15◦, 30◦}, we feed 100 images into the
learned model to infer their geometric latent vector Zg

and appearance latent vector Za. Under each view
θ ∈ {−30◦,−15◦, 0◦, 15◦, 30◦} , we compute the means
Z̄gθ and Z̄aθ of the inferred latent vectors. For each di-
mension i of Zg, we construct a 5-dimensional vector
Z̄g(i) = [Z̄g−30◦(i), Z̄g−15◦(i), Z̄g0◦(i), Z̄g15◦(i), Z̄g30◦(i)].
Similarly, we construct a 5-dimensional vector Z̄a(i) un-
der each dimension of Za. We normalize the viewing
angles vector θ = [−30,−15, 0, 15, 30] to have unit norm.
Finally, we compute the covariance between each dimen-
sion of the latent vectors (Zg, Za) and input images with
view variations as follows:

Rgi = |Z̄g(i)>θ|, Rai = |Z̄a(i)>θ| (10)

where i denotes the i-th dimension of latent vector Zg or
Za, and | · | denotes the absolute value. We summarize the
the covariance responses Rg and Ra of the geometric and
appearance latent vectors in Figure 12. As we can observe
in Figure 12, the Rg tends to be much larger than Ra.

Moreover, for the two largest Rgi and the largest Rai ,
we plot covariance relationship between the latent vector
Z̄g(i) (or Z̄a(i)) and viewing angles vector θ in Figure
13. As we can observe from the left and the center sub-
figures from Figure 13, the Z̄g(i) corresponding to the
two largest Rgi (Rg5, Rg38) have very strong negative and

Figure 12: Absolute value of covariance between each
dimension of the geometric (or appearance) latent vectors
and view variations for the face images from Multi-Pie.
The left subfigure shows covariance with the geometric
latent vector; the right subfigure shows covariance with
the appearance latent vector.

positive covariance respectively with change in viewing
angle. However, as shown in the right sub-figure, the Z̄a(i)
corresponding to the largestRai (Ra25) does not have strong
covariance with the change of viewing angle. We wish
to point out that we should not expect Za to encode the
identity exclusively and Zg to encode the view exclusively,
because different persons may have shape changes, and
different views may have lighting or color changes.

Furthermore, we generate face images by varying the
dimension of Zg corresponding to the two largest covari-
ance responses from values [−γ,+γ] with a uniform step
2γ
10 , while holding the other dimensions of Zg to zero as
we did in the subsection 4.1.1. Similarly, we generate face
images by varying the dimension of Za corresponding
to the largest covariance responses from values [−γ,+γ]
with a uniform step 2γ

10 , while holding the other dimen-

9



sions of Za to zero. The generated images are shown in
Figure 13(b). We can make several important observations.
(1) The variation in viewing angle in the first two rows
is very obvious, and the magnitude of the change in view
in the first row is larger than that in the second row. This
is consistent with the fact that Rg5 > Rg38 and with the
observation that the slope in the left subfigure of Figure
13(a) is steeper than that of the center subfigure of Figure
13(a). (2) In the first row, the faces rotate from right to
left and the covariance relationship in the left subfigure
of Figure 13(a) is nearly perfect negative covariance. In
the second row, the faces rotate from left to right and the
covariance relationship in the center subfigure of Figure
13(a) is nearly perfect positive covariance. (3) It is difficult
to find obvious variation in viewing angle in the third row.
Therefore, these generated images further verify that the
geometric generator of the proposed model mainly cap-
tures geometric variation, while the appearance generator
is not sensitive to geometric variation.

(a)

(b)

Figure 13: (a) Covariance relationship between the mean
latent vector Z̄g(i) (or Z̄a(i)) and viewing angles vector
θ. We choose two dimensions of Zg (Zg5 and Zg38, left and
center) with the largest covariance and one dimension of
Za with the largest covariance (Za25, right). (b) Images
generated by varying the values of the three dimensions in
(a) respectively, while fixing the values of other dimensions
to be zero.

Methods VAE ABP Ours
Reconstruction Error 89.02 94.66 76.52

Table 1: The Mean Square Reconstruction Errors per im-
age for unseen multi-view faces from the Multi-Pie dataset.

3.2.2 Reconstruction error on unseen multi-view
faces

Since the proposed deformable generator model can disen-
tangle the appearance and geometric information from an
image, we can transfer the geometric warping operation
learned from one dataset into another dataset. Specif-
ically, given 1000 front-view faces from the Multi-Pie
dataset [12], we can fine-tune the appearance generator’s
parameters while fixing the geometric generator’s param-
eters, which are learned from the CelebA dataset. Then
we can reconstruct unseen images that have various view-
points. In order to quantitatively evaluate the geometric
knowledge transfer ability of our model, we compute the
reconstruction error on 5000 unseen images from Multi-
Pie for the views {−30◦, −15◦, 0◦, 15◦, 30◦}, with 1000
faces for each view. We compare the proposed model with
the state-of-art generative models, such as VAE [5,18] and
ABP [13]. For fair comparison, we first train the VAE and
ABP models with the same CelebA training set of 10,000
faces, and then fine-tune them on the 1000 front-view faces
from the Multi-Pie dataset. The mean square reconstruc-
tion error per image for each method is shown in Table
1. As we can observe from Table 1, the proposed method
obtains the lowest reconstruction error. Our model benefits
from the transferred geometric knowledge learned from
the CelebA dataset, while both the VAE and ABP mod-
els cannot efficiently learn or transfer purely geometric
information.

3.3 Balancing explaining-away competition

The proposed deformable generator model utilizes two
generator networks to disentangle the appearance and ge-
ometric information from an image. Since the geometric
generator only produces displacement for each pixel with-
out modifying the pixel’s value, the color and illumination
information and the geometric information are naturally
disentangled by the proposed model’s specific structure.

10



In order to properly disentangle the identity (or cate-
gory) and the view (or geometry) information, the learning
capacity between the appearance generator and geometric
generator should be balanced. The appearance generator
and the geometric generator cooperate with each other
to generate the images. Meanwhile, they also compete
against each other to explain away the training images. If
the learning of the appearance generator outpaces that of
the geometric generator, the appearance generator will en-
code most of the knowledge (including the view and shape
information), while the geometric generator will only learn
minor warping operations. On the other hand, if the geo-
metric generator learns much faster than the appearance
generator, the geometric generator will encode most of the
knowledge (including the identity or category information,
which should be encoded by the appearance network).

To control the tradeoff between the two generators, we
introduce a balance parameter α, which is defined as the
ratio of the number of filters within each layer between
the appearance and geometric generators. The balance
parameter α should not be too large or too small. We set α
to 0.625 in our experiments.

4 Conclusion
In this study, we propose a deformable generator model
which aims to disentangle the appearance and geometric
information of an image into two independent latent vec-
tors Za and Zg. The learned geometric generator can be
transferred to other datasets, or can be used for the purpose
of data augmentation to produce more variations in the
training data for better generalization.

In addition to the learning and inference algorithm
adopted in this paper, the model can also be trained by
VAE and GAN, as well as their generalizations such as
β-VAE and info-GAN, which target disentanglement in
general.

The model can be generalized to a dynamic one by
adding transition models for the latent vectors. While the
transition model for the appearance vector may generates
dynamic textures of non-trackable motion, the transition
model for the geometric vector may generate intuitive
physics of trackable motion. The geometric generator can
also be generalized to incorporate 3D information of rigid
or non-rigid 3D objects.

In our work, the warping function based on coordinate
displacements is hand designed. A refinement of this warp-
ing function in the form of a residual in addition to the
warping function may be learned from the data. However,
we tend to believe that the warping function itself or more
importantly the notion of coordinate displacements may
have to be a fundamentally innate part of a model for vision
that may not be learned from the data.
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A Deformable generator’ Network
Structure and Parameters

Table 2: Appearance generator’s Network Structure.
Layers In-Out Shape Conv-Kernel size stride
Za 64× 1 Null Null
Fc1 4× 4× 80 64× 1280 Null

Deconv1 8× 8× 40 3× 3× 80× 40 2
Deconv2 16× 16× 20 3× 3× 40× 20 2
Deconv3 32× 32× 10 5× 5× 20× 10 2

Out(Deconv4) 64× 64× 3 5× 5× 10× 3 2

Table 3: Geometric generator’s Network Structure.
Layers In-Out Shape Conv-Kernel size stride
Zg 64× 1 Null Null
Fc1 4× 4× 128 64× 2048 Null

Deconv1 8× 8× 64 3× 3× 128× 64 2
Deconv2 16× 16× 32 3× 3× 64× 32 2
Deconv3 32× 32× 16 5× 5× 32× 16 2

Out(Deconv4) 64× 64× 2 5× 5× 16× 2 2
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