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Abstract

Humans demonstrate remarkable abilities to perceive physi-
cal and social events based on very limited information (e.g.,
movements of a few simple geometric shapes). However, the
computational mechanisms underlying intuitive physics and
social perception remain unclear. In an effort to identify the
key computational components, we propose a unified psycho-
logical space that reveals the partition between the perception
of physical events involving inanimate objects and the percep-
tion of social events involving human interactions with other
agents. This unified space consists of two prominent dimen-
sions: an intuitive sense of whether physical laws are obeyed
or violated; and an impression of whether an agent possesses
intentions, as inferred from movements. We adopt a physics
engine and a deep reinforcement learning model to synthe-
size a rich set of motion patterns. In two experiments, human
judgments were used to demonstrate that the constructed psy-
chological space successfully partitions human perception of
physical versus social events.
Keywords: social perception; intuitive physics; intention;
deep reinforcement learning, Heider-Simmel animations

Introduction
Imagine you are playing a multi-player video game with open
or free-roaming worlds. You will encounter many physical
events, such as blocks collapsing onto the ground, as well
as social events, such as avatars constructing buildings or
fighting each other. All these physical and social events are
depicted by movements of simple geometric shapes, which
suffice to generate a vivid perception of rich behavioral, in-
cluding interactions between physical entities, interpersonal
activities between avatars engaged in social interactions, or
actions involving both humans and objects.

This type of rich perception elicited by movements within
simple visual displays has been extensively studied in psy-
chology. Prior work showed that humans possess a remark-
able ability to perceive physical events and to infer phys-
ical properties (e.g., masses of objects) (Proffitt & Gilden,
1989), as well as to make causal judgment (Michotte, 1963),
based on observations of the movements of two objects. Fur-
thermore, Heider & Simmel (1944) demonstrated that hu-
mans also excel in spontaneously reconstructing social events
from movements of simple geometric shapes, and describe
their observations in terms of agency, goals, and social rela-
tions. These classic studies, along with a great deal of sub-
sequent psychological research (e.g., Kassin 1981; Scholl &
Tremoulet 2000; Gao et al. 2009, 2010), provide convinc-
ing evidence that human inferences about physical and social
events are efficient and robust, even given very limited visual
inputs.

Although many studies of both intuitive physics and social
perception examined dynamic stimuli consisting of moving

shapes, these research areas have largely been isolated from
one another, with different theoretical approaches and experi-
mental paradigms. In the case of physical events, research has
been focused on the perception and interpretation of physical
objects and their dynamics, aiming to determine whether hu-
mans use heuristics or mental simulation to reason about in-
tuitive physics (see a recent review by Kubricht et al. (2017)).
For social perception, some research has aimed to identify
critical cues based on motion trajectories that determine the
perception of animacy and social interactions (Dittrich & Lea,
1994; Scholl & Tremoulet, 2000; Gao et al., 2009; Shu et al.,
2018). Other work focused on inferences about agents’ in-
tentions (Baker et al., 2009; Ullman et al., 2010; Pantelis et
al., 2014). In contrast to the clear separation between the two
research topics, human perception integrates the perception
of physical and social events. Hence, it is important to de-
velop a common computational framework applicable to both
intuitive physics and social perception to advance our under-
standings on how humans perceive and reason about physical
and social events.

In the present paper, we propose a unified framework to
account for the perception of both physical events and of so-
cial events based on movements of simple shapes. We aim
to construct a unified psychological space that may reveal the
partition between the perception of physical events involv-
ing inanimate objects and the perception of social events in-
volving human interactions with other agents. Specifically,
we hypothesize that this unified space includes two promi-
nent dimensions: an intuitive sense regarding whether physi-
cal laws are obeyed or violated; and an impression of whether
an agent possesses intentions in the display. Note that the in-
tuitive sense of physical violation may result from observable
physical forces that can not be explained by perceived entity
properties (such as motion, size, etc.) in a scene. The devel-
opment of this unified space may shed light on many funda-
mental problems in both intuitive physics and social percep-
tion.

To construct such space, we project a video as a whole onto
the space. Hence, a large range of videos can provide a dis-
tribution of observed events. We can also project individual
entities in one physical or social event onto the same space,
and then examine pairwise relations between the projected lo-
cations of entities in the space, which could serve as an infor-
mative cue for judging social/physical roles of entities (e.g,
as an human agent or an inanimate object).

To test the hypothesized psychological space, we report
experiments involving many Heider-Simmel animations in
which simple moving shapes vary in degrees of physical vi-
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Figure 1: Overview of our joint physical-social simulation
engine. For a dot instantiating a physical object, we randomly
assign its initial position and velocity and then use physics
engine to simulate its movements. For a dot instantiating a
human agent, we use policies learned by deep reinforcement
learning to guide the forces provided to the physics engine.

olation and the involvement of intention. Prior work usually
created Heider-Simmel-type stimuli using manually designed
interactions (Gao et al., 2009, 2010; Isik et al., 2017), rule-
based behavior simulation (Kerr & Cohen, 2010; Pantelis et
al., 2014), and trajectories extracted from human activities in
aerial videos (Shu et al., 2018). It is challenging to manually
create many motion trajectories, and to generate situations
that violate physical constraints. Accordingly, we develop a
joint physical-social simulation-based approach built upon a
2D physics engine (Figure 1). A similar idea has been pre-
viously instantiated in a 1D environment, Lineland (Ullman,
2015). By generating Heider-Simmel-type animations in a
2D environment with the help of deep reinforcement learn-
ing, our simulation approach is able to depict a richer set of
motion patterns in animations.

This advanced simulation provides well-controlled Heider-
Simmel stimuli enabling the measurement of human percep-
tion of physical and social events for hundreds of different
motion patterns. We also develop general metrics to measure
how well the motion patterns in an animation satisfy physics,
and the likelihood that dots are agents showing intentions.
These two indices were computed for each stimulus shown to
human observers, allowing us to map all videos into a unified
space as the two measures providing primary coordinates. In
two experiments, we combined model simulations with hu-
man responses to validate the proposed psychological space.

Stimulus Synthesis
Overview
Figure 1 gives an overview of our joint physical-social simu-
lation engine. Each video included two dots (red and green)
and a box with a small gap indicating a room with a door. The
movements of the two dots were rendered by a 2D physics en-
gine (pybox2d1). If a dot represents an object, we randomly
assigned the initial position and velocity, and then used the

1https://github.com/pybox2d/pybox2d
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Figure 2: An illustration of three types of synthesized inter-
actions for physical and social events. A few examples are
included by showing trajectories of the two entities. The dot
intensities change from low to high to denote elapsed time.
Note that the connections in OO stimuli (i.e., rod, spring, and
soft rope) are drawn only for illustration purpose. Such con-
nections were invisible in the stimuli. Examples of stimuli are
available at: https://tshu.io/HeiderSimmel/CogSci19.

physics engine to synthesize its motion. Note that our simu-
lation incorporated the environmental constraints (e.g., a dot
can bounce off the wall, the edge of the box), but did not in-
clude friction. If a dot represents an agent, it was assigned
with a clearly-defined goal (e.g., leaving room) and pursued
its goal by exerting self-propelled forces (e.g., pushing itself
towards the door). The self-propelled forces were sampled
from agent policy learned by deep reinforcement learning
(see more details in a later subsection). Specifically, at each
step (every 50 ms), the agent observed the current state ren-
dered by the physics engine, and its policy determined the
best force to advance the agent’s pursuit of its goal. We then
programmed the physics engine to apply this force to the dot,
and rendered its motion for another step. This process was
repeated until the entire video was generated.

Interaction Types
As summarized in Figure 2, we consider three types of inter-
actions, including human-human (HH), human-object (HO)
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Figure 3: The deep RL network architecture for learning pol-
icy for goal-directed movements of an agent. For each goal,
we train a separate network with the same architecture.

and object-object (OO) interactions, all of which are gener-
ated by the approach depicted in Figure 1. Note that in this
paper we treat the terms “human” and “agent” interchange-
ably. When synthesizing the agents’ motion, we set two types
of goals for the agents, i.e., ”leave the room” (g1) and ”block
the other entity” (g2). Specially, in HH stimuli, one agent
has a goal of leaving the room (g1), and the other agent aims
to block it (g2); in HO stimuli, an agent always attempts to
keep a moving object within the room (g2) and the object has
an initial velocity towards the door. By randomly assigning
initial position and velocity to an agent, we can simulate rich
behaviors that can give the impression such as blocking, chas-
ing, attacking, pushing, etc.

In addition to the three general types of interactions, we
have also created sub-categories of interactions to capture a
variety of physical and social events. For OO animations,
we included four events, as collision, connections with rod,
spring and soft rope. Since these connections were invisi-
ble in the displays, the hidden physical relations may result
in a subjective impression of animacy or social interactions
between the entities. In addition, the invisible connections
between objects (rod, spring, and soft rope) introduce dif-
ferent degrees of violation of physics in the motion of the
corresponding entities if assuming the two entities are inde-
pendent. For HH animations, we varied the “animacy degree”
(AD) of the agents by controlling how often they exerted self-
propelled forces in the animation. In general, a higher degree
of animacy associates with more frequent observations about
violation of physics, thus revealing self-controlled behaviors
guided by the intention of an agent. The animacy manipula-
tion introduced five sub-categories of HH stimuli with five de-
grees of animacy – 7%, 10%, 20%, 50%, and 100%, respec-
tively corresponding to applying force once for every 750,
500, 250, 100, and 50 ms. In an HH animation, we assigned
the same level of animacy degree to both dots.

Training Policies
As shown in Figure 1, in order to generate social events,
we need sensible policies to infer the self-propelled forces
for pursuing goals. However, searching for such policies in
a physics engine is extremely difficult. In this study, we
use deep reinforcement learning (RL) to acquire such poli-
cies, which has been shown to be a powerful tool for learn-
ing complex policies in recent studies (Silver et al., 2017).
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Figure 4: Network for the physical motion prediction model
to emulate intuitive physics. Blue circles indicate the corners
of the room used for deriving the input features.

Formally, an agent’s behavior is defined by an Markov de-
cision process (MDP), 〈S ,A ,T ,R,G ,γ〉, where S and A de-
note the state space (raw pixels as in Figure 3) and action
space, T : S ×A 7→ S are the transition probabilities of the
environment (in our case, deterministic transitions defined
by physics), R is the reward function associated with the in-
tended goals g ∈ G , and 0 < γ ≤ 1 is a discount factor. To
match to the experimental setup, we define two reward func-
tions for the two goals: i) for “leaving of the room”, the
agent receives a reward, rt = R(st ,g1) = 1(out of the room),
at step t; ii) for “blocking”, the reward at step t is rt =
R(st ,g2) =−1(opponent is out of the room). To simplify the
policy learning, we define a discrete action space, which cor-
responds to applying forces with the same magnitude in one
of the eight directions and “stop” (the agent’s speed decreases
to zero after applying necessary force).

The objective of the deep RL model is to train the pol-
icy network shown in Figure3 to maximize the expected re-
turn E[∑∞

t=0 γtrt ] for each agent. The optimization was im-
plemented using advantage actor critic (A2C) (Mnih et al.,
2016) to jointly learn a policy (actor) π : S ×G 7→ A which
maps an agent’s state and goal to its action, and a value func-
tion (critic) V : S 7→ R. The two functions were trained as
follows (assuming that entity i is an agent):

∇θπ
J(θπ) = ∇θπ

logπ(at
i|st

i,gi;θπ)A(st
i,gi), (1)

∇θV J(θV ) = ∇θV

1
2

(
∞

∑
τ=0

γ
τrt+τ

i −V (st
i,gi;θV )

)2

, (2)

where A(st
i,gi) = ∑

∞
τ=0 γτrt+τ

i −V (st
i,gi) is an estimate of the

advantage of current policy over the baseline V (st
i,gi). We

set γ = 0.95 and limit the maximum number of steps in an
episode to be 30 (i.e., 1.5 s). Note that we train a network for
each goal with the same architecture. In HH animations, an
agent’s policy depends on its opponent’s policy. To achieve
a joint policy optimization for both agents, we adopt an al-
ternating training procedure: at each iteration, we train the
policy of one of the agents by fixing its opponent’s policy. In
practice, we trained the polices by 3 iterations.

Inference of Physical and Social Events
Physics Inference
The first type of inference assesses the degree of violation
of physics for each entity. To capture this measure, we used
physical events to train a deep recurrent neural network (see
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Figure 5: Human response proportions of interaction categories (a) and of the sub-categories (b,c) in Experiment 1. Error bars
indicate the standard deviations across stimuli.

Figure 4) as an approximation to emulate intuitive physics.
The network can predict the velocities of the two objects v̂t

i ,
i = 1,2, given their past trajectories Γt

i = {sτ
i }t

τ=1. At each
step, we feed a 28-dim feature vector to the network by con-
catenating the two dots’ positions in the room, their relative
positions to each other and to the five corners highlighted by
the blue circles in Figure 4. We generated 2000 collision
OO videos and trained the network on these videos with a
4-fold cross-validation. Using the trained network, we then
conducted a step-by-step prediction of an entity’s movements
assuming it is an object. By comparing with the ground truth
vt

i , we can evaluate to what degree an entity’s motion is in-
consistent with physics predictions:

Di =
1
T

T

∑
t=1
||vt

i− v̂t
i||22, ∀i = 1,2. (3)

Intention Inference
To evaluate the impression of whether a dot possesses inten-
tions in the Heider-Simmel display, we estimate a value index
(i.e., accumulated reward) from an entity’s trajectory w.r.t.
each possible goal. We first define a reward function:

R(st ,g) =
(xt

g−xt)>vt

||xt
g−xt ||2|| ·vt ||2

, (4)

where xt and vt are the position and velocity of an entity ex-
tracted from its state st , and xt

g is the position of the goal.
For “leaving the room”, xt

g is the door’s position, whereas xt
g

denotes the position of the other entity for “blocking”. In-
tuitively, this reward function evaluates whether the entity is
moving towards certain goal locations. Consequently, we can
compute the overall value by selecting the most likely goal:

Vi =

[
max
g∈G

1
T

T

∑
t=1

R(st
i,g)

]
+

, ∀i = 1,2, (5)

where [x]+ = max(x,0). Note that Vi defined here is different
from the one in Eq. 2. Ranging from 0 to 1, a higher value of
Vi indicates that the entity i shows a clearer intention and is
more likely to be an agent. We remove the moments when the
denominator in Eq. (4) is too small for the robustness of the
value estimate. Considering the complexity of optimal plan-
ning in the continuous physical environment, the proposed
value index offers a simplified measure of goal inference by
inverse planning (Baker et al., 2009; Ullman et al., 2010).

Experiment 1
Participants
30 participants (mean age = 20.9; 19 female) were recruited
from UCLA Psychology Department Subject Pool. All par-
ticipants had normal or corrected-to-normal vision. Partici-
pants provided written consent via a preliminary online sur-
vey in accordance with the UCLA Institutional Review Board
and were compensated with course credit.

Stimuli and Procedure
850 videos of Heider-Simmel animations were generated
from our synthesis algorithm described above, with 500 HH
videos (100 videos for each AD level), 150 HO videos, and
200 OO videos (50 videos for each sub-category). Videos
lasted from 1 s to 1.5 s with a frame rate of 20 fps. By setting
appropriate initial velocities, the average speeds of dots in OO
videos were controlled to be the same as the average speeds
of dots in HH with 100% ADs (44 pixel/s). The dataset was
split into two equal sets; each contained 250 HH, 75 HO, and
100 OO videos. 15 participants were presented with set 1 and
the other 15 participants were presented with set 2.

Stimuli were presented on a 1024×768 monitor with a 60
Hz refresh rate. Participants were given the following instruc-
tions: “In the current experiment, imagine that you are work-
ing for a security company. Videos were recorded by bird’s-
eye view surveillance cameras. In each video, you will see
two dots moving around, one in red and one in green. Your
task is to ‘identify’ these two dots based on their movement.
There are three possible scenarios: human-human, human-
object, or object-object.” Videos were presented in random
orders. After the display of each video, participants were
asked to classify the video into one of the three categories.

Results
Human response proportions are summarized in Figure 5. Re-
sponse proportion of human-human interaction swas ignifi-
cantly greater than the chance level 0.33 (t(499) = 25.713,
p < .001). For HO animations, response proportion of
human-object interaction was significantly greater than the
other two responses (p < .001). Similarly, response propor-
tion of object-object was greater than the other two responses
(p < .001) for OO animations. These results reveal that hu-
man participants identified the main characteristics of differ-
ent interaction types based on dot movements.
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Figure 6: Constructed psychological space including HH ani-
mations with 100% animacy degree, HO animations, and OO
animations. In this figure, a stimulus is depicted by a data
point with coordinates derived by the model, and the colors of
data points indicate the average human responses of this stim-
ulus. The two coordinates of the space are the averaged mea-
sures between the two entities, as the measure of the degree
of violation of physical laws (horizontal) and the measure of
values indicating the presence of intention. The mark shapes
of data points correspond to the interaction types used in the
simulation for generating the corresponding stimuli (circle:
HH, triangle: HO, square: OO).

Next, we examined human responses to the sub-categories
within the HH and OO animations. We first used the animacy
degree as a continuous variable and tested its effect on human
responses in the HH animations. With increases in degree
of animacy in HH, the response proportion of human-human
interaction increased significantly as revealed by a positive
correlation (r = .42, p < .001). This finding suggests that
humans are sensitive to the animacy manipulation in terms
of the frequency with which self-propelled forces occurred in
the stimuli. For the OO animations, the response proportion
for object-object interaction among the four sub-categories
yielded significant differences (F(3,196) = 34.42, p < .001
by an ANOVA), with the most object-object responses in the
collision condition, and the least in the rod condition. Pair-
wise comparisons among the four-categories show significant
difference between collision and everything else (p < .001),
between soft rope and rope (p < .001), and also between soft
rope and string (p = .018); there is a marginally significant
difference between rod and string (p = .079).

We then combined human responses and the model-derived
measures for each animation stimulus to depict the unified
psychology space for the perception of physical and social
events. Figure 6 presents the distributions of 100 HH videos
with 100% animacy degree, 150 HO videos, and 200 OO
videos, all in this unified space. In this figure, an animation
video is indicated by a data point with coordinates derived
by the model, and the colors of data points indicate the aver-
age human responses of this stimulus. Specifically, the values
of its RGB channels are determined by the average human-
human responses in red, human-object responses in green,
and object-object responses in blue. The mark shapes of data
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points correspond to the interaction type used in the simula-
tion for generating the synthesized animations. The coordi-
nates of each data point were calculated as the model-derived
measures averaged across the two entities in an animation.
The resulting space showed clear separations between the
animations that were judged as three different types of in-
teractions. Animations with more human-human interaction
responses (red marks) clustered at the top-right corner, cor-
responding to great values of intention and strong evidence
signaling the violation of physics. Animations with high re-
sponses for object-object interactions (blue marks), located
at the bottom left of the space, show low values of inten-
tion index and little evidence of violation of physics. An-
imations with high responses for human-object interactions
(green marks) fell in the middle of the space.

To quantitatively evaluate how well the model-derived
space accounts for human judgments, we trained a classi-
fier using the coordinates derived in the space shown in Fig-
ure 6 as input features (D and V for the indices of physical
violation and intention respectively). For each ground-truth
type of interactions k ∈ {HH,HO,OO}, we fit a 2D Gaus-
sian distribution pk(D,V ), using half of the stimuli as train-
ing data. Then for a given animation with the coordinates of
(D,V ), the classifier predicts p(k|D,V ) = pk(D,V )

∑k pk(D,V ) for ani-
mations in the remaining half of the stimuli. The correlation
between the model predictions and average human responses
was 0.748 (p < .001) based on 2-fold cross-validation. Us-
ing a split-half reliability method, human participants showed
an inter-subject correlation of 0.728 (p < .001). Hence,
the response correlation between model and humans closely
matched inter-subject correlations, suggesting a good fit of
the unified space as a generic account of human perception
of physical and social events based on movements of simple
shapes.

We examined the impact of different degrees of animacy
on the perception of social events, and how different subcat-
egories of physical events affect human judgments on inter-
action types. The unified space provides a platform to com-
pare these fine-grained judgments. Figure 7 shows the centers
of the coordinates and the average responses for each of the
sub-categories. We first found that, with a decreased degree
of animacy, the intention index in HH animations was gradu-



ally reduced towards the level of HO animations. Meanwhile,
human judgments of these stimuli varying from low to high
degree of animacy transited gradually from human-object re-
sponses to human-human responses, consistent with the trend
that the data points moved along the physics axis. Among
all physical events, the rod and spring conditions showed the
highest intention index and the strongest physical violation,
respectively, resulting in a greater portion of human-human
interaction responses than the other categories.

Experiment 2
In Experiment 1, human participants were asked to classify
the three interaction types. But for human-object responses,
the assignment of the roles to individual entities was not mea-
sured. In Experiment 2, we focused on stimuli that elicited
the classification of human-object responses, and asked par-
ticipants to report which dot was a human agent, and which
dot was an inanimate object. Specifically, the role assign-
ment in the human-object responses helps us identify some
key characteristics in the psychological space that signal a
human-object interaction.

Methods
25 participants (mean age = 21.3; 19 female) were recruited
from the UCLA Psychology Department Subject Pool. 216
videos were selected from Experiment 1 based on the crite-
rion that more than 40% of subjects judged the HH videos or
OO videos as human-object interaction. 201 videos were HH
videos and the other 15 were OO videos.

The procedure was the same as Experiment 1 except that
on each trial, subjects were asked to complete two tasks: first
to judge the interaction type; then if the judgment was human-
object, they were further asked to report which dot repre-
sented a human agent and which dot represented an object.

Results
We projected all entities onto the psychological space based
on the model-derived measures for each individual entity, and
connected a pair of the two entities that appeared in the same
video. We visualized 10 animations that yielded high human-
object response proportions and the most consistent role judg-
ment among participants as shown in Figure 8a, where cir-
cles represent the dots that were frequently identified as hu-
mans, and squares represent the dots identified as objects.
The resulting segments showed a common feature in that the
connection of the two entities in the space depicted a near-
vertical orientation, primarily due to high intention value for
the human dot, and low intention value for the object dot. To
further examine the orientations in the space for the human-
object responses, we calculated the histogram of the orien-
tations for animations judged as human-object interactions,
which shows a high concentration around 90 degrees (see Fig-
ure 8b). This finding suggests that the two dots in the Heider-
Simmel animations elicited similar degrees of physical viola-
tion, but one of them showed a much clearer intention. Note
that this analysis excluded 38 stimuli in which participants
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Figure 8: Human and model-simulation results in Experi-
ment 2. (a) Representative cases of animations that elicited
the human-object responses, located in the space with model-
derived coordinates. The colors reflects average human re-
sponses of assigning a dot to the human role (red) and to the
object role (blue). (b) Orientation histogram of the segments
connected by the concurrent pairs of entities in an animation.

did not show consistency in the role judgment (each entity
was judged as a human or an object by exactly half of the
participants).

Conclusion
In this study, we propose a unified psychological space to
account for human perception of physical and social events
from movements of simple shapes in Heider-Simmel anima-
tions. The space consists of two primary dimensions: the
intuitive sense of violation of physics, and the impression
of intentions. We tested the space by measuring human re-
sponses when viewing a range of synthesized stimuli depict-
ing human-human, human-object, and object-object interac-
tions in the style of Heider-Simmel animations. We found
that the constructed physics-intention space revealed clear
separations between social and physical events as judged
by humans. Furthermore, we trained a classification model
based on the coordinates of each stimulus in this space. The
resulting model was able to predict human classification re-
sponses at the same level as human inter-subject reliability.

The present paper provides a proof of concept that the per-
ception of physical events and social events can be integrated
within a unified space. Such common representation enables
the development of a comprehensive computational model of
how humans perceive and reason about physical and social
scenes. Perhaps the most surprising finding in our work is
that the classification result based on just the two measures
reflecting the violation of physical laws and the estimate of
intention can predict human judgment very well, reaching the
same level as inter-subject correlation. The good fit to human
responses across a range of Heider-Simmel stimuli demon-
strates the great potential of using a unified space to study the
transition from intuitive physics to social perception.

The main benefit of constructing this psychological space
is to provide an intuitive assessment for general impressions
of physical and social events. To build up such representation,



humans or a computation model may use various cues to de-
tect intentions and/or physical violations; such cue-based de-
tection is usually subjected to personal preferences. Instead
of discovering a list of cues for distinguishing between phys-
ical events and social events, the proposed space offers an ab-
stract framework for gauging how humans’ intuitive senses of
physics and intentions interplay in their perception of physi-
cal and social events.

This work provides a first step toward developing a uni-
fied computational theory to connect human perception and
reasoning for both physical and social environments. How-
ever, the model has limitations. For example, the simulations
are limited by a small set of goals, and the model requires
predefined goals and good knowledge about the constrained
physical environment. Future work should aim to extend the
analysis to a variety of goals in social events (Thurman & Lu,
2014), to develop better goal inference, and to support causal
perception in human actions (Peng et al., 2017). A more com-
plete model would possess the ability to learn about physical
environments based on partial knowledge, and to emulate a
theory of mind in order to cope with hierarchical structures
in the goal space. In addition, we have only examined hu-
man perception of physical and social events on short stimuli
with only two entities. Generating longer stimuli with more
entities and analyzing human perception on them will further
help reveal the mechanisms underlying humans’ physical and
social perception.
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