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Abstract
One of the main challenges of applying reinforce-
ment learning to real world applications is the
lack of realistic and standardized environments for
training and testing AI agents. In this work, we de-
sign and implement a virtual reality (VR) system,
VRKitchen, with integrated functions which i) en-
able embodied agents to perform real life cooking
tasks involving a wide range of object manipu-
lations and state changes, and ii) allow human
teachers to provide demonstrations for training
agents. We also provide standardized evaluation
benchmarks and data collection tools to facilitate
a broad use in research on learning real life tasks.
Video demos, code, and data will be available
on the project website: sites.google.com/
view/vr-kitchen/.

1. Introduction
Thanks to the recent success in many domains of AI re-
search, humans now have built machines that can accurately
detect and recognize objects (Krizhevsky & Hinton, 2012;
He et al., 2017), generate vivid natural images (Brock et al.,
2018), and beat human Go champions (Silver et al., 2017).
However, a truly intelligent machine agent should be able
to solve a large set of complex tasks in the real world, by
adapting itself to unseen surroundings and planning a long
sequence of actions to reach the desired goals, which is
still beyond the capacity of current machine models. This
gives rise to the need of advancing research on learning real
life tasks. For the present work, we are interested in the
following three aspects of real life task learning problem.

Learning visual representation of a dynamic environ-
ment. In the process of solving a task in a dynamic en-
vironment, the appearance of the same object may change
dramatically as a result of actions (Isola et al., 2015; Fathi
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& Rehg, 2013; Liu et al., 2017b). To capture such variation
in object appearance, the agent is required to have a bet-
ter visual representation of the environment dynamics. To
make a dish with a tomato, for example, the agent should
recognize the tomato even if it is cut into pieces and put
into container. To acquire such visual knowledge, it is im-
portant for an agent to learn from physical interactions and
reason over the underlying causality of object state changes.
There have been work on implementing interaction-based
learning in lab environments (Lerer et al., 2016; Agrawal
et al., 2015; Haidu et al., 2015), but the limited scenarios
greatly restrict scalability and reproducibility of prior work.
Instead, we believe that building a simulation platform is a
good alternative since i) performance of different algorithms
can be easily evaluated and benchmarked, and ii) a large
set of diverse and realistic environments and tasks can be
customized.

Learning to generate long-term plans for complex tasks.
In real life scenarios, a complex task is often composed
of various sub-tasks, each of which has its own sub-goal
(BARNES, 1944). Thus the agent needs to take a long
sequence of actions to finish the task. The large number
of possible actions in the sample space and the extremely
sparse rewards make it difficult to steer the policy to the
right direction. Recently, many researchers have focused
on learning hierarchical policies (Stolle & Precup, 2002;
Andreas et al., 2016; Shu et al., 2018) in simple domains.
In this work, we provide a virtual environment where the
agent can learn to compose long-term plans for daily life
tasks that humans encounter in the real world.

Learning from human demonstrations to bootstrap
agents’ models. Training an agent from scratch is ex-
tremely difficult in complex environments. To bootstrap
the training, it is common to let an agent to imitate human
experts by watching human demonstrations (Ng & Russell,
2000; Ziebart et al., 2008; Giusti et al., 2016). Previous work
has shown that learning from demonstrations (or imitation
learning) significantly improves the learning efficiency and
achieves a higher performance than reinforcement learning
does (Zhu et al., 2017; Hester et al., 2017). However, it
is expensive and time consuming to collect diverse human
demonstrations with high qualities. We believe that virtual
reality platforms can provide us with an ideal medium to
crowd source demonstrations from a broad range of users
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Figure 1. A sample sequence of an agent making a sandwich. Rectangles on the left graph represents five necessary sub-tasks, including
(1) taking ingredients from fridge, (2) putting ham and cheese on the bread, (3) use the oven, (4) cut tomato and (5) add some sauce. Each
rectangle on the right graph indicates atomic actions required to finish a sub-task.

(von Ahn & Dabbish, 2008).

In this work, we focus on simulating two sets of real life
cooking tasks (using common tools and preparing dishes)
in a virtual kitchen environment, VRKitchen. We illustrate
how this system can address the emerged needs for real life
task learning in an example shown in Figure 1, where an
agent makes a sandwich in one of the kitchens created in
our system.
1. Cooking tasks contain a notoriously great number of

changes in object states. VRKitchen allows the agent
to interact with different tools and ingredients and sim-
ulates a variety of object state changes. E.g., the bread
changes its color when it is being heated in the oven, and
the tomato turns into slices after it is cut. The agent’s
interactions with the physical world when performing
cooking tasks will result in large variations and temporal
changes in objects’ appearance and physical properties,
which calls for a task-oriented visual representation.

2. To make a sandwich, the agent needs to perform a long
sequence of actions, including taking ingredients from
a fridge, putting cheese and ham on the bread, toasting
the bread, adding some sliced tomato and putting some
sauce on the bread. To quickly and successfully reach
the final goal, it is necessary to equip the agent with the
ability to conduct long-term planning.

3. We build two interfaces to allow an AI algorithm as
well as a human user to control the embodied agent
respectively, thus humans can give demonstrations using
VR devices, and the AI algorithms can learn from these
demonstrations and perform the same tasks in the same
virtual environments.

In summary, our main contributions are:

• A 3D virtual kitchen environment which enables physical
simulation of a wide range of cooking tasks with rich
object state changes and compositional goals;

• A toolkit including a VR-based user interface for collect-
ing human demonstrations, and a Python API for training

and testing different AI algorithms in the virtual environ-
ments.

• Proposing a new challenge – VR chef challenge, to pro-
vide standardized evaluation for benchmarking different
approaches in terms of their learning efficiency in com-
plex 3D environments.

• A new human demonstration dataset of various cooking
tasks – UCLA VR chef dataset.

2. Related Work
Simulation platforms. Traditionally, visual representations
are learned from static datasets. Either containing prere-
corded videos (Rohrbach et al., 2012) or images (Jia Deng
et al., 2009), most of them fail to capture the dynamics in
viewpoint and object state during human activities, in spite
of their large scale.

To address this issue, there has been a growing trend to
develop 3D virtual platforms for training embodied agents
in dynamic environments. Typical systems include 3D game
environments (Kempka et al., 2017; Beattie et al., 2016;
Johnson et al., 2016), and robot control platforms (Todorov
et al., 2012; Coumans & Bai, 2016; Fan et al., 2018; Plappert
et al., 2018). While these systems offer physics simulation
and 3D rendering, they fail to provide realistic environments
and daily tasks humans face in the real world.

More recently, based on 3D scene datasets such as Matter-
port3D (Chang et al., 2018) and SUNCG (Song et al., 2017),
there have been several systems simulating more realistic
indoor environments (Brodeur et al., 2017; Wu et al., 2018;
Savva et al., 2017; McCormac et al., 2017; Xia et al., 2018;
Xie et al., 2019) for visual navigation tasks and basic object
interactions such as pushing and moving funitures (Kolve
et al., 2017). While the environments in these systems are
indeed more realistic and scalable compared to previous
systems, they can not simulate complex object manipulation
that are common in our daily life. (Puig et al., 2018) took a
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Env. Large-scale Physics Realistic State Manipulation Avatar Demo
Malmo (Johnson et al., 2016)

√ √ √

DeepMind Lab (Beattie et al., 2016)
√

VizDoom (Kempka et al., 2017)
√

MINOS (Savva et al., 2017)
√ √

HoME (Brodeur et al., 2017)
√ √ √

Gibson (Xia et al., 2018)
√ √ √ √

House3D (Wu et al., 2018)
√ √ √

AI2-THOR (Kolve et al., 2017)
√ √ √

VirtualHome (Puig et al., 2018)
√ √ √ √

SURREAL (Fan et al., 2018)
√ √ √

VRKitchen (ours)
√ √ √ √ √ √

Table 1. Comparison with other 3D virtual environments. Large-scale: a large number of scenes. Physics: physics simulation. Realistic:
photo-realistic rendering. State: changeable object states. Manipulation: enabling fine-grained object interactions and manipulations.
Avatar: humanoid virtual agents. Demo: user interface to collect human demonstrations.

step forward and has created a dataset of common household
activities with a larger set of agent actions including pick-up,
switch on/off, sit and stand-up. However, this system was
designed to generate data for video understanding. In con-
trast, our system emphasizes training and evaluating agents
on real life cooking tasks, which involves fine-grained ob-
ject manipulation on the level of object parts (e.g., grasping
the handle of a knife), and flexible interfaces for allowing
both human users and AI algorithms to perform tasks. Our
system also simulates the animation of object state changes
(such as the process of cutting a fruit) and the gestures of
humanoid avatars (such as reaching for an object) instead of
only showing pre-conditions and post-effects as in (Kolve
et al., 2017). A detailed comparison between our system
and other virtual environments is summarized in Table 1.

Imitation learning. Learning from demonstration or imita-
tion learning is proven to be an effective approach to train
machine agents efficiently (Abbeel & Ng, 2004; Syed &
Schapire, 2008; Ross et al., 2010). Collecting diverse ex-
pert demonstrations with 3D ground-truth information in
real world is extremely difficult. We believe the VR inter-
face in our system can greatly simplify and scale up the
demonstration collection.

VR for AI. VR provides a convenient way to evaluate AI
algorithms in tasks where interaction or human involvement
is necessary. Researches have been conducted on relevant
domains, including physical intuition learning (Lerer et al.,
2016), human-robot interaction (Shu et al., 2016; 2017;
Liu et al., 2017a; de Giorgio et al., 2017), learning motor
control from human demonstrations (Liu et al., 2019; Haidu
et al., 2015; Kawasaki et al., 2001; Belousov et al., 2001).
Researchers have also used VR to collect data and train
computer vision models (Zhong et al., 2019). To this end,
several plugins for game engines have been released, such as
UETorch (Lerer et al., 2016) and UnrealCV (Qiu & Yuille,
2016). To date, such plugins only offer APIs to control
game state and record data, requiring additional packages
to train virtual agents.

Figure 2. Architecture of VRKitchen. Users can either directly
teleoperate the agent using VR device or send commands to the
agent by Python API.

3. VRKitchen Environment
Our goal is to enable better learning of autonomous agents
for real life tasks with compositional goals and rich object
state changes. To this end, we have designed VRKitchen,
an interactive virtual kitchen environment which provides
a testbed for training and evaluating various learning and
planning algorithms in a variety of cooking tasks. With the
help of virtual reality device, human users serve as teachers
for the agents by providing demonstrations in the virtual
environment.

3.1. Architecture Overview

Figure 2 gives an overview of the architecture of VRKitchen.
In particular, our system consists of three modules: (1) the
physics engine and photo-realistic rendering module con-
sists of several humanoid agents and kitchen scenes, each
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(a) Female 1 (b) Female 2 (c) Male 1 (d) Male 2

Figure 3. Four humanoid avatars designed using MakeHuman (The
MakeHuman team, 2017).

has a number of ingredients and tools necessary for perform-
ing cooking activities; (2) a user interface module which
allows users or algorithms to perform tasks by virtual real-
ity device or Python API; (3) a Python-UE4 bridge, which
transfers high level commands to motor control signals and
sends them to the agent.

3.2. Physics Engine and Photo-realistic Rendering

As a popular game engine, Unreal Engine 4 (UE4) provides
physics simulation and photo-realistic rendering which are
vital for creating a realistic environment. On top of that, we
design humanoid agents, scenes, object state changes, and
fine-grained actions as follows.

Humanoid agents. Agents in VRKitchen have human-like
appearances (shown in Figure 3) and detailed embodiment
representations. The animation of the agent can be bro-
ken into different states, e.g. walking, idle. Each agent is
surrounded by a capsule for collision detection: when it’s
walking, it would fail to navigate to a new location if it
collides with any objects in the scene. When it is idle, the
agent can freely interact with objects within certain range
of its body.

Scenes. VRKitchen consists of 16 fully interactive kitchen
scenes as shown in Figure 4. Agents can interact with
most of the objects in the scenes, including various kinds of
tools, receptacles and ingredients. Each kitchen is designed
and created manually based on common household setting.
3D models of furnitures and appliances in kitchens are first
obtained from the SUNCG dataset (Song et al., 2017). Some
of the models are decomposed to create necessary object
interactions, e.g. we reassemble doors and cabinets to create
effects for opening and closing the door. After we have
basic furnitures and appliances in the scene, we then add
cooking ingredients and tools. Instead of sampling their
locations randomly, we place the objects according to their
utility, e.g. tools are placed on the cabinets while perishable
ingredients such as fruits and vegetables are available in
the fridge. On average, there are 55 interactive objects in a
scene.

Object state changes. One key factor of VRKitchen is
the ability to simulate state changes for objects. Instead
of showing only pre-conditions and post effects of actions,
VRKitchen simulates the continuous geometric and topo-
logical changes of objects caused by actions. This leads

Figure 4. Sample kitchen scenes available in VRKitchen. Scenes
have a variety of appearance and layouts.

to a great number of available cooking activities, such as
roasting, peeling, scooping, pouring, blending, juicing, etc.
Overall, there are 18 cooking activities available in VRK-
itchen. Figure 5 shows some examples of object interactions
and state changes.

Fine-grained actions. In previous platforms (Kolve et al.,
2017; Brodeur et al., 2017), objects are typically treated as
a whole. However, in real world, humans apply different
actions to different parts of objects. E.g. to get some coffee
from a coffee machine, a human may first press the power
button to open the machine, and press the brew button af-
terwards to brew coffee. Thus we design the objects in our
system in a compositional way, i.e., an object has multiple
components, each of which has its own affordance. This
extends the typical action space in prior systems to a much
larger set of fine-grained actions and enables the agents to
learn object-related causality and commonsense.

3.3. User Interface

With a detailed agent embodiment representation, multiple
levels of human-object-interactions are available. In partic-
ular, there are two ways for users and algorithms to control
the agent:

(1) Users and algorithms can directly control the agent’s
head and hands. During teleoperation, actions are recorded
using a set of off-the-shelf VR device, in our case, an Oculus
Rift head-mounted display (HMD) and a pair of Oculus
Touch controllers. Two Oculus constellation sensors are
used to track the transforms of the headset and controllers in
3D spaces. We then apply the data to a human avatar in the
virtual environment: the avatar’s head and hand movements
correspond to the human user’s, while other parts of its body
are animated through a built-in Inverse Kinematics solver
(Forward And Backward Reaching Inverse Kinematics, or
FABRIK). Human users are free to navigate the space using
the Thumbsticks and grab objects using the Trigger button
on the controller. Figure 6 gives an example of collecting
demonstrations for continuous actions.

(2) The Python API offers a way to control the agent by
sending discrete action sequences. In particular, it provides
world states and receives discrete action sequences. The
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Figure 5. Sample actions and object state changes by making use of different tools in VRKitchen.

world state is comprised of the locations and current states
of nearby objects and a RGB/depth image of agent’s first
person view. Figure 7 shows examples of recorded human
demonstrations for tasks pizza from a third person view.

3.4. Python-UE4 Bridge

The Python-UE4 bridge contains a communication module
and a controller. The Python server communicates with the
game engine to receive data from the environment and send
requests to the agent. It is connected to the engine through
sockets. To perform an action, the server sends a command
to UE4 and waits for response. A client in UE4 parses
the command and applies the corresponding animations to
the agent. A payload containing states of nearby objects,
agent’s first person camera view (in terms of RGB, depth
and object instance segmentations) and other task-relevant
information are sent back to the Python server. The process
repeats until terminal state is reached.

The controller enables both low level motor controls and
high level commands. Low level controls change local
translation and rotation of agent’s body, heads and hands,
while other body parts are animated using FABRIK. High
level commands, which performs discrete actions such as
taking or placing an object, are further implemented by
taking advantage of the low level controller. To cut a carrot
with a knife, for example, the high level controller iteratively
updates the hand location until the knife reaches the carrot.

3.5. Performance

We run VRKitchen on a computer with Intel(R) Core(TM)
i7-7700K processor @ 4.50GHz and NVIDIA Titan X (Pas-
cal) graphics card. A typical interaction, including sending
command, executing the action, rendering frame and getting
response, takes about 0.066 seconds (15 actions per second)
for a single thread. The resolutions for RGB, depth and
object segmentation images are by default 84×84.

4. VR Chef Challenge
In this paper, we propose the VR chef challenge consisting
of two sets of cooking tasks: (a) tool use, where learning mo-
tor control is the main challenge; and (b) preparing dishes,
where compositional goals are involved and there are hidden
task dependencies (e.g., ingredients need to be prepared in
a certain order). The first set of tasks requires an agent to
continuously control its hands to make use of a tool. In the
second set of tasks, agents must perform a series of atomic
actions in the right order to achieve the final goal.

4.1. Tool Use

Based on available actions and state changes in the envi-
ronment (shown in Figure 5), we have designed 5 tool use
tasks: cutting, peeling, can-opening, pouring and getting
water. These tasks are common in cooking and require accu-
rate control of agent’s hand to change the state of an object.
Agents would get rewards once it takes the correct tool and
each time states of objects being changed. Definitions for
these task are displayed as following.

Cutting: cut a carrot into four pieces with a knife. The
agent gets reward from getting the knife and each cutting.

Peeling: peel a kiwi with a peeler. The agent receives
reward from getting the peeler and each peeled skin. Note
that the skin will be peeled only if the peeler touches it
within a certain range of rotation. The task finishes if enough
pieces of skins are peeled.

Can-opening: open a can with a can opener. Around the
lid, there are four sides. One side of the lid will break if it
overlaps with the blade. Agents receive reward from taking
the opener and breaking each side of the lid.

Pouring: take a cup full of water and pour water into a
empty cup. The agent is rewarded for taking the full cup
and each additional amount of water added into the empty
cup. The task is considered done only if the cup is filled
over fifty percent.

Getting water: take an empty cup and get water from a
running tap. The agent is rewarded for taking the cup and
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Figure 6. Users can provide demonstrations by doing tasks in VRKitchen. These data can be taken to initialize the agent’s policy, which
will be improved through interactions with the virtual environment.

each additional amount of water added into it. The task is
considered done only if the cup is filled over fifty percent.

In each episode, the agent can control the transla-
tion and rotation of avatar’s right hand for 50 steps.
The continuous action space is defined as a tuple
(∆x,∆y,∆z,∆φ,∆θ,∆ψ, γ), where (x, y, z) is the right
hand 3D location and (φ, θ, ψ) is the 3D rotation in terms of
Euler angle. If the grab strength γ is bigger than a threshold
(0.1 in our case), objects within a certain range of avatar’s
hand will be attached to a socket. Physics simulations are
enabled on all the objects. For objects attached to agent’s
hand, physics simulation is disabled.

4.2. Preparing Dishes

Applying reinforcement learning to complex real life tasks
require agents to take advantage of a sequence of atomic
actions to reach a certain goal. Many challenges arise in
this domain, including making long explorations and visual
understanding of the surroundings. In VRKitchen, we de-
sign all atomic actions and object state changes available in
several dish preparing tasks. Using these atomic actions, the
agent can interact with the environments until a predefined
goal is reached. Figure 8 shows some examples of dishes.

4.2.1. ATOMIC ACTIONS

Each atomic action listed below can be viewed as a compo-
sition of a verb (action) and a noun (object). Objects can be
grouped into three types: tools, ingredients and receptacles.
(1) Ingredients are small objects needed to make a certain
dish. We assume that the agent can hold at most one ingredi-
ent at a time. (2) For receptacles, we follow the definition in
(Kolve et al., 2017). They are defined as stationary objects
which can hold things. Certain receptacles are called con-
tainers which can be closed and agents can not interact with
the objects within them until they are open. (3) Tools can
be used to change the states of certain ingredients. Atomic
actions and object affordance are defined in a following
way:

Take {ingredient}: take an ingredient from a nearby recep-

tacle;

Put into {receptacle}: put a held ingredient into a
nearby receptacle;

Use {tool}: use a tool to change the state of a ingredient in
a nearby receptacle;

Navigate {tool, receptacle}: move to a tool or recepta-
cle;

Toggle {container}: change state of a container in front
of the agent.

Turn: rotating the agent’s facing direction by 90 degrees.

Note that actions including Take, put into, use,
and toggle would fail if the agent is not near the target
object.

4.2.2. Ingredient SETS AND STATES

Meanwhile, there are seven sets of ingredients, including
fruit, meat, vegetable, cold-cut, cheese, sauce, bread and
dough. Each set contains a number of ingredients as variants:
for example, cold-cut can be ham, turkey or salami. One
ingredient may have up to four types of state changes: cut,
peeled, cooked and juiced. We manually define affordance
for each set of ingredients: e.g. fruit and vegetable like
oranges and tomatoes can be juiced (using a juicer) while
bread and meat can not. Tools include grater, juicer, knife,
oven, sauce-bottle, stove and receptacles are fridge, plate,
cut-board, pot and cup.

4.2.3. DISHES

Based on the atomic actions defined in 4.2.1, agents can
prepare five dishes: fruit juice, stew, roast meat, sandwich
and pizza. Goals of each tasks are compositionally defined
upon (1) goals states of several sets of ingredients and (2)
target locations: to fulfill a task, all required ingredients
should meet the goal states and be placed in a target location.
For example, to fulfill the task fruit juice, two fruits should
be cut, juiced and put into the same cup. Here, the
target locations are one or several kinds of containers.
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Figure 7. An example of human demonstrations for making a pizza, which is one of the dishes.

Figure 8. Examples of dishes made in VRKitchen. Note that differ-
ent ingredients leads to different variants of a dish. For example,
mixing orange and kiwi juice together would make orange & kiwi
juice.

5. Benchmarking VR Chef Challenge
We train agents in our environments using several popular
deep reinforcement learning algorithms to provide bench-
marks of proposed tasks.

5.1. Experiment 1: Using Tools

5.1.1. EXPERIMENT SETUP

In this experiment, we are learning motor controls for an
agent to use different tools. In particular, five tasks (defined
in 4.1) are available, including (a) cutting a carrot; (b) peel-
ing a kiwi; (c) opening a can; (d) pouring water from one
cup to another; (e) getting water from the tap. Successful
policies should first learn to take the tool and then perform a
set of transformations and rotations on the hand, correspond
to the task and surroundings.

5.1.2. RESULTS AND ANALYSIS

For five tool use tasks, we conduct experiments using three
deep reinforcement learning algorithms: A2C (Mnih et al.,
2016), DDPG (Lillicrap et al., 2015), PPO (Schulman et al.,
2017). The inputs are the 84 × 84 raw pixels coming

from agent’s first person view. We run each algorithm for
10000 episodes, each of which terminates if the goal state is
reached or the episode exceeds 1000 steps.

Figure 9 summarizes the results of our experiments. We see
that because of the large state space, agents trained using
RL algorithms rarely succeed in most of the five tasks.

5.2. Experiment 2: Preparing Dishes

5.2.1. EXPERIMENT SETUP

In this experiment, we study visual planning tasks, which
require the agent to emit a sequence of atomic actions to
meet several sub-goals. In general, successful plans should
first go to locations near some ingredients, take them and
change their states by making use of some tools. Particularly,
tasks have three levels of difficulty:
1. Easy: First, Navigate to a receptacleR1 and take an

ingredient I1. After that, Navigate to a tool T1 with
I1 and use T1. An example would be making orange
juice: the agent should first go to the fridge and take an
orange. Then it should take the orange to the juicer and
use it. This task requires the agent to reason about the
causal effects of its actions.

2. Medium: In addition to the ”Easy” task, this task requires
the agent to take from the receptacle R1 a different in-
gredient I2. The task ends when the agent puts I1 and
I2 into a new receptacle R2. A sample task is mak-
ing beef stew: the agent should first go to the fridge and
take an tomato and beef. Then it should bring the tomato
to the knife and use it. Finally, the agent should put both
beef and tomato into a pot. This task requires identifying
various tools, receptacles and ingredients.

3. Hard: Compared to the ”Medium” tasks, more objects
are involved in hard tasks. Moreover, a longer sequence
of actions is required to reach the goal state. Making
sandwich is one example: ingredients involved are bread,
tomato, ham and cheese, and an optimal policy takes
about 29 steps to reach the goal states.

5.2.2. RESULTS AND ANALYSIS

We evaluate the performance of three deep reinforcement
learning algorithms (A2C (Mnih et al., 2016), DQN (Mnih
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Figure 9. Experiment results for five tool use tasks. Black horizontal lines show rewards agents get from taking the tools, and the red lines
indicate the rewards of completing the whole tasks. Each curve shows the average reward an agent receives using one of three different
RL algorithms.

Figure 10. Experiment results for three dish preparing tasks. Each
curve shows the average reward an agent receives using one of RL
algorithms.

et al., 2015) and PPO (Schulman et al., 2017)) on dish
preparing tasks. We run each algorithm for 5000 episodes.
We consider an episode fails if it exceeds 1000 steps.

Figure 10 shows the experiment results. For easy tasks
(juice), it takes less than 1000 episodes for the best algo-
rithm to find near-optimal solution. For medium-level tasks
(stew), PPO (Schulman et al., 2017) is still able to con-
verge after 3000 episodes. None of three RL algorithms can
successfully guide the agent in hard tasks.

6. Human Demonstration Collection
We compiled a human demonstration dataset for both cook-
ing tasks – UCLA VR Chef Dataset. We took advantage of
the user interface to collect these demonstrations (by VR
device and Python API, described in 3.3). We leave learning
from these demonstrations to future work.

For tool use, we collected 20 human demonstrations for
each tasks. Most users involved had little or no experience
using VR device. Prior to the collection, users were pro-
vided with instructions on how to put on the HMD and how
to interact with objects using the Touch controller. For each
task, they were given 5 minutes to get familiar with it before
demonstrations were collected. The program recorded 3D

locations, rotations and grab strength for avatar’s hands ev-
ery 0.01 seconds. Actions were computed using the relative
value between two time stamps, while states come from
user’s first person camera view. Examples of users doing
tasks in the virtual environment can be found in the left part
of Figure 6.

To collect demonstrations for preparing dishes, each par-
ticipant is first assigned a scene and a task, then watches
a demonstration video containing a successful trial. Af-
terwards, users are asked to interact with the scenes and
complete the tasks. For visualization purposes, we design
a web-based user interface which utilizes the Python API
to collect demonstrations. The web-based UI displays the
world states (including the agent’s egocentric view and the
states of nearby objects) to the user. Users can then perform
discrete action sequences which would be transferred into
motor control signals and sent to the agents through the
server. We allow users to freely take advantage of all the
tools and ingredients available in the scenes, thus there may
be multiple ways to prepare a certain dish. Atomic action
sequences are recorded for every legal moves. There are
20 demonstrations for each of the five dishes. On average,
each demonstration has 25 steps. Figure 7 shows a sample
sequence of recorded demonstrations.

7. Conclusion
We have designed a virtual reality system, VRKitchen,
which offers physical simulation, photo-realistic rendering
of multiple kitchen environments, a large set of fine-grained
object manipulations, and embodied agents with human-like
appearances. We have implemented toolkits for training and
testing AI agents as well as for collecting human demon-
strations in our system. By utilizing our system, we have
proposed VR chef challenge with two sets of real life cook-
ing tasks, on which we benchmarked the performance of
several popular deep reinforcement learning approaches. We
are also able to compile a video dataset of human demon-
strations of the cooking tasks using the user interface in the
system. In the future, we plan to enrich the simulation in our
system and conduct a more thorough evaluation of current
reinforcement learning and imitation learning approaches.
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