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Abstract

This study investigates the effects of Markov chain Monte
Carlo (MCMC) sampling in unsupervised Maximum Likeli-
hood (ML) learning. Our attention is restricted to the family
of unnormalized probability densities for which the negative
log density (or energy function) is a ConvNet. We find that
many of the techniques used to stabilize training in previ-
ous studies are not necessary. ML learning with a ConvNet
potential requires only a few hyper-parameters and no reg-
ularization. Using this minimal framework, we identify a
variety of ML learning outcomes that depend solely on the
implementation of MCMC sampling.

On one hand, we show that it is easy to train an energy-
based model which can sample realistic images with short-
run Langevin. ML can be effective and stable even when
MCMC samples have much higher energy than true steady-
state samples throughout training. Based on this insight,
we introduce an ML method with purely noise-initialized
MCMC, high-quality short-run synthesis, and the same bud-
get as ML with informative MCMC initialization such as
CD or PCD. Unlike previous models, our energy model can
obtain realistic high-diversity samples from a noise signal
after training.

On the other hand, ConvNet potentials learned with non-
convergent MCMC do not have a valid steady-state and
cannot be considered approximate unnormalized densities
of the training data because long-run MCMC samples dif-
fer greatly from observed images. We show that it is much
harder to train a ConvNet potential to learn a steady-state
over realistic images. To our knowledge, long-run MCMC
samples of all previous models lose the realism of short-run
samples. With correct tuning of Langevin noise, we train the
first ConvNet potentials for which long-run and steady-state
MCMC samples are realistic images.

∗Equal contributions.

1. Introduction
1.1. Diagnosing Energy-Based Models
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Figure 1: Two axes characterize ML learning of ConvNet
potential energy functions: 1) energy difference between
data samples and synthesized samples, and 2) MCMC con-
vergence towards steady-state. Learning a sampler with
realistic short-run MCMC synthesis is surprisingly simple
whereas learning an energy with realistic long-run samples
requires proper MCMC implementation. We propose: a)
ML with short-run MCMC and noise initialization of the
chains, and b) an explanation and implementation of correct
tuning for training models with realistic long-run samples.

Statistical modeling of high-dimensional signals is a
challenging task encountered in many academic disciplines
and practical applications. We study image signals in this
work. When images come without annotations or labels,
the effective tools of deep supervised learning cannot be ap-
plied and unsupervised techniques must be used. This work
focuses on the unsupervised paradigm of the energy-based
model (1) with a ConvNet potential function (2).

Previous works studying Maximum Likelihood (ML)
training of ConvNet potentials, such as [33, 32, 7], use
Langevin MCMC samples to approximate the gradient of
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Figure 2: Long-run MH-adjusted Langevin paths from data
samples to metastable samples for the Oxford Flowers 102
dataset. Models were trained with two variations of Algo-
rithm 1: non-convergent ML trained with L = 100 MCMC
steps from noise initialization (top), and convergent ML
trained with L = 500 MCMC steps from persistent initial-
ization (bottom).

the unknown and intractable log partition function during
learning. The authors universally find that after enough
model updates, MCMC samples generated by short-run
Langevin from informative initialization (see Section 2.3)
are realistic images that resemble the data.

However, we find that energy functions learned by prior
works have a major defect regardless of MCMC initializa-
tion, network structure, and auxiliary training parameters.
The long-run and steady-state MCMC samples of energy
functions from all previous implementations are oversatu-
rated images with significantly lower energy than the ob-
served data (see Figure 2 top, and Figure 3). In this case
it is not appropriate to describe the learned model as an
approximate density for the training set because the model
assigns disproportionately high probability mass to images
which differ dramatically from observed data. The system-
atic difference between high-quality short-run samples and
low-quality long-run samples is a crucial phenomenon that
appears to have gone unnoticed in previous studies.

W-GAN WINN Conditional EBM

Figure 3: Long-run Langevin samples of recent energy-
based models. Probability mass is concentrated on im-
ages that have unrealistic appearance. From left to right:
Wasserstein-GAN critic on Oxford flowers [1], WINN on
Oxford flowers [20], conditional EBM on ImageNet [6].
The W-GAN critic is not trained to be an unnormalized den-
sity but we include samples for reference.

1.2. Our Contributions

In this work, we present a fundamental understanding
of learning ConvNet potentials by MCMC-based ML. We
diagnose previously unrecognized complications that arise
during learning and distill our insights to train models with
new capabilities. Our main contributions are:

• Identification of two distinct axes which characterize
each parameter update in MCMC-based ML learn-
ing: 1) energy difference of positive and negative sam-
ples, and 2) MCMC convergence or non-convergence.
Contrary to common expectations, convergence is not
needed for high-quality synthesis. See Figure 1 and
Section 3.

• The first ConvNet potentials trained using ML with
purely noise-initialized MCMC. Unlike prior models,
our model can efficiently generate realistic and di-
verse samples after training from noise alone. See Fig-
ure 7. This method is further explored in our compan-
ion work [24].

• The first ConvNet potentials with realistic steady-state
samples. To our knowledge, ConvNet potentials with
realistic MCMC sampling in the image space are unob-
tainable by all previous training implementations. We
refer to [18] for a discussion. See Figure 2 (bottom)
and Figure 8 (middle and right column).

• Mapping the macroscopic structure of image space en-
ergy functions using diffusion in a magnetized energy
landscape for unsupervised cluster discovery. See Fig-
ure 9.

1.3. Related Work

1.3.1 Energy-Based Image Models

Energy-based models define an unnormalized probability
density over a state space to represent the distribution of
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states in a given system. The Hopfield network [15] adapted
the Ising energy model into a model capable of representing
arbitrary observed data. The RBM [14] and FRAME (Fil-
ters, Random field, And Maximum Entropy) [36, 30] mod-
els introduce energy functions with greater representational
capacity. The RBM uses hidden units which have a joint
density with the observable image pixels. The FRAME
model uses convolutional filters and histogram matching to
learn data features.

The pioneering work [13] studies the hierarchical
energy-based model. [23] is an important early work
proposing feedforward neural networks to model energy
functions. The energy-based model in the form of (2) is
introduced in [4]. Deep variants of the FRAME model
[33, 21] are the first to achieve realistic synthesis with a
ConvNet potential and Langevin sampling. [6] applies sim-
ilar methods.

The Multi-grid model [7] learns an ensemble of ConvNet
potentials for images of different scales with finite-budget
Langevin sampling. Synthesized images from smaller
scales are used as the informative initialization for MCMC
sampling at larger scales.

Learning a ConvNet potential with the help of a genera-
tor network as approximative direct sampler is explored in
[17, 5, 31, 32, 10, 18]. [35, 34] explore an adversarial inter-
pretation of ML learning. These works show connections to
W-GAN and herding [29].

The INN model [26] learns unnormalized densities in a
discriminative framework. [16, 19] investigate a ConvNet
parameterization of this model from the perspective of im-
age classification and synthesis respectively. The W-GAN
[1] framework is adapted to the INN method in the WINN
model [20].

Two common threads between these learning algorithms
are the ML parameter update (8) and the Langevin image
update (9). We emphasize that some of the above works do
not use both.

Although many of these works claim to train the energy
(2) to be an approximate unnormalized density for the ob-
served images, the resulting energy functions do not have a
steady-state that reflects the data (see Figure 3). Short-run
Langevin samples from informative initialization are pre-
sented as approximate steady-state samples, but further in-
vestigation shows long-run Langevin consistently disrupts
the realism of short-run images. Our work is the first to
address and remedy the systematic non-convergence of all
prior implementations.

We emphasize that unrealistic image space steady-states
are a central concern specifically when training Con-
vNet potentials (2). Earlier energy-based models such as
RBM do not exhibit a dramatic difference in realism be-
tween short-run samples from informative initialization and
steady-state images. Variational Walkback [9] can learn an

energy-free MCMC transition with a realistic steady-state
in the image space.

1.3.2 Energy Landscape Mapping

The full potential of the energy-based model lies in the
structure of the energy landscape. Hopfield observed that
the energy landscape is a model of associative memory [15].
Diffusion along the potential energy manifold is analogous
to memory recall because the diffusion process will grad-
ually refine a high-energy image (an incomplete or cor-
rupted memory) until it reaches a low-energy metastable
state, which corresponds to the revised memory. Tech-
niques for mapping and visualizing the energy landscape
of non-convex functions in the physical chemistry literature
[2, 27] have been applied to map the latent space of Co-
operative Networks [11]. Defects in the energy function
(2) from previous ML implementations prevent these tech-
niques from being applied in the image space. Our conver-
gent ML models enable image space mapping.

2. Learning Energy-Based Models
In this section, we review the established principles of

the MCMC-based ML learning from prior works such as
[12, 36, 33].

2.1. Maximum Likelihood Estimation

An energy-based model is a Gibbs-Boltzmann density

pθ(x) =
1

Z(θ)
exp{−U(x; θ)} (1)

over signals x ∈ X ⊂ RN . The energy potential U(x; θ)
belongs to a parametric family U = {U(· ; θ) : θ ∈ Θ}.
The intractable constant Z(θ) =

∫
X exp{−U(x; θ)}dx is

never used explicitly because the potential U(x; θ) provides
sufficient information for MCMC sampling. In this paper
we focus our attention on energy potentials with the form

U(x; θ) = F (x; θ) (2)

where F (x; θ) is a convolutional neural network with scalar
output and weights θ ∈ RD.

In ML learning, we seek to find θ ∈ Θ such that the para-
metric model pθ(x) is a close approximation of the data dis-
tribution q(x). One measure of closeness is the Kullback-
Leibler (KL) divergence. Learning proceeds by solving

arg min
θ
L(θ) = arg min

θ
DKL(q‖pθ) (3)

= arg min
θ
{logZ(θ) + Eq[U(X; θ)]} . (4)

We can minimize L(θ) by finding the roots of the derivative

d

dθ
L(θ) =

d

dθ
logZ(θ) +

d

dθ
Eq[U(X; θ)]. (5)
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The term d
dθ logZ(θ) is intractable, but it can be expressed

d

dθ
logZ(θ) = −Epθ

[
∂

∂θ
U(X; θ)

]
. (6)

The gradient used to learn θ then becomes

d

dθ
L(θ) =

d

dθ
Eq[U(X; θ)]− Epθ

[
∂

∂θ
U(X; θ)

]
(7)

≈ ∂

∂θ

(
1

n

n∑
i=1

U(X+
i ; θ)− 1

m

m∑
i=1

U(X−i ; θ)

)
(8)

where {X+
i }ni=1 are i.i.d. samples from the data distribution

q (called positive samples since probability is increased),
and {X−i }mi=1 are i.i.d. samples from current learned distri-
bution pθ (called negative samples since probability is de-
creased). In practice, the positive samples {X+

i }ni=1 are a
batch of training images and the negative samples {X−i }mi=1

are obtained after L iterations of MCMC sampling.

2.2. MCMC Sampling with Langevin Dynamics

Obtaining the negative samples {X−i }mi=1 from the cur-
rent distribution pθ is a computationally intensive task
which must be performed for each update of θ. ML learn-
ing does not impose a specific MCMC algorithm. Early
energy-based models such as the RBM and FRAME model
use Gibbs sampling as the MCMC method. Gibbs sampling
updates each dimension (one pixel of the image) sequen-
tially. This is computationally infeasible when training an
energy with the form (2) for standard image sizes.

Several works studying the energy (2) recruit Langevin
Dynamics to obtain sample from pθ [33, 21, 32, 7, 20]. The
Langevin Equation

X`+1 = X` −
ε2

2

∂

∂x
U(X`; θ) + εZ`, (9)

where Z` ∼ N(0, IN ) and ε > 0, has stationary distribu-
tion pθ [8, 22]. A complete implementation of Langevin
Dynamics requires a momentum update and Metropolis-
Hastings update in addition to (9), but most authors find
that these can be ignored in practice for small enough ε [3].

Like most MCMC methods, Langevin dynamics exhibits
high auto-correlation and has difficulty mixing between
separate modes. The consistent appearance of long-run
MCMC samples can actually be a useful feature of a learned
potential because a metastable representation is needed for
mapping applications [11]. In general it is not appropriate
to describe long-run Langevin samples from a fixed low-
energy starting image as steady-state samples because the
chains cannot mix between modes in computationally fea-
sible time scales. Even so, long-run Langevin samples with
a suitable initialization can still be considered approximate
steady-state samples, as discussed in the next section.

2.3. MCMC Initialization

We distinguish two main branches of MCMC initializa-
tion: informative initialization, where the density of initial
states is meant to approximate the model density, and non-
informative initialization, where initial states are obtained
from a distribution that is unrelated to the model density.
Noise initialization is a specific type of non-informative ini-
tialization where initial states come from a noise distribu-
tion such as uniform or Gaussian.

In the most extreme case, a Markov chain initialized
from its steady-state will follow the steady-state distribu-
tion after a single MCMC update. In more general cases,
a Markov chain initialized from an image that is likely un-
der the steady-state can converge much more quickly than a
Markov chain initialized from noise. For this reason, all
prior works studying ConvNet potentials use informative
initialization during training and for generation of images
after training has concluded.

Data-based initialization uses samples from the training
data as the initial MCMC states. Contrastive Divergence
(CD) [12] introduces this practice. To our knowledge CD
has not been used to trained the energy (2). In our diagnosis
it appears that CD can be problematic when training Con-
vNet potentials for reasons discussed in Section 3.2. The
Multigrid Model [7] generalizes CD by using multi-scale
energy functions to sequentially refine downsampled data.

Persistent initialization uses negative samples from a
previous learning iteration as initial MCMC states in the
current iteration. The persistent chains can be initialized
from noise as in [36, 33] or from data samples as in Per-
sistent Contrastive Divergence (PCD) [25]. The authors of
[20, 6] store a large set of persistent images. The Coop-
erative Learning model [32] generalizes persistent chains
by learning a generator network for MCMC initialization in
tandem with the energy.

In this paper we consider long-run Langevin chains from
both data-based initialization such as CD and persistent
initialization such as PCD to be approximate steady-state
samples, even when Langevin chains cannot mix between
modes. Prior art indicates that both initialization types span
the modes of the learned density, and long-run Langevin
will obtain fair MCMC samples within each mode.

Informative MCMC initialization during ML training
can limit the ability of the final model pθ to generate new
and diverse synthesized images after training. MCMC sam-
ples initialized from noise distributions after training tend to
result in images with a similar appearance when informative
initialization is used in training.

In contrast to common wisdom, we find that informa-
tive initialization is not necessary for efficient and realis-
tic synthesis when training ConvNet potentials with ML. In
accordance with common wisdom, we find that informative
initialization is essential for learning a realistic steady-state.
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3. Two Axes of ML Learning
Inspection of the gradient (8) reveals the central role of

the difference of the average energy of negative and positive
samples. Let

dst(θ) = Eq[U(X; θ)]− Est [U(X; θ)] (10)

where st(x) is the distribution of negative samples given the
finite-step MCMC sampler and initialization used at train-
ing step t. The difference dst(θ) measures whether the pos-
itive samples from the data distribution q or the negative
samples from st are more likely under the model pθ. The
ideal case pθ = q (perfect learning) and st = pθ (exact
MCMC convergence) satisfies dst(θ) = 0. A large value
of |dst | indicates that either learning or sampling (or both)
have not converged.

Although dst(θ) is not equivalent to the ML objective
(4), it bridges the gap between theoretical ML and the be-
havior encountered when MCMC approximation is used.
Two outcomes occur for each update on the parameter path
{θt}T+1

t=1 :

1. dst(θt) < 0 (expansion) or dst(θt) > 0 (contraction)

2. st ≈ pθt (MCMC convergence) or st 6≈ pθt (MCMC
non-convergence) .

We find that only the first axis governs the stability and
short-run synthesis results of the learning process. Oscilla-
tion of expansion and contraction updates is an indicator of
stable ML learning, but this can occur in cases where either
st is always approximately convergent or where st never
converges.

Behavior along the second axis determines the realism
of steady-state samples from the learned energy. Samples
from pθt will be realistic if and only if st has realistic sam-
ples and st ≈ pθt . We use convergent ML to refer to imple-
mentations where st ≈ pθt for all t > t0, where t0 repre-
sents burn-in learning steps (e.g. early stages of persistent
learning). We use non-convergent ML to refer to all other
implementations. All prior ConvNet potentials are learned
with non-convergent ML, although this is not recognized by
previous authors.

Without proper tuning of the sampling phase, the learn-
ing heavily gravitates towards non-convergent ML. In
this section we outline principles to explain this behav-
ior and provide a remedy for the tendency of model non-
convergence.

3.1. First Axis: Expansion or Contraction

Following prior art for high-dimensional image models,
we use the Langevin Equation (9) to obtain MCMC sam-
ples. Let wt give the joint distribution of a Langevin chain
(Y

(0)
t , . . . , Y

(L)
t ) at training step t, where Y (0)

t is obtained
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Figure 4: Illustration of expansion/contraction oscillation
for a single training implementation. This behavior is typi-
cal of convergent and non-convergent ML. Left: Cross cor-
relation of dst (uncentered) and vt (mean centered). The
two are highly correlated at lag 0 and exhibit negative cor-
relation for lag ±3 steps, indicating that expansion updates
tend to increase gradient strength in the near future and
vice-versa. Right: PACF plots of dst (uncentered) and vt
(mean centered). Both have a strong negative autocorrela-
tion within the next 4 training batches, showing that expan-
sion updates tend to follow contraction updates and vice-
versa.

from MCMC initialization, Y (`+1)
t is obtained by applying

(9) to Y (`)
t , and Y (L)

t ∼ st. Since the gradient ∂U∂x appears
directly in the Langevin equation, the quantity

vt = Ewt

[
1

L+ 1

L∑
`=0

∥∥∥∥ ∂∂yU(Y
(`)
t ; θt)

∥∥∥∥
2

]
,

which gives the average image gradient magnitude of U
along an MCMC path at training step t, plays a central role
in sampling. Sampling at noise magnitude ε will lead to
very different behavior depending on the gradient magni-
tude. If vt is very large, gradients will overwhelm the noise
and the resulting dynamics are similar to gradient descent.
If vt is very small, sampling becomes an isotropic random
walk. A valid image density should appropriately balance
energy gradient magnitude and noise strength to enable re-
alistic long-run sampling.

We empirically observe that expansion and contraction
updates tend to have opposite effects on vt (see Figure
4). Gradient magnitude vt and computational loss dst are
highly correlated at the current iteration and exhibit signifi-
cant negative correlation at a short-range lag. Both have sig-
nificant negative autocorrelation for short-range lag. This
indicates that expansion updates tend to increase vt and con-
traction updates tend to decrease vt, and that expansion up-
dates tend to lead to contraction updates and vice-versa. We
believe that the natural oscillation between expansion and
contraction updates underlies the stability of ML with (2).

Learning can become unstable when U is updated in the
expansion phase for many consecutive iterations if vt →∞
as U(X+) → −∞ for positive samples and U(X−) → ∞
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for negative samples. This behavior is typical of W-GAN
training (informally interpreting the generator as wt with
L = 0) and the W-GAN Lipschitz bound is needed to pre-
vent such instability. In ML learning with ConvNet po-
tentials, consecutive updates in the expansion phase will
increase vt so that the gradient can better overcome noise
and samples can more quickly reach low-energy regions. In
contrast, many consecutive contraction updates can cause
vt to shrink to 0, leading to the solution U(x) = c for some
constant c (see Figure 5 right, blue lines). In proper ML
learning, the expansion updates that follow contraction up-
dates prevent the model from collapsing to a flat solution
and force U to learn meaningful features of the data.

Throughout our experiments, we find that the network
can easily learn to balance the energy of the positive and
negative samples so that dst(θt) ≈ 0 after only a few model
updates. In fact, ML learning can easily adjust vt so that the
gradient is strong enough to balance dst and obtain high-
quality samples from virtually any initial distribution in a
small number of MCMC steps. This insight leads to our ML
method with noise-initialized MCMC. The natural oscilla-
tion of ML learning is the foundation of the robust synthe-
sis capabilities of ConvNet potentials, but realistic short-run
MCMC samples can mask the true steady-state behavior of
the model, as discussed next.

3.2. Second Axis: MCMC Convergence or Non-
Convergence

In the literature, it is expected that the finite-step MCMC
distribution st must approximately converge to its steady-
state pθt for learning to be effective. On the contrary, we
find that high-quality synthesis is possible, and actually eas-
ier to learn, when there is a drastic difference between the
finite-step MCMC distribution st and true steady-state sam-
ples of pθt . An examination of ConvNet potentials learned
by existing methods shows that in all cases, running the
MCMC sampler for significantly longer than the number
of training steps results in samples with significantly lower
energy and unrealistic appearance. Although synthesis is
possible without convergence, it is not appropriate to de-
scribe a non-convergent ML model pθt as an approximate
data density.

Oscillation of expansion and contraction updates occurs
for both convergent and non-convergent ML learning, but
for very different reasons. In convergent ML, we expect
the average gradient magnitude vt to converge to a con-
stant that is balanced with the noise magnitude ε at a value
that reflects the temperature of the data density q. However,
ConvNet potentials can circumvent this desired behavior by
tuning vt with respect to the burn-in energy landscape rather
than noise ε. Figure 5 shows how average image space dis-
placement rt = ε2

2 vt is affected by noise magnitude ε and
number of Langevin steps L for noise, data-based, and per-
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Figure 5: Illustration of gradient strength for convergent and
non-convergent ML. With low noise (blue) the energy either
learns only the burn-in path (left) or contracts to a constant
function (right). With sufficient noise (red), the network
gradient learns to balance with noise magnitude and it be-
comes possible to learn a realistic steady-state.

sistent MCMC initializations.
For noise initialization with low ε, the model adjusts vt

so that rtL ≈ RwhereR is the average distance between an
image from the noise initialization distribution and an im-
age from the data distribution. In other words, the MCMC
paths obtained from non-convergent ML with noise initial-
ization are nearly linear from the starting point to the ending
point. Mixing does not improve when L increases because
rt shrinks in proportion to the increase. Oscillation of ex-
pansion and contraction updates occurs because the model
tunes vt to control how far along the burn-in path the neg-
ative samples travel. Samples never reach the steady-state
energy spectrum and MCMC mixing is not possible.

For data-based initialization and persistent initialization
with low ε, we see that vt, rt → 0 and that learning tends
to the trivial solution U(x) = c. This occurs because con-
traction updates dominate the learning dynamics. At low
ε, samples initialized from the data will easily have lower
energy than the data since sampling reduces to gradient
descent. For persistent learning, the model learns to syn-
thesize meaningful features early in learning and then con-
tracts in gradient strength once it becomes easy to find neg-
ative samples with lower energy than the data. Previous
authors who trained models with persistent chains use aux-
iliary techniques such as a Gaussian prior [33] or occasional
rejuvenation from noise [6] which prevent unbalanced net-
work contraction, although the role of these techniques is
not recognized by the authors. To our knowledge no authors
have trained (2) using CD, possibly because the energy can
easily collapse to a trivial flat solution.

For all three initialization types, we can see that conver-
gent ML becomes possible when ε is large enough. ML
with noise initialization behaves similarly for high and low
ε when L is small. For large L with high ε, the model tunes
vt to balance with ε rather than R/L. The MCMC samples
complete burn-in and begin to mix for large L, and increas-
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Truth Non-Conv. ML Convergent ML
EBM pθt KDE of st EBM pθt KDE of st

density

log-

density

density

log-

density

Figure 6: Comparison of convergent and non-convergent
ML for 2D toy distributions. Non-convergent ML does not
learn a valid density but the kernel density estimate of the
negative samples reflects the groundtruth. Convergent ML
learns an energy that closely approximates the true density.

ing L will indeed lead to improved MCMC convergence as
usual. For data-based and persistent initialization, we see
that vt adjusts to balance with ε instead of contracting to 0
because the noise added during Langevin sampling forces
U to learn meaningful features.

3.3. Learning Algorithm

We now present an algorithm for ML learning. The al-
gorithm is essentially the same as earlier work such as [33]
that investigates the potential (2). Our intention is not to
introduce a novel algorithm but to demonstrate the range of
phenomena that can occur with the ML objective based on
changes to MCMC sampling. We present guidelines for the
effect of tuning on the learning outcome.

• Noise and Step Size for Non-Convergent ML: For non-
convergent training we find the tuning of noise and
step-size have little effect on training stability. We use
ε = 1 and τ = 0. Noise is not needed for oscilla-
tion because dst is controlled by the depth of samples
along the burn-in path. Including low noise appears to
improve synthesis quality.

• Noise and Step Size for Convergent ML: For conver-
gent training, we find that it is essential to include
noise with τ = 1 and precisely tune ε so that the net-
work learns true mixing dynamics through the gradient
strength. The step size ε should approximately match
the local standard deviation of the data along the most
constrained direction [22]. An effective ε for 32 × 32
images with pixel values in [-1, 1] appears to lie around
0.015.

Algorithm 1: ML Learning
input : ConvNet potential U(x; θ), number of

training steps T , initial weight θ1, training
images {x+i }Ni=1, step size ε, noise indicator
τ ∈ {0, 1}, Langevin steps L, learning rate γ.

output: Weights θT+1 for energy U(x; θ).
for t = 1 : T do

1. Draw batch images {X+
i }ni=1 from training set.

Draw initial negative samples {Y (0)
i }mi=1 from

MCMC initialization method (noise or
informative initialization, see Section 2.3).

2. Update {Y (0)
i }mi=1 with

Y
(`)
i = Y

(`−1)
i − ε2

2

∂

∂y
U(Y

(`−1)
i ; θt) + ετZi,`,

where Zi,` ∼ N(0, IN ), for L steps to obtain
negative samples {X−i }mi=1 = {Y (L)

i }mi=1.
3. Update the weights by θt+1 = θt − g(∆θt, γ)

where ∆θt is the stochastic gradient (8) and g is
the SGD or ADAM optimizer.

• Number of Steps: When τ = 0 or τ = 1 and ε is
very small, learning leads to similar non-convergent
ML outcomes for any L ≥ 100. When τ = 1 and
ε is correctly tuned, sufficiently high values of L lead
to convergent ML and lower values of L lead to non-
convergent ML.

• Informative Initialization: Informative MCMC initial-
ization is not needed for non-convergent ML even with
as few as L = 100 Langevin updates. The model can
naturally learn fast pathways to realistic negative sam-
ples from an arbitrary initial distribution. On the other
hand, informative initialization can greatly reduce the
magnitude of L needed for convergent ML. We use
persistent initialization starting from noise.

• Network structure: For the first convolutional layer, we
observe that a 3 × 3 convolution with stride 1 helps
to avoid checkerboard patterns or other artifacts. For
convergent ML, use of non-local layers [28] appears to
improve synthesis realism.

• Regularization and Normalization: Previous studies
employ a variety of auxiliary training techniques such
as prior distributions (e.g. Gaussian), weight regu-
larization, batch normalization, layer normalization,
and spectral normalization to stabilize sampling and
weight updates. We find that these techniques are not
needed.
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Figure 7: Short-run samples obtained from an energy function trained with non-convergent ML with noise initialization.
The images are generated using 100 Langevin updates from uniform noise initialization. Contrary to prior art, informative
initialization is not needed for high-quality synthesis. From left to right: MNIST, Oxford Flowers 102, CelebA, CIFAR-10.

• Optimizer and Learning Rate: For non-convergent
ML, ADAM improves training speed and image qual-
ity. Our non-convergent models use ADAM with γ =
0.0001. For convergent ML, ADAM appears to inter-
fere with learning a realistic steady-state and we use
SGD instead. When using SGD with τ = 1 and prop-
erly tuned ε and L, higher values of γ lead to non-
convergent ML and sufficiently low values of γ lead to
convergent ML. See Appendix A for details on tuning
the SGD learning rate γ for convergent ML.

4. Experiments
4.1. Low-Dimensional Toy Experiments

We first demonstrate the outcomes of convergent and
non-convergent ML for low-dimensional toy distributions
(Figure 6). Both toy models have a standard deviation of
0.15 along the most constrained direction, and the ideal step
size ε for Langevin dynamics is close to this value [22].
Non-convergent models are trained using noise MCMC ini-
tialization with L = 100 and ε = 0.01 (too low for the data
temperature) and convergent models are trained using per-
sistent MCMC initialization with L = 500 and ε = 0.125
(approximately the right magnitude relative to the data tem-
perature). The distributions of the short-run samples from
the non-convergent models reflect the ground-truth densi-
ties, but the learned densities are sharply concentrated and
different from the ground-truths. In higher dimensions this
sharp concentration of non-convergent densities manifests
as oversaturated long-run images. With sufficient Langevin
noise, one can learn an energy function that closely approx-
imates the ground-truth.

4.2. Synthesis from Noise with Non-Convergent ML
Learning

In this experiment, we learn an energy function (2) using
ML with uniform noise initialization and short-run MCMC.
We apply our ML algorithm with L = 100 Langevin steps
starting from uniform noise images for each update of θ
with τ = 0 and ε = 1. We use ADAM with γ = 0.0001.

Previous authors argued that informative MCMC initial-
ization is a key element for successful synthesis with ML
learning, but our learning method can sample from scratch
with the same number of Langevin steps. Unlike the models
learned by previous authors, our models can generate high-
fidelity and diverse images from a noise signal. Our results
are shown in Figure 7, Figure 8 (left), and Figure 2 (top).
Our recent companion work [24] thoroughly explores the
capabilities of non-convergent ML.

4.3. Convergent ML Learning

With the correct Langevin noise, one can ensure that
MCMC samples mix in the steady-state energy spectrum
throughout training. The model will eventually learn a real-
istic steady-state as long as MCMC samples approximately
converge for each parameter update t beyond a burn-in pe-
riod t0. One can implement convergent ML with noise ini-
tialization, but we find that this requires L ≈ 20,000 steps.

Non-Conv. ML
(vanilla net)

Convergent ML
(vanilla net)

Convergent ML
(non-local net)
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m
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m
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θ
t

Figure 8: Comparison of short-run negative and steady-state
samples. Method: non-convergent ML using noise initial-
ization and 100 Langevin steps (left), convergent ML with a
vanilla ConvNet, persistent initialization and 500 Langevin
steps (center), and convergent ML with a non-local net, per-
sistent initialization and 500 Langevin steps (right).
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Informative initialization can dramatically reduce the
number of MCMC steps needed for convergent learning.
By using SGD with no momentum and learning rate γ =
0.0005, noise indicator τ = 1 and step size ε = 0.015,
we were able to train convergent models using persistent
initialization and L = 500 sampling steps. We initialize
10,000 persistent images from noise and update 100 images
for each batch. We implement the same training procedure
for a vanilla ConvNet and a network with non-local layers
[28]. Our results are shown in Figure 8 (middle, right) and
Figure 2 (bottom). See Appendix A for additional details
on energy initialization for convergent ML.

4.4. Mapping the Image Space

A well-formed energy function partitions the image
space into meaningful Hopfield basins of attraction. Fol-
lowing [11], we map the structure of a convergent en-
ergy. We first identify many metastable MCMC samples.
We then sort the metastable samples from lowest energy
to highest energy and sequentially group images if travel
between samples is possible in a magnetized energy land-
scape. This process is continued until all minima have been
clustered. Our mappings show that the convergent energy
has meaningful metastable structures encoding recogniz-
able concepts (Figure 9).

0 10 20 30 40 50
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4.5
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Figure 9: Visualization of basin structure of the learned en-
ergy function U(x) for the Oxford Flowers 102 dataset.
Columns display randomly selected basins members and
circles indicate the total number of basin members. Verti-
cal lines encode basin minimum energy and horizontal lines
depict the lowest known barrier at which two basins merge.

5. Conclusion and Future Work
Our experiments on energy-based models with the form

(2) reveal two distinct axes of ML learning. We use our in-
sights to train models with sampling capabilities that are un-
obtainable by previous implementations. The informative
MCMC initializations used by previous authors are not nec-
essary for high-quality synthesis. By removing this tech-

nique we train the first energy functions capable of high-
diversity and realistic synthesis from noise initialization af-
ter training. We identify a severe defect in the steady-
state distributions of prior implementations and introduce
the first ConvNet potentials of the form (2) for which long-
run and steady-state samples have realistic appearance. Our
observations could be very useful for convergent ML learn-
ing with more complex MCMC initialization methods used
in [32, 7]. We hope that our work paves the way for fu-
ture unsupervised and weakly supervised applications with
energy-based models.
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A. Energy Initialization and Scale of SGD
Learning Rate for Convergent ML

In this section we discuss some details about initializing
the energy function and scaling the SGD learning rate. En-
ergy initialization is important for efficient convergent ML
but not crucial for non-convergent ML. We find that conver-
gent ML is most effective when rt (see Section 3.2) has ap-
proximately the same order of magnitude throughout train-
ing. With noise ε = 0.015, we observe that rt typically lies
in the range [0.08, 0.15] for large t. However, when the ini-
tial weights θ1 come from standard ConvNet initialization,
we observe r1 ≈ 10−6. To address this we use the scaled
energy

U(x; θ) =
F (x; θ)

ε2/2
, (11)

where F is a ConvNet. This is equivalent to using the
Langevin update

X`+1 = X` −
∂

∂x
F (X`; θ) + εZ`. (12)

When θ1 is obtained from standard ConvNet initialization
and the rescaled energy (11) is used, we observe that

r1 =

[
1

L+ 1

L∑
`=0

∥∥∥∥ ∂∂yF (Y
(`)
t ; θ1)

∥∥∥∥
2

]
≈ 0.01

which is within a reasonable magnitude of the approximate
target range [0.08, 0.15]. Additional scaling is required
when r1 ≈ 0.01 is either too low or high for the ideal noise
ε and the target range of rt but the same principles apply.

We note that the rescaling causes further complications,
since the computational loss

dst(θ) =
2

ε2
(Eq[F (X; θt)]− Est [F (X; θt)])

now depends on ε. To address this, we find that is helpful to
use a scaled learning rate γ = ε2

2 γ0 where γ0 ≈ 0.0005, to
obtain the update gradient

γ∆θt = γ0

[
∂

∂θ

(
1

n

n∑
i=1

F (X+
i ; θt)−

1

m

m∑
i=1

F (X−
i ; θt)

)]
(13)

where ∆θt is given by (8). When using the vanilla SGD
update

θt+1 = θt − γ∆θt, (14)

the scale of the parameter change ‖θt+1− θt‖2 = ‖γ∆θt‖2
depends only on the scale of ‖ ∂∂θF (x; θt)‖2 and the scale
of γ0 and not on the scale of ε. We find that this enables
standardized weight initialization and LR tuning that is in-
dependent of ε. In practical training of convergent models
we implement ML using (11), (12), (13), and (14).

11


