
Machine Number Sense:
A Dataset of Visual Arithmetic Problems for Abstract and Relational Reasoning

Wenhe Zhang,1,3 Chi Zhang,1,2 Yixin Zhu,1,2 Song-Chun Zhu1,2

1UCLA Center for Vision, Cognition, Learning, and Autonomy
2International Center for AI and Robot Autonomy (CARA)

3Peking University
wenhe@pku.edu.cn, chi.zhang@ucla.edu, yixin.zhu@ucla.edu, sczhu@stat.ucla.edu

Abstract
As a comprehensive indicator of mathematical thinking and
intelligence, the number sense (Dehaene 2011) bridges the in-
duction of symbolic concepts and the competence of problem-
solving. To endow such a crucial cognitive ability to machine
intelligence, we propose a dataset, Machine Number Sense
(MNS), consisting of visual arithmetic problems automatically
generated using a grammar model—And-Or Graph (AOG).
These visual arithmetic problems are in the form of geomet-
ric figures: each problem has a set of geometric shapes as its
context and embedded number symbols. Solving such prob-
lems is not trivial; the machine not only has to recognize the
number, but also to interpret the number with its contexts,
shapes, and relations (e.g., symmetry) together with proper
operations. We benchmark the MNS dataset using four pre-
dominant neural network models as baselines in this visual
reasoning task. Comprehensive experiments show that cur-
rent neural-network-based models still struggle to understand
number concepts and relational operations. We show that a
simple brute-force search algorithm could work out some of
the problems without context information. Crucially, taking
geometric context into account by an additional perception
module would provide a sharp performance gain with fewer
search steps. Altogether, we call for attention in fusing the
classic search-based algorithms with modern neural networks
to discover the essential number concepts in future research.

1 Introduction
Number is the ruler of forms and ideas, and the cause of
gods and demons.

— Pythagoras, c. 300 (Taylor 1818)
Mathematics is arguably the most elegant and vivid reflec-

tion of human intelligence, covering the areas of geometry,
arithmetic, algebra, and analysis (Simpson and Weiner 1989).
It is the science of logic reasoning, the discipline of abstract
forms, and the realm of symbolic languages. Among all the
mathematical symbols, numbers are the most familiar and
vital elements to us. Although the opinions of Pythagoras that
“all is number” are controversial and extreme, the significance
of the numbers can never be overestimated: people from all
walks of life embrace numbers every day.
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Dealing with numbers seems to be a simple task and an
innate competence: even newborn infants can discriminate
basic numerosities, expressing their surprise when the num-
ber of stimuli changes from two to three (Starkey and Cooper
1980). Meanwhile, processing numbers is also a painstaking
challenge and a learned skill; it always takes years of efforts
for students to practice calculations and more complicated
computations. Such a numerical competence is, in fact, very
unique; only few other animals possess similar capabilities
(and at a much smaller scale compared to human) (Davis
and Pérusse 1988; Gallistel 1989; 1990; Brannon and Ter-
race 1998; Dehaene, Dehaene-Lambertz, and Cohen 1998;
Cantlon and Brannon 2007; Jacob and Nieder 2008; Nieder
and Dehaene 2009). What is the underlying mechanism of
human numerical thinking and the concepts of number? And
how to endow a similar capability to machine intelligence?

The number sense (Dehaene 2011), a psychological termi-
nology, provides an explanation about the cognitive process
of numbers for both human and animals. It refers to the under-
standing of number concepts, the competence of numerical
operations (including counting, comparison, estimation, and
calculation), and the ability to flexibly solve mathematical
problems (Bobis 1996). People characteristic of good number
sense usually possess the abilities of fluent magnitude percep-
tion, reasonable result expectation, flexible mental compu-
tation, and appropriate presentation formulation (Kalchman,
Moss, and Case 2001). Below, we summarize four key obser-
vations from the vast body of literature on number sense.

Learned vs. Innate Number sense is developed in ac-
quired environments in addition to our innate capability.
Five-month-old infants have already possessed the capac-
ity to represent cardinality and can engage in rudimentary
arithmetics—basic addition and subtraction operations on
small sets of objects (Wynn 1992). Older children gradually
learn to establish the abstract connections between the mag-
nitude of the quantities and the symbolic expression of the
numbers, which are the foundation of further comparisons
and calculations (Temple and Posner 1998). Symbolic numer-
ical processing skills, different from the processing abilities
of countable non-symbolic objects, are more closely related
to mathematical competence (Schneider et al. 2017). As for



average adults, retrieving the abstract meaning of number
symbols has been developed into a highly automated process,
thus facilitating more rigorous computations (Dehaene 2011).

Vision vs. Language Number sense is in closer relation to
vision than language due to a few reasons. First, the definition
of number sense emphasizes the estimation of the magnitude
of the quantities and the understanding of number symbols
based on visual input. Second, empirical evidence has sug-
gested the significant relation between vision and number
sense. Studies of developmental psychology indicated that
people first developed their number sense from vision; ba-
bies with limited knowledge of language have expressed the
ability to discriminate the numerosity of visual objects, and
children gradually learn the quantitative meaning of visual
symbols (Dehaene 2011). Third, in evolutionary psychology,
animals, in general, are unable to generate a verbal represen-
tation of numbers, but some of them still exhibit the number
sense, capable of numerical discrimination and mental opera-
tions of visual items (Gallistel 2003).

Context and Adaptation Number sense is not only the
awareness and manipulation of abstract symbols but also
the capacity of conducting flexible mathematical operations
in concrete situations. People with good number sense usu-
ally display an excellent problem-solving ability (Cobb et al.
1991). To solve mathematical problems effectively, we need
to observe the context in which the problem is presented, form
an adaptive representation for problem settings and a proper
expectation for possible results, select the most suitable strat-
egy that contains necessary sub-operations, and work with the
numbers step by step (Heinze, Star, and Verschaffel 2009).

Quantity vs. Rank Two types of neuronal mechanisms
were extensively studied in the neuroscience literature (Wiese
2003): (i) Numerical quantity refers to the property of cardi-
nality of sets of objects or events (also called numerosity)—
“how many?”. (ii) Numerical rank refers to the property of
serial order and pertains to the question—“which position?”.

1.1 Overview
In this paper, we hope to use the concept of number sense, an
ideal indicator, to evaluate the machine intelligence from the
perspective of mathematics; it naturally combines both crys-
tallized intelligence (knowledge and experience of number
processing) and fluid intelligence (adaptive problem-solving
in a given situation), which comprises the basic structure of
human intelligence (Cattell 1963).

Specifically, we propose a new dataset, Machine Number
Sense (MNS), in the form of geometric figures. It consists
of various types of arithmetic problems, in which integers
appear as problem contents and geometric shapes serve as
problem contexts; see an example in Figure 1. The task for
evaluating machine’s number sense is: given training samples
as images, the algorithms should figure out the underlying
latent relations between the numbers in each image panel and
fill in the missing number as the answer in the last panel.

Figure 1: A sample problem in the Machine Number Sense
(MNS) dataset using the rule of addition: 54 + 22 = 76,
67 + 9 = 76, 17+? = 76. The correct answer is 59.

Here, we are interested in testing a few intriguing ques-
tions that correspond to the above four key observations: (i)
Given only the visual input, are modern machine learning
methods capable of learning and understanding the quantita-
tive meaning of number symbols and the relations between
these symbols? (ii) If the spaces of the operations and rules
are known, is it possible to work out the problem by sym-
bolic search? What would be the difference between the two
streams of methods? (iii) How much does the contextual
information contribute to numerical problem-solving? (iv)
Could learning-based methods realize the numerical quantity
and numerical rank merely from the visual input?

Our experiments show that the predominant neural net-
work models still have a significant cognitive gap between
visual symbols and abstract meanings even after extensive
training; there must be a missing association between context
information and problem-solving skill. In contrast, only tak-
ing number symbols as the input, the classic search algorithm
manages to solve some problems correctly, but the search
is very inefficient. Adding an additional perception module
to provide geometric contextual information significantly
improves the performance of the algorithm.

1.2 Contributions
This paper makes two major contributions:
• We introduce a new Machine Number Sense (MNS)

dataset, composed of various visual arithmetic problems.
• We benchmark the ability of the modern machine learning

methods with respect to the quantitative understanding of
number symbols, the relational operations between num-
bers, and the ability of adaptive problem-solving, which
together construct a full framework of number sense.
Compared to other mathematical problems in the form of

text or language in prior work, the problems presented here
are unique in the following aspects:

Token vs. Pixel Instead of using tokenized symbols ex-
tracted from the texts or languages, testing machine number
sense directly from pixel input is much more challenging. By
means of language, the quantitative meaning of number sym-
bols and the relations among them could be easily discovered
with abundant semantic clues embedded in the sentence. In
contrast, it is much harder to establish the connections among
different numbers with their visual contexts; the algorithm
has to reason and induce from the observed visual pattern
using limited examples.



Figure 2: The Machine Number Sense (MNS) dataset creation process. Given grammar production rules together with its
attributes, we can generate a test by parsing and sampling an And-Or Graph (AOG).

Sequential vs. Hierarchical Using visual inputs also
brings up more rigorous requirements for formulating suit-
able yet flexible representations. The visual pattern is usually
hierarchically organized and generated, demanding an algo-
rithm to parse a test into a similar hierarchical representation.
This unique property is fundamentally different from the se-
quential and temporal nature in prior representations in the
context of texts or languages. A proper perceptual-grouping
(e.g., Gestalt laws (Wertheimer 1923)) for visual elements
is necessary. Additionally, we would need a flexible repre-
sentation for representing a problem based on its context and
reconstructing the representation when it is not appropriate;
such an adaptation is regarded as a key step for problem-
solving (Knoblich et al. 1999).

Recognition vs. Reasoning The proposed dataset is char-
acterized by both its simplicity and difficulty. In each prob-
lem, there are only numbers and geometric shapes, unlike
others with various mathematical symbols (Ling et al. 2017;
Saxton et al. 2019). However, simple appearance does not
indicate trivial problem-solving; in contrast, it enforces the
algorithm to reason about the latent structure, relations, and
operations within a problem consisting of very “limited” vi-
sual information, making the problem-solving process chal-
lenging. This nature of the present dataset leads to the focus
on reasoning and understanding, rather than the traditional
tasks (e.g., recognition) in the field of computer vision.

Human vs. Machine There are qualitative differences be-
tween the present dataset and previous tests of human number

sense. The human tests examine number sense from a clinical
perspective, aiming at discriminating children with potential
mathematical disabilities, so that the problems in the tests
are relatively easy, basic, and eliminative, serving as diag-
nostic tools. In contrast, our task investigates number sense
from a cognitive perspective, measuring machine intelligence
from the aspect of number processing; the problems are more
comprehensive, flexible, and cognitive-demanding.

2 The Machine Number Sense Dataset

Representation We use And-Or Graph (AOG) as the rep-
resentation; see an illustration of the structure for the gen-
eration process in Figure 2. AOG is a context-free grammar
frequently used for hierarchical and compositional data in
AI and computer vision (Zhu and Mumford 2007). In MNS
dataset, each problem has an internal hierarchical tree struc-
ture composed of And-nodes and Or-nodes; an And-node
denotes a decomposition of a larger entity in the grammar,
and an Or-node denotes an alternative decomposition.

In our design, the root node of the AOG is an Or-node,
representing a single test. After the decomposition on the sub-
level are three different problem types represented by And-
nodes. After selecting the problem type by choosing one of
the And-nodes, the problem is divided into layout and algebra
components. Sampling the terminal nodes in each component
will complete the process of the problem generation. The
three image panels within a single problem share common
layout and algebraic properties; the only difference among
them is the actual integers that appear on the panel.



Figure 3: Layouts of three different problem types: (a) com-
bination, (b) composition, and (c) partition.

Problem Types We design three types of problems: com-
bination, composition, and partition, each of which has a dis-
tinctive layout. Figure 3 shows a few examples using different
layouts. In a combination problem, two or three geometric
shapes are combined together by a specific spatial relation. In
a composition problem, a set of small geometric shapes are
composited to outline a larger shape. In a partition problem,
one geometric shape is divided into several parts by lines.

Layout Component and Attributes The layout compo-
nent serves as the problem context, consisting of two differ-
ent geometric attributes, both of which are necessary for the
problem generation; see an illustration in Figure 3. The first
attribute refers to geometric shape: triangle, square, circle,
hexagon, or rectangle. The second attribute varies in different
problem types. In combination problems, it indicates the spa-
tial relation by which the geometric shapes group together; in
our dataset, two figures could be combined by the relation of
overlapping or including, and three figures could be grouped
together by tangent relation. In composition problems, the
second attribute refers to the format of spatial arrangement
of geometric shapes, which can be composed in the forms of
line, cross, triangle, square, and circle. In partition problems,
this attribute represents the number of parts the geometric
shapes are partitioned into.

Algebra Component and Attributes The algebra compo-
nent serves as the problem content; similarly, it is composed
of two mathematical attributes. The first attribute indicates
the mathematical objects in the problem, including a list of
operators and integer constants. The constants range from
1 to 99 and the values of operators are the four elementary
operators in arithmetics: “+”, “−”, “×”, “÷”.

Figure 4: Examples of different algebra components: holistic
and analytic interpretation.

The second attribute is the styles of interpretation—holistic
view and analytic view, which correspond to two basic think-
ing styles of human cognition (Nisbett et al. 2001); see Fig-
ure 4. Holistic cognition emphasizes attending to the entire
information input, while analytic cognition focuses on group-
ing the input into different sub-parts. From a holistic per-
spective, all the numbers in a panel are involved in the same
calculation process together as a whole. From an analytic
perspective, the numbers are grouped as several parts, and
each part undergoes an individual calculation process. If the
interpretation style is analytic, the numbers in a panel can
be divided into 2, 3, or 4 parts. The form of grouping is de-
signed on the basis of human perceptual organization laws,
especially the law of similarity and the law of proximity
(Wertheimer 1923): numbers at neighboring or symmetrical
positions tend to be organized as a group.

Sampling Math Objects Once the layout and the inter-
pretation style are determined, the final step is to sample
operators and constants to automatically generate a test.

The space of possible operators given the current problem
type, component, and attribute is constrained by the prob-
lem context. For holistic problems, this space is subject to
the number of available integer positions in each panel. For
analytic problems, the space is subject to the number of avail-
able integer positions in each group. Parentheses are further
randomly inserted to change the operator precedence; this
modification dramatically increases the problem space.

The values of integer constants also need to be adjusted
to maintain a consistent difficulty among the generated tests.
If the center position of the layout has the space to display
numbers, we show the integer constant at the center of each
panel as a hint for problem-solving. In other situations where
the center position is occupied by lines or other shapes, the
algorithm needs to reason about what the constant is and how
to calculate such a constant. To make a trade-off of difficulty,
the values of constants differ in each panel in the former
situation, whereas the underlying constants remain the same
among different panels in the latter situation.

Instantiation by Calculation Tree The sampled operators
and constant slots are fed into an in-order binary tree to sam-
ple numbers for instantiation; see Figure 5 for a detailed
example of the generation process. We call this binary tree
a “calculation tree”; the nodes in it have two properties—



Figure 5: An example of the calculation tree for number
generation. The root node is the sampled integer constant.

numeric value and operator. The value of root node is as-
signed as the already sampled integer constant, while the
values of other nodes need to be sampled. The sampling pro-
cess follows two constraints: (i) the operation between the
left-child value and the right-child value under the parent
operator will yield the parent value, and (ii) the value is an
integer from 1 to 99. The sampling process terminates when
all the leaf nodes have qualified values. If a sampling process
cannot generate a problem that satisfies all the constraints, it
will be terminated and the entire process will be restarted.

3 Experiment Settings
We benchmark the proposed MNS dataset using both pre-
dominant neural network models and classic search-based
algorithms. Additionally, human performance on the dataset
has also been collected.

3.1 Neural Network Models
We implement state-of-the-art neural-network-based com-
puter vision models for visual problem-solving (Zhang et al.
2019a; Barrett et al. 2018) and examine their competence on
the dataset. Specifically, we compare 4 different baselines: (i)
a front-end CNN as feature extractor (CNN), (ii) a popular
sequential learning model with a CNN backbone combined
with an MLP head (LSTM), (iii) an image classifier based on
ResNet (He et al. 2016), and (iv) a relational network (RN)
(Santoro et al. 2017). We treat the problem as a classification
problem and train all models using the cross-entropy loss.
All models are optimized using ADAM (Kingma and Ba
2014) and implemented by PyTorch (Paszke et al. 2017); see
performance in Table 1 and Figure 6.

CNN In this model, we treat the three panels as a whole
and stack them along the channel dimension. Features of the
stacked panels are extracted by a CNN model, from which a
final answer is predicted.

LSTM The sequential nature of calculation and the analog-
ical relations among different panels motivate us to choose
the representative LSTM model for sequential learning. Sim-
ilar to ConvLSTM (Xingjian et al. 2015), we feed each panel
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Figure 6: Accuracy w.r.t the number of integers in each panel.

independently through a small CNN feature extractor and
connect them to the input layer of an LSTM network. Im-
age features are iteratively updated in three steps and finally
passed to a multi-layer perceptron for prediction.

ResNet Due to the superior performance in image clas-
sification, we also choose to benchmark the dataset using
ResNet. The feature extractor used in CNN is now replaced
with a ResNet-18 backbone (He et al. 2016). We use the
publicly available implementation and train the model from
random initialization.

RN Relational network has demonstrated good perfor-
mance on tasks demanding relational reasoning (Santoro et
al. 2017; Barrett et al. 2018). Hence, it is natural to examine
whether such a relational structure could be beneficial for
number sense. We adopt the relational model and feed image
features extracted by a CNN. A multi-layer perceptron is used
to predict answers based on the relational representation.

3.2 Symbolic Search-Based Models
We further examine whether the tests can be solved by search-
ing through the problem space. The problem space is fairly
large, spanned by various operators, constants, interpreta-
tions, shapes, and relations, posing challenges for symbolic
search-based models.

We implemented two types of the symbolic search-based
models: (i) pure symbolic search, wherein the input is the
numbers in each panel, and (ii) context-guided search, taking
both the numbers and semantic context information as input.
Both the pure symbolic search and context-guided search
share similar problem-solving mechanisms: search through
the entire problem space until the problem is solved.

Context-guided search only differs from pure symbolic
search in two aspects: (i) additional context information may
provide heuristics for solving the problem, and (ii) the relative
spatial positions of numbers can be inferred from context
information, enabling the model to find the correct order of
numbers in calculation more quickly. The performance using
these two models are shown in Table 1 and Figure 6.



Method Mean Combination Composition Partition
Holistic Analytic Holistic Analytic Holistic Analytic

Pure Symbolic Search 52.15% 62.98% 56.83% 22.17% 53.73% 51.29% 71.60%
Context-guided Search 56.70% 64.38% 56.08% 29.81% 61.84% 59.70% 67.59%

CNN 22.71% 25.25% 19.65% 22.53% 20.07% 24.44% 23.25%
LSTM 22.16% 24.57% 21.10% 22.21% 20.12% 23.36% 23.83%

RN 22.96% 27.05% 20.47% 22.93% 20.27% 25.81% 23.64%
ResNet 25.29% 27.90% 24.22% 23.42% 23.73% 26.61% 27.78%
Human 77.58% 66.82% 93.64% 61.36% 78.18% 77.27% 88.18%

Table 1: Performance (accuracy) of different models on the machine number sense dataset.

4 Performance Analysis and Comparison
4.1 Analysis of Neural Network Models
Table 1 shows how models perform on the MNS dataset. As
shown in Table 1, neural networks, unlike search algorithms,
perform similarly on different interpretations across all prob-
lem types. This observation indicates that by purely learning
from the paired image and answer, neural network models
are not capable of acquiring the essential cognitive process
of perception organization for analytic interpretation. Among
all the tested models, ResNet achieves the best performance
compared to other neural network models. One possible con-
tribution to the better performance of ResNet may come from
its considerable depth, which enables the model to extract
more distinct features from the problem images (He et al.
2016), helping to discriminate a certain number symbol from
others. Although discriminative features on symbols alone
may be inadequate for a comprehensive symbolic understand-
ing, it indicates that a strong classifier does help to improve
the overall performance.

Figure 6 shows how model performance changes as the
number of integers involved increases. One counter-intuitive
observation for neural network models is that the accuracy
of problem-solving does not significantly decrease as the
number of integers increases. Although the accuracy is the
highest in 2-integer situation for all models, the performance
in cases with more integers remain similar. This observation
suggests that neural network models share a common pro-
cessing mechanism that is invariant to the number of integers,
qualitatively different from search algorithms.

4.2 Analysis of Search-based Models
Figure 7 shows that the accuracy of search algorithms im-
proves as the number of search steps increases, in accordance
with the intuition that more trials during problem-solving will
lead to a higher chance of success. We observe from Table 1
that the performance of search algorithms differs between
the two styles of interpretations. In combination problems,
the algorithms perform better in holistic interpretation. Con-
versely, in partition and composition problems, the algorithms
perform better in analytic interpretation. This observation fol-
lows the design of problem layouts: as there are usually more
integers in partition and composition problems, it is more
expensive to conduct holistic calculations than grouping the
integers into several parts for computation. We also note that
four numbers could be a turning point for search-based algo-
rithms as the performance drops significantly when there are
more than four integers.

Although pure symbolic search is able to solve some prob-
lems, context-guided search has, in general, better perfor-
mance, especially on problems with higher complexity, e.g.,
4-, 6- and 8-integer (see Figure 6). This difference shows the
importance of context information in formulating a suitable
organization and representation of problem, avoiding invalid
trials of low-possibility circumstances, and finding solutions
for complicated problems.

4.3 Compare Search vs. Neural Network
There are two major differences in performance of search
algorithms and neural network models:
• The overall accuracy of neural network models is close to

that of pure symbolic search within 100 steps and context-
guided search within 50 steps, both of which are relatively
small compared to the large problem space.

• The performance of search algorithms varies across dif-
ferent types of problem, different styles of interpretation,
and different numbers of integers, in strong contrast to the
performance consistency of neural network models.
The underlying reasons for the differences lies in three

aspects. First, the representations of number symbols and ge-
ometric contexts differ. For search algorithms, the input num-
ber symbols are represented as abstract concepts, with clear
quantitative meaning and known operational rules, which can
be directly fit into each calculation process. Similarly, the
context information is given as a high-level semantic concept.
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In contrast, for neural network models, the input number
symbols and geometric contexts are in the form of pixels, so
that the models represent the information as a set of extracted
features rather than a set of symbolized concepts.

Second, search-based models treat number symbols as in-
dependent concepts and process them in a sequential manner,
resulting in increased time complexity as the number of in-
tegers grows. In contrast, neural network models process
visual features in parallel, so that the model performances
are invariant to the number of integers.

Third, since the number symbols and geometric context
information are fed into search algorithms separately, the
ability of search algorithms to separate problem content from
problem context is also advantageous than that of neural net-
work models. We argue that being able to separate contents
and contexts based on the pixel input is crucial to achieve
high performance for neural network models: geometric fig-
ures will lose its meaning if deprived of problem contents,
and the interpretation of problem contents will also be harder
without problem contexts.

4.4 Compare Human vs. Machine Performance
Compared to computational models, human achieves a sig-
nificantly higher accuracy in all types of problems without
extensive training. In our experiments, participants have dis-
played a superb proficiency in comprehending number sym-
bols and an advanced capacity to learn about the operational
relations among numbers from just two problem panels.

Unlike neural network models and search algorithms, par-
ticipants consistently perform better in analytic calculation
than in holistic calculation. Similar to search algorithms, the
accuracy of participants drops as the amount of number sym-
bols in a problem panel increases. A surprising result is that
participants only perform better than search algorithms when
there are more than four integers in each problem panel; this
counter-intuitive result may be due to the fact that the search-
based algorithms can almost search the entire problem space
within the step limit when the number of integers is small.

5 Related Work
Investigating machine number sense is an important direction
that would shed light on many other research topics in the
area of artificial intelligence and cognitive science, such as
relational reasoning (Waltz et al. 1999; Santoro et al. 2017;
Zhang et al. 2019a), visual analogy (Stafford 2001; Davies
and Goel 2001; Hill et al. 2019; Zhang et al. 2019a; 2019b),
and concept learning (Tenenbaum 1999; Fisher, Pazzani, and
Langley 2014; Lake, Salakhutdinov, and Tenenbaum 2015).
Below, we briefly review related work in number sense.

5.1 Educational Psychology
To examine the number sense in students’ math learning, re-
searchers in the field of educational psychology have been de-
veloping and standardizing the diagnostic measurement and
intervention training of number sense. A series of tests has
been devised to examine different aspects of number sense,
which can be classified into two categories—conceptual un-
derstandings and procedural operations. For example, the

Quantity Discrimination task measures the understanding of
quantitative meanings of number symbols (Chard et al. 2005),
and the Number Knowledge Test assesses operational knowl-
edge of numbers (e.g., basic additions and subtractions) with
a hierarchy of difficulty (Okamoto and Case 1996).

5.2 Artificial Intelligence

The cognitive ability of machine number sense has not
been thoroughly investigated in the field of artificial intel-
ligence. Although mathematical problem-solving has been
a research topic with an increasing interest, the focus of
previous research work is either on abstract language under-
standing (Kushman et al. 2014; Upadhyay and Chang 2016;
Huang et al. 2016; Wang, Liu, and Shi 2017; Ling et al.
2017) or general mathematical problem-solving (Saxton et
al. 2019), leaving out the specific topic of “machine num-
ber sense”. Crucially, almost all the prior work presented
mathematical problems in the form of text, which will lead
to a sequential (thus simplified) problem-solving process.
This process is different from the flexible nature of human
cognition shown in mathematics.

5.3 Machine IQ and Analogy

Another highly related stream of research focuses on rela-
tional and analogical reasoning (Barrett et al. 2018; Zhang et
al. 2019a; 2019b). In this line of works, researchers propose
to use deep neural networks to solve Raven’s Progressive Ma-
trices (RPM) (Raven 1936; Raven and Court 1998). Unlike
the proposed number sense challenge, RPM involves a wider
range of object relations, such as figure addition, subtraction,
and distribution. However, the requirement of number sense
in RPM is less demanding than the proposed dataset: only a
limited number of objects are involved in each RPM instance
and there is no need for decomposition based on the problem
context. A similar setting is studied in (Edmonds et al. 2020;
2019), where an agent needs to reason about the open-lock
mechanism by generalizing from mechanistically similar but
visually different environments. Our work echoes their con-
clusion that current methods in training deep neural networks
do not help the models acquire a generalizable representation.

6 Discussions and Conclusion
In this paper, we propose a dataset generated by And-Or
Graph (AOG) to examine the machine number sense. Specif-
ically, we evaluate machines’ understanding of abstract num-
ber symbols and competence of context-based problem-
solving. Compared to simple symbolic search-based models,
the poor performance of neural network models suggests
its insufficiency in symbolic processing and concept under-
standing. The dataset and experiments have left room for
improvements and brought up inspirations for future work.
The critical challenges are how to emerge symbolic concepts
directly from pixels using minimal supervisions, how to ex-
tract meaningful relations from the contextual information,
and how to reason and make inductions based on these con-
cepts and relations.
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