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Abstract

Solving algebra story problems remains a challenging task in
artificial intelligence, which requires a detailed understand-
ing of real-world situations and a strong mathematical rea-
soning capability. Previous neural solvers of math word prob-
lems directly translate problem texts into equations, lacking
an explicit interpretation of the situations, and often fail to
handle more sophisticated situations. To address such lim-
its of neural solvers, we introduce the concept of a situation
model, which originates from psychology studies to represent
the mental states of humans in problem-solving, and propose
SMART, which adopts attributed grammar as the representa-
tion of situation models for algebra story problems. Specif-
ically, we first train an information extraction module to ex-
tract nodes, attributes, and relations from problem texts and
then generate a parse graph based on a pre-defined attributed
grammar. An iterative learning strategy is also proposed to
improve the performance of SMART further. To rigorously
study this task, we carefully curate a new dataset named
ASP6.6k. Experimental results on ASP6.6k show that the pro-
posed model outperforms all previous neural solvers by a
large margin while preserving much better interpretability. To
test these models’ generalization capability, we also design an
out-of-distribution (OOD) evaluation, in which problems are
more complex than those in the training set. Our model ex-
ceeds state-of-the-art models by 17% in the OOD evaluation,
demonstrating its superior generalization ability.

Introduction
Algebra Story Problems, depicted by Hinsley, Hayes, and
Simon (1977) as “twentieth-century fables”, remain a crit-
ical challenge in modern artificial intelligence. An algebra
story problem typically describes a real-world situation and
inquires about an unknown fact in the situation. It goes be-
yond arithmetic since one has to first comprehend the situ-
ation, recognize the goal in the problem, and then develop
a solution for it (Nathan, Kintsch, and Young 1992). Psy-
chology studies (Bjork and Bowyer-Crane 2013; Abedi and
Lord 2001) also indicate that algebra story problems can
serve as a test of children’s cognitive skills to perform arith-
metic reasoning on real-world tasks. However, although al-
gebra story problems are distinguished per se, related works
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The two cars A and B are 20 kilometers apart. Car B is in front and 
Car A is behind. The two cars depart at the same time. Car A catches 
up with Car B after 2 hours. Car B is traveling 50 kilometers per hour 
and Car A is traveling at what speed every hour?
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Figure 1: The process of human solving algebra story prob-
lems: We first hallucinate a situation model from the text and
then perform arithmetic reasoning on the situation model to
compute an answer. If we fail to generate a correct solution,
we can adjust our situation model accordingly.

from the community of artificial intelligence and natural lan-
guage processing often mix them with other types of prob-
lems, such as number problems and geometry problems, into
one whole task called Math Word Problems (MWPs) (Wang,
Liu, and Shi 2017a; Huang et al. 2016; Amini et al. 2019)

Recent works on Math Word Problems (Wang, Liu, and
Shi 2017a; Huang et al. 2018a; Wang et al. 2018; Xie and
Sun 2019; Hong et al. 2021) focused on using end-to-end
neural networks (e.g., Seq2Seq, Seq2Tree) to directly trans-
late a problem text into an expression, which is then exe-
cuted to get the final answer. Although they seem to obtain
satisfying performance, such end-to-end neural models suf-
fer from the following drawbacks:

• Lack of interpretability. The expressions generated by
neural networks are hard to interpret without the in-
termediate problem-solving process. An exemplary ex-
pression from Figure 3 is “(24+60)/[1-(1-(2/5))*(3/10)-
(2/5)*(3/4)-(2/5)]”, which makes no sense to humans,
even though it generates the correct answer.

• Lack of generalization ability. These neural solvers usu-
ally fail in scenarios that are more sophisticated than those
in training.

To address these issues in current research on Math Word
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Problems, we make the following efforts in this work.
First, we curate a new benchmark named ASP6.6k, which

contains four canonical types of algebra story problems: mo-
tion, price, relation, and task. We build our dataset upon
Math23K (Wang, Liu, and Shi 2017b), the most frequently-
used MWP dataset in recent years, and categorize algebra
story problems by following precisely the criteria set by
Mayer (1981).

Second, we introduce the cognitive concept of a situation
model (van Dijk and Kintsch 1983), which is widely used in
psychology studies to model the mental states of humans in
problem-solving (Reusser 1990; Greeno 1989; Nathan and
Young 1990; Coquin-Viennot and Moreau 2007; Leiss et al.
2010). It is believed that problem-solving techniques, such
as mathematics and logic, are applied to the hallucinated sit-
uation model instead of the problem text. As shown in Fig-
ure 1, the situation model interacts with mathematical con-
cepts to derive a solution for the problem.

To efficiently represent the situation model, we propose
SMART, which utilizes attributed grammar (Knuth 1990;
Liu, Zhao, and Zhu 2014; Park and Zhu 2015; Park, Nie, and
Zhu 2016b) as the representation of a situation model in al-
gebra story problems. More specifically, the world, agents,
and events depicted in an algebra story problem are repre-
sented as nodes in a hierarchical parse graph, derived from
the problem text with a context-free grammar. The parse
graph nodes are further augmented with attributes to rep-
resent quantities in the problem, and the relations between
these quantities are encoded as numerical constraints on
the corresponding attributes. The construction of these con-
straints usually requires both commonsense knowledge and
mathematical knowledge. Therefore, the parse graph gen-
erated by an attributed grammar can capture the situation
model’s desired characteristics for algebra story problems.
With the parse graph, the problem solving is equivalent to
seeking one unknown attribute in the graph and can be for-
mulated as an attribute propagation process guided by the
constraints on these attributes. To automatically construct
parse graphs for problems, we first train an information ex-
traction module to extract nodes, attributes, and relations
from problem texts and then generate parse graphs based on
a carefully designed attributed grammar.

The learning of SMART is nontrivial. Since the grammar
parsing and the problem solving are non-differentiable, we
cannot use back-propagation to learn SMART in an end-to-
end fashion under the supervision of final answers. There-
fore, we propose a two-stage learning strategy: First, we
manually design a text parser to generate initial supervision
on parse graphs and use them to train the information ex-
traction module in SMART. Second, we adopt an iterative
learning method to strength the information extraction mod-
ule, where pseudo-gold parse graphs at each iteration aug-
ment the supervision for the next learning iteration.

We conduct experiments on the newly curated benchmark
ASP6.6k, and the proposed SMART model outperforms all
neural network baselines by a large margin. Moreover, it
demonstrates stronger generalization ability in an out-of-
distribution evaluation, where the test problems are more
complex than those in the training set. A qualitative study

also suggests that SMART achieves better interpretability
and generalization ability than the neural models.

Related Works
Math Word Problems Solving math word problems has
attracted researchers for decades. Early solvers (Fletcher
1985; Bakman 2007; Yu-hui et al. 2010) use rule-based
methods which are generally fixed and only work on single-
step word problems for one category of problems. The
next stage of solvers use semantic parsing techniques (Hos-
seini et al. 2014; Koncel-Kedziorski et al. 2015; Shi et al.
2015; Huang et al. 2017). These methods attempt to parse
the problem text into an intermediate structured representa-
tion, usually annotated in the training set. Specifically, Shi
et al. (2015) uses Context Free Grammar to solve number
problems, which is quite different from our grammar for
story problems. Statistical learning methods (Kushman et al.
2014; Zhou, Dai, and Chen 2015; Mitra and Baral 2016; Roy
and Roth 2017; Huang et al. 2016) attempt to boost seman-
tic parsing techniques, like choosing the most probable tem-
plate to use (Mitra and Baral 2016). However, these tem-
plates are still fixed before training, leading to inflexibility
in solving more sophisticated problems.

Researchers recently focus on solving math word prob-
lems using neural networks (Ling et al. 2017; Wang, Liu,
and Shi 2017a; Huang et al. 2018a; Robaidek, Koncel-
Kedziorski, and Hajishirzi 2018; Wang et al. 2018, 2019;
Chiang and Chen 2019; Xie and Sun 2019; Zhang et al.
2020; Hong et al. 2021). The mere translation from a text
to an equation neglects the intermediate process required by
problem solving, thus lacking interpretability. In this paper,
we seek to combine the strengths of both symbolic reason-
ing and neural networks, where we use neural modules to
update symbolic representations.

Situation Model Situation models have been proven cru-
cial in human discourse comprehension and problem solv-
ing (Zwaan, Magliano, and Graesser 1995; Nesher, Her-
shkovitz, and Novotna 2003). Researchers have long be-
lieved that text comprehension is a process of construc-
tion and integration (Gernsbacher 2013; Kintsch and Wal-
ter Kintsch 1998). Hegarty, Mayer, and Monk (1995) indi-
cate that without a situation model, problem solvers with a
direct translation approach are more likely to fail for math
problems. A recent study (Raudszus, Segers, and Verho-
even 2019) also shows that the ability of building a situation
model is a strong indicator of cognitive and linguistic skills.

There is a history of situation model construction for al-
gebra story problem solving (Reusser 1990; Greeno 1989;
Nathan and Young 1990; Coquin-Viennot and Moreau 2007;
Leiss et al. 2010). Kintsch and Greeno (1985) use a situation
model to analyze processing requirements and difficulties of
algebra word problems. Nathan, Kintsch, and Young (1992)
build a situation model to predict student mental state and
predict how to tutor students based on interaction history. In
contrast, this paper builds a situation model for the machine,
which uses attributed grammar to model the problem solving
for algebra story problems. A situation model should satisfy



the following properties (van Dijk and Kintsch 1983) :
• Reference: The situation model should represent the

world the text is stating about.
• Coherence: All facts, implicit or explicit, need to be con-

nected as long as the relations are indicated by the text.
• Situational Parameters: It includes the parameters and at-

tributes about the world and events in the text.
• Event Independence: It needs to be invariant regardless of

the number of events and their order.
We argue that a parse graph derived from attributed grammar
can capture the above properties of a situation model.

Attributed Grammar Attributed grammar is proposed
by Knuth to handle the semantics of programming lan-
guages (Knuth 1990). In recent years, researchers use
attributed grammar to represent hierarchical grammar struc-
tures for images (Han and Zhu 2005; Wang et al. 2013),
video events (Lin et al. 2009), human poses (Park, Nie, and
Zhu 2016a), indoor scene understanding (Qi et al. 2018;
Jiang et al. 2018; Huang et al. 2018b; Chen et al. 2019),
etc. The attributes are assigned to terminal and non-terminal
nodes of a grammar based on commonsense knowledge.
Attributes between terminal nodes and non-terminal nodes
are related by soft constraints or hard constraints, depending
on the specific task. We utilize hard constraints in SMART
for mathematical reasoning. In addition, attributes in a parse
graph can be propagated in a controlled and formal way.

The ASP6.6k Dataset
We curate the new dataset ASP6.6k from the widely used
Math23K dataset. To select and categorize algebra story
problems, we first compute the term frequency–inverse doc-
ument frequency (TF-IDF) features for each problem in
the dataset and then use k-means clustering to group prob-
lems into different categories. We use the elbow method
(Thorndike 1953) to find the optimal K for the clustering. To
further remove noise, we manually select certain keywords
to filter out problems that do not belong to the group. We
select a subset of problems from Math23K following the cri-
teria from (Mayer 1981; Nathan, Kintsch, and Young 1992):
• The problem ask for numerical answers rather than trans-

lating a story into equations.
• The problem has a story-line consisting of characters, ob-

jects, and/or actions.
As a result, we obtain a dataset of 6666 problems spanning
from four typical types of algebra story problems: motion,
price, relation, and task.

Here, we provide a brief summary of the problem types:
• Motion: problems involve traveling and require under-

standing of per time rate.
• Task: problems involve completion of tasks and require

understanding of the relations between fractions.
• Price: problems involve purchasing items and require un-

derstanding of unit price and total price.

• Relation: problems involve a description of relationship
between two objects.

Motion Task Relation Price Total
Problems 1687 1158 1915 1908 6666

Avg. Length 37.0 33.6 28.8 26.7 31.1
Avg.Agents 1.85 1.13 2.34 1.96 1.90
Avg. Events 1.93 2.21 2.58 2.30 2.27

Avg. Relations 3.07 3.32 3.53 2.98 3.22

Table 1: Dataset Statistics. Length is number of tokens.

Details of the dataset statistics are listed in Table 1. Exam-
ples for each problem type are shown in Table 2. See sup-
plementary materials for more details about dataset prepro-
cessing and more statistics.

SMART
In this section, we introduce SMART, a situation model for
algebra story problems via attributed grammar.

Attributed Grammar
Inspired by Qi et al. (2018), an attributed grammar is de-
signed for the domain of algebra story problems, as shown
in Table 3.

G = (S, V,A,E,R)
S is the start symbol.
V = {S, World, Agents, Agent, Events, Event}
A = {rate, amount, total}
E = {e: e is a valid equation on attributes.}
R = {S →World

World→ Agents
Agents→ Agents Agent | Agent
Agent→ Events
Events→ Events Event | Event}

Table 3: The attributed grammar for algebra story problems.

In attributed grammar, the production rules R are de-
signed by the following observation: a problem usually de-
picts a world, where several agents perform several events.

Inspired by (Roy and Roth 2017; Nathan, Kintsch, and
Young 1992; Mayer 1981), we design three types of at-
tributes to augment the nodes: i) rate: a quantity which is
certain measure corresponding to one unit of some other
quantity, indicated by phrases like “A per B” and “each A
has B” (e.g., speed, price). ii) amount: a measurement of
units of rate quantities (e.g., hour). iii) total: a quantity which
equals to the multiplication of rate and amount (e.g., dis-
tance).

The relations E represent possible constraints on the at-
tributes in the form of equations. These constraints can be
either explicitly stated in the text, such as “it travels 1/3 of
the distance”, or implied by commonsense knowledge, such
as “distance = speed× time”. See Figure 2 for an exemplary
parse graph generated from the attributed grammar.



Problem Type Sample Problem
Task The engineering team built a viewing trail and completed 30% of the full length in the first week and 45% of the full

length in the second week. 150 meters in two weeks, how long is the length of this trail?
Motion Mingming’s family went to travel, they took a 14-hour train ride, and then a 5-hour car ride before reaching their

destination. It is known that the speed of the train is 120 kilometers/hour and the speed of the car is 60 kilometers/hour.
How long is this journey?

Relation Xiaogang’s weight is 28.4 kg, Xiaoqiang’s weight is 1.4 times that of Xiaogang, Xiaoqiang’s weight = how many
kilograms?

Price The school bought 45 sets of desks and chairs at 128 yuan per desk and 52 yuan per chair. How much did it spend?

Table 2: An example of each problem type.

Rate: 65 Amount: 6

City A and City B

Car 

travels for 6 hours 
on the first day

travels (1/3) 
...the first day

Total: x

Total: x1
Rate: 65
Amount: 6

Total: x2
Rate: y2
Amount: z2 

Problem
  A car travels from 

city A to city B. It 
travels for 6 
hours on the first 
day, with a speed 
of 65 kilometers an 
hour. On the 
second day, it 
travels (1/3) of the 
distance he 
travels the first 
day. Then it 
arrives. What is the 
distance between 
city A and city B?
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Relation 
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Inference

 Node
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World: City A and city B
Agent: Car ...

   It travels (1/3) of the 
distance he ... first day

Situation Model Learning
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Figure 2: Overview of our SMART model. The Named Entity Recognition (NER) module extracts the spans of nodes, attributes,
as well as relations from the text, and construct a parse graph using Attributed Grammar. The Relation Extraction module uses
the relation spans and the parse graph already constructed to embed some relations into the parse graph. In the updated graph
parser, Relation Extraction corresponds to Seq2Seq. The relations are then executed to get the final answer. If the answer is
correct, it is added to the buffer of pseudo-gold parse graphs to train NER and Seq2Seq. If not, it is added to the failure set to
be updated in the following iterations.

Grammar Parsing
The construction of the situation model for an algebra story
problem is equivalent to parsing the problem text into a parse
graph. Formally, given the problem x and the attributed
grammar G, the parsing process is formulated as:

pg∗ = arg max
pg∈L(G)

p(pg | x), (1)

where L(G) denotes the language of the attributed grammar.
The probability of a parse graph pg given x can be written
as a joint probability of its nodes Vpg , attributes Apg and
relations Epg:

p(pg | x) = p(Vpg, Apg, Epg|x) (2)
= p(Vpg|x) · p(Apg|x) · p(Epg|x) (3)

Here we assume the independence of these nodes, attributes,
and relations to simplify our model and leave the exploration
of their dependency for future works.

The extraction of nodes, attributes and relations is
achieved by a three-step process.

First, we define seven categories of entities: nodes
(WORLD, AGENT, EVENT), attributes (RATE, AMOUNT,

TOTAL), REL (which denotes a text span that indicates rela-
tion). We train a named entity recognition (NER) system to
recognize these entities from the text. Specifically, we have
one NER model to extract the attributes, and another one for
the extraction of the nodes and REL. We use Nested NER
(Straková, Straka, and Hajic 2019) for the second model.
We use BERT-chinese-base pre-trained model and fine-tune
it on our NER task. We then have:

p(Vpg|x) =
1

|Vpg|
∑

w∈Vpg

pner(w) (4)

p(Apg|x) =
1

|Apg|
∑

w∈Apg

pner(w) (5)

where |Vpg| is the length of a node span, |Apg| is the length
of an attribute span, and w is a word in the node or attribute
span. pner(w) is the probability of a word being labelled as
a specific category.

Second, we connect these nodes and attributes into a parse
graph based on two distances: the word distance between
two nodes in the problem text, and the distance (number of
links) between them in the dependency parse. Some con-



straints in the dependency parsing are also imposed, e.g.,
the noun word representing an agent is preferred to be the
NSUBJ of the verb word in the event node. Please refer to
the supplementary materials for the complete list of rules
and constraints used in the parsing. Attributes not extracted
by NER are marked as an unknown.

Third, we train a Seq2Seq model to translate the REL
entity from a text span into an equation e, which consists
of attributes in the parse graph and arithmetic operators
({+,−,×,÷,∧,=}). To include attributes in the equation,
the input to the Seq2Seq model is the concatenation of REL,
nodes and the attributes of each node. See supplementary for
the examples of inputs and outputs of the Seq2Seq model.
The probability of the relation is defined as:

p(Epg|x) =
∑

e∈Epg

pseq2seq(e|REL, Vpg, Apg) (6)

where pseq2seq is the Seq2Seq output probability.

Goal Recognition
The goal of a problem is usually an interrogative word ex-
tracted by NER (e.g., how many). It can be in an attribute
or in REL. We transform the interrogative word into an un-
known in the equation.

Problem Solving
After building the parse graph, the problem can be easily
solved by feeding the relation equations and the goal into
a mathematical solver (Meurer et al. 2017). This stage re-
quires mathematical reasoning skills, which are perfectly
provided by a stand-alone solver.

The Learning of SMART
The learning objective of SMART is to optimize the infor-
mation extraction module including both the NER system
and Seq2Seq models for relation and goal. Since the gram-
mar parsing and the problem solving are non-differentiable,
we cannot use back-propagation to learn SMART in an end-
to-end fashion under the supervision of final answers. There-
fore, we propose a two-stage learning strategy: First, we
manually design a text parser to generate initial supervision
on parse graphs and use them to train the information extrac-
tion module in SMART. Second, we adopt an iterative learn-
ing method to strengthen the information extraction module.

Initial Supervision
Since we do not have the ground-truth parse graphs, we
generate parse graph proposals using a hand-designed text
parser. The parser extracts nodes, attributes and relations
from the text to construct a parse graph.

Attribute Extraction We first extract all numbers of rate,
amount and total using pos Tagger by spaCy1. Similar to
Roy and Roth (2017), we refer to the unit of attribute total
to be “Num Unit” (short for Numerator Unit), and the unit

1https://spacy.io/

of attribute amount to be “Den Unit” (short for Denominator
Unit). The unit of attribute rate is therefore “Num Unit per
Den Unit”. Table 4 shows the attributes and attribute units of
an exemplar problem.

Problem: Each kilogram of pears
cost 3.65 dollars. How many

dollars does mom have to
pay for 13 kilograms of pears?

rate amount total
3.65 13 how many

Num Unit Den Unit
dollar kilometer

Table 4: The attributes (rate, amount, total), Num Unit, Den
Unit of an exemplar problem

Generally, when we have a word marked as “NUM” or
“X” (in the case of fractions) by pos tagger, or when the
word is “how many” (in the case of interrogative phrase),
we check if there’s word such as “per” or “each” nearby. If
so, we mark the number as rate and extract the Num Unit
and Den Unit. We then extract amount and total which are
followed by Den Unit and Num Unit respectively.

Node Extraction The next step is to extract the nodes and
link attributes to nodes, based on the POS tagging and the
dependency parsing. Specifically, we extracts the nouns in
the text and treat them as agent nodes. We extract the verbs
and their dependents as event nodes. The world node repre-
sents the scope of a problem, and is associated with a total
attribute denoting the total quantities to be covered in the
problem. The extraction is conditioned on the problem type.
For the type of motion, it means the total distance within
the scope of the problem; for the type of price, it is the total
money that can be spent; for the type of task completion, it is
usually the total amount of tasks to be completed. The world
node is extracted based on rules using POS tagger, depen-
dency parser and regular expressions. If there is no “scope”
information in the problem, we just place a default world
node in the parse graph.

We connect nodes and attributes based on distance and
dependency parsing.

Relation Extraction We represent the relations explicitly
stated in the problem text via the first-order logic:

• Variables: We define a node v to be a variable.

• Functions: We consider an attribute to be a function of
a node, i.e., Rate(v), Amount(v), Total(v). Moreover, we
define two extra functions: a sum function which takes
in the same attribute of several nodes and returns their
sum, e.g., Sum(Total(vi), Total(vj)); a left function, which
computes the quantities that haven’t been covered by
events so far, e.g., Left(Total(S), Total(vi), Total(vj)).

• Predicates: We view relations as predicates. Predicates
take in functions F , and sometimes a value n represent-
ing numerical relation (if n is detected by relation ex-
traction, we exclude it from the attribute set). These in-
clude: Equal(F (vi), F (vj)); More than(F (vi), F (vj), n);
Less than(F (vi), F (vj), n); Times of(F (vi), F (vj), n).

Please refer to the supplementary materials for the complete
definitions for functions and predicates.



To mine relations from the text, we first use keyword
matching to measure how much a text span is considered
to indicate a relation based on keywords (e.g., more than,
less than, equals to, times of, left) and then represent the
relation as a first-order logic predicate. The predicates are
transformed into equations.

Iterative Learning
To further improve the performance of SMART, we pro-
pose an iterative learning method: we keep a success buffer,
which stores the pseudo gold parse graphs generating correct
answers, and a failure buffer, which keeps track of the prob-
lems not being solved yet. The pseudo gold parse graphs
provided by initial supervision served as the initialization of
the success buffer for the first iteration. At each iteration, we
first use the success buffer to update the model, and then ap-
ply the updated model to the instances in the failure buffer
to check if the updated model can solve new problems. The
details of the iterative learning method are illustrated in Al-
gorithm 1.

Algorithm 1 Iterative Learning

1: Input: training set D = {(xi, yi)}Ni=1

2: Success buffer B, Failure buffer F , updated parser θ
3: .Parse Graph Proposal
4: for xi, yi ∈ D do
5: pgi = initial parser (xi)
6: if execute(pgi) = yi then
7: B ← B ∪ {xi, pgi}
8: else
9: F ← F ∪ {xi, yi}

10: .Iterative Learning
11: while not converge do
12: for xi, pgi ∈ B do
13: θ = θ −∇θJ(xi, pgi)
14: for xi, yi ∈ F do
15: pgi = updated parser (xi)
16: if execute(pgi) = yi then
17: B ← B ∪ {xi, pgi}
18: remove {xi, yi} from F

Experiments
Experimental Setup
Dataset We evaluate our SMART model on the newly cu-
rated ASP6.6k dataset. The final dataset is randomly divided
into training and test sets of 5,332 and 1,334 problems (i.e,
approximately a 80/20 split).

Evaluation Metric We report the answer accuracy of the
models: the generated solution is considered correct if it exe-
cutes to the ground-truth answer. Furthermore, we design an
out-of-distribution (OOD) evaluation to examine the mod-
els’ generalization ability.

Baselines We compare the proposed SMART model with
several state-of-the-art neural models for math word prob-
lems: MathEN (Wang et al. 2018), Group-ATT (Wang et al.

2019), GTS(Xie and Sun 2019), and Graph2Tree (Zhang
et al. 2020).

Results and Analyses
Comparison with State-of-the-art Models Table 5 sum-
marizes the comparison of the answer accuracy on the test
set with regard to problem types. The proposed SMART
model significantly outperforms all the neural models and
beats the state-of-the-art model by nearly 3% in terms of the
overall accuracy. More specifically, SMART outperforms
the neural models by 3% and 4% on the Motion and Re-
lation problems, while it achieves comparable performance
on the Task problems and lower performance on the Price
problems.

Model Overall Motion Task Relation Price
MathEN 67.8 68.3 70.2 63.3 70.5

GroupATT 67.4 65.2 70.7 63.6 71.5
GTS 76.8 73.2 72.1 76.0 83.6

Graph2Tree 76.8 76.9 79.0 73.8 78.7
SMART 79.5 79.8 79.0 77.9 81.8

Table 5: The answer accuracy on the test set (%).

Model Overall Motion Task Relation Price
MathEN 31.7 22.6 28.9 39.9 33.2

GroupATT 35.0 24.0 42.2 42.6 32.7
GTS 45.8 44.5 41.9 49.9 45.3

Graph2Tree 45.1 34.1 47.4 55.1 41.9
SMART 63.2 65.0 64.8 62.9 60.8

Table 6: The answer accuracy in the OOD evaluation (%).
The test set is the 20% longest problems of each type.

Out-of-distribution Evaluation To measure the models’
generalization ability, we conduct an out-of-distribution
(OOD) evaluation, where the test set contains more complex
problems than the training set. The length of an algebra story
problem is a good proxy for its solving complexity. There-
fore, we select the longest 20% of problems for each type as
the test set and the rest as the training set. Table 6 summa-
rize the answer accuracy of all models in the OOD evalua-
tion. The results show that SMART has better generalization
ability. It outperforms the neural models by 17%, revealing
SMART’s strong ability to reason about more complicated
situations even if it is trained on much simpler problems.

Iterative Learning Figure 4 shows the test accuracy ver-
sus iterations. Here an iteration is an update on the SMART
model based on collected successful samples prior to that
iteration, as illustrated in Algorithm 1. We can see that the
model improves during iterative learning and begins to con-
verge at the third iteration.

Ablative Study The ablative study in Figure 4 analyzes
the effect of each module in the inference procedure on the



Problem Expression GTS SMART 

A road repair team needs to repair a section of road. 
The first day it repairs (1/5) kilometers, the second 
day they repairs (3/10) kilometers, and the road they 
already repairs is (1/7) of the total length. How many 
kilometers is the total length of the road?

((1/5)+(3/10))/(1/7) ((1/5)+(3/10))/(1/7)

Car A and car B set off from city A and city B at the 
same time, and head toward each other. After a 
while Car A travels (2/3) of the entire journey, and 
Car B travels 45% of the entire journey. At this time, 
the two vehicles were 35 kilometers apart. How 
many kilometers are between two city A and city B?

35/((2/3)+45%-1) 35/(1-(2/3))

An engineering team is building a the road. On 
the first day, it builds (2/5) of the total length. On 
the next day, it builds 24 meters more than (3/10) 
of the remaining length. On the third day, it builds 
60 meters (3/ 4) the length of the first day, and 
then they finish. How many meters is the length of 
the road?

(24+60)/[1-(1
-(2/5))*(3/10)

-(2/5)*(3/4)-(2/5)]

(60-24)/
((1-(2/5))
-(3/4))-24

Two cars drives out from city A and city B at the 
same time. Car A travels 50 kilometers per hour, 
and car B travels 60 kilometers per hour. After 4 
hours, the distance between the two cars was 
20% of the total distrance. How many kilometers 
are the total distance between city A and city B?

(50+60)
*4/(1-20%)

50*4

World

Team

Total: 1/5 kmFirst Day Second Day Total: 3/10 km

Total: x

1/5 + 3/10 = 1/7 x
World

Car A Car B

After A 
While

After A 
While

Rate:  y1 km/h
Total: 2/3x

Rate:  y2 km/h
Total: 0.45x

Total: x

2/3x + 0.45x + 35 = x 

World

Team

Total: 2/5 x

First Day Second Day

Total: 24 + 3/10 * (x - 2/5x) 

Total: x

Third Day

Total: 60 + 3/4*2/5 x

2/5x + 24 + 3/10 * (x - 2/5x) + 60 + 3/4 * 2/5 x = x 

World

Car A Car B

After 4 
Hours

After 4 
Hours

Rate:  50 km/h
Total: 200

Rate:  60 km/h
Total: 240

Total: x

240 - 200 = 0.2x 

Figure 3: Qualitative study of the GTS model and our SMART model. For the first two instances, we visualize the result in
the original test set. The last two instances are from the OOD dataset, where the test set has greater problem length in general
compared to the training set.

test set. We observe that the sole use of NER only achieves
around 20% accuracy. This indicates that reasoning about re-
lations between attributes is required in most problems. The
final result with both the original relation extraction (RE)
module and Seq2Seq outperforms the model with just the
RE module. This suggests Seq2Seq does detect relations not
extracted by RE. However, Seq2seq alone is inferior to RE,
which suggests explicit mapping of relations works better
than implicit learning of a neural module.
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Figure 4: The answer accuracy on the test set across various
iterations during the iterative learning. RE denotes the rela-
tion extraction in the initial parser. NER denotes the Named
Entity Recognition system. Seq2Seq is the model used to
detect relations not extracted by the initial parser.

Qualitative Study To further analyze our model’s inter-
pretability and generalization ability, we visualize several
examples from the test set, as shown in Figure 3. The first
two instances are from the original set, while the last two
are from the OOD split. Both models work well on the first
instance since there are similar samples in the training set.
When it comes to the third instance, the neural network
failed since it has never observed a problem with more than
two events and does not comprehend the relations. However,
the situation model handles well due to event independence.
In the fourth instance, the neural network fails to determine
the speed of the next car and the relation “20% of the total
distance”, while SMART is good at both.

However, SMART also makes wrong predictions. In the
second instance, “the two vehicles were 35 kilometers apart”
is ambiguous since we do not know if the cars have met
each other yet. Therefore, SMART gives a negative value
for the total length. In the future, error analysis is needed in
the situation model so that when an implausible answer is
given, the situation model seeks an alternative solution.

Conclusions
In this work, we propose a situation model with attributed
grammar for algebra story problems. The experiment results
on ASP6.6k indicate our model outperforms state-of-the-art
models and shows better interpretability and generalization
ability. Future work includes creating an intelligent tutor that
helps students develop problem-solving skills.



Ethical Impact
This paper implements the situation model applied by hu-
mans to solve algebra story problems on the setting of artifi-
cial intelligence. Based on the model, educators can design
intelligent tutors to guide students in mathematical learning.
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