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Abstract. Many problems in vision can be formulated as Bayesian inference. It is important to determine the
accuracy of these inferences and how they depend on the problem domain. In this paper, we provide a theoretical
framework based on Bayesian decision theory which involves evaluating performance based on an ensemble of
problem instances. We pay special attention to the task of detecting a target in the presence of background clutter.
This framework is then used to analyze the detectability of curves in images. We restrict ourselves to the case where
the probability models are ergodic (both for the geometry of the curve and for the imaging). These restrictions
enable us to use techniques from large deviation theory to simplify the analysis. We show that the detectability of
curves depend on a parameterK which is a function of the probability distributions characterizing the problem. At
critical values ofK the target becomes impossible to detect on average. Our framework also enables us to determine
whether a simpler approximate model is sufficient to detect the target curve and hence clarify how much information
is required to perform specific tasks. These results generalize our previous work (Yuille, A.L. and Coughlan, J.M.
2000.Pattern Analysis and Machine IntelligencePAMI, 22(2):160–173) by placing it in a Bayesian decision theory
framework, by extending the class of probability models which can be analyzed, and by analysing the case where
approximate models are used for inference.
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1. Introduction

This paper is concerned with determining the fun-
damental limits of visual inference and quantifying
what aspects of a visual task make it easy or hard.
An important related question is how much prior

knowledge do we need about the task in order to
solve it. Intuitively, if a visual task is easy then we
will only need to use a simple model to solve it.
But a more difficult task may require a sophisticated
model which uses a lot of knowledge about the specific
task.
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Figure 1. Left to right, three detection tasks of increasing degrees of difficulty. The stop sign (left) is easy to find. The gila monster (centre) is
harder. The dalmation dog (right) is almost impossible.

For example, consider the tasks of detecting the three
target objects—stop sign, gila monster, and dalmation
dog—from the images in Fig. 1. Intuitively, detecting
the stop sign in the left panel is far easier than detect-
ing the dalmation dog in the right panel. But can we
quantify the relative difficulties of these tasks? And
can we determine what precise aspects of the image
and the targets makes the task easy or hard? For exam-
ple, it seems likely that the difficulty of detecting the
gila monster (centre panel) is because the texture of the
target is very similar to the texture of the background.
Finally, how much knowledge do we need about the
targets and the background in order to solve the tasks?
Intuitively, a simple edge detector followed by spatial
grouping (e.g. a Hough transform) might be sufficient
to detect the stop sign (left panel) but, by contrast, it
seems impossible to detect the dalmation dog (right
panel) without knowing something about the shape and
texture of dalmations.

At a more practical level, at least two researchers
(private communications) have been impressed with

Figure 2. Decision theory gives performance bounds in terms of the Bayes riskR. Many existing performance bounds can be expressed in
these terms. In this paper, we analyze the Bayes risk for detecting a target curve in clutter and show it depends on an order parameterK .

the theory of road tracking developed by Geman and
Jedynak (1996) but have been unable to get this algo-
rithm to work on the domains they are interested in.
An important consequence of the analysis we perform
is thatwe are able to specify precisely when this al-
gorithm will work and when it will not based on the
statistical properties of the domain. Moreover, our the-
ory will also help determine how to modify the Geman
and Jedynak algorithm, to ensure that it does work, by
building into it additional knowledge of the domain.

To address these issues, we formulate visual tasks
as Bayesian inference, see Knill and Richards (1996),
using Bayesian decision theory (DeGroot, 1970). This
gives us the necessary concepts for quantifying the dif-
ficulty of visual tasks and for determining fundamental
limits by means of theBayes risk. Indeed, as reviewed
by the authors (Yuille, Coughlan, Zhu, 2000), most
work on performance analysis of visual algorithms
is either explicitly, or implicitly, formulated in these
terms, see Fig. 2. This includes Cramer-Rao bounds
(Young and Chellappa, 1992; Barron et al., 1994;
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Szeliski and Kang, 1997; Rajagopalan and Chaudhuri,
1998) Hilbert-Schmidt bounds (Grenander et al.,
1998), frequentist empirical analysis (Hoover et al.,
1996; Heath et al., 1997; Bowyer and Phillips, 1998;
Konishi et al., 1999), and order parameters (Yuille and
Coughlan, 1999, 2000). In addition, related techniques
from signal detection theory (Green and Swets, 1988),
such as the receiver operator characteristic (ROC)
curves have also been used for image analysis and ATR
(Ratches et al., 1997; Bowyer and Phillips, 1998).

In this paper, we use Bayesian decision theory to
analyse the performance of models for curve (or road)
detection. We assume that the probability models are
ergodic (Cover and Thomas, 1991) so that techniques
from large deviation theory (Dembo and Zeitouni,
1998) can be used to simplify the analysis. These tech-
niques can also be applied to analyze related problems
such as texture discrimination (Zhu et al., 1997; Wu
et al., 2000).

We derive a parameterK whose value character-
izes the difficulty of the problem. (K is computed from
the probability distributions which describe the prob-
lem). At critical values of this parameter it becomes
almost impossible to detect the target because it will
be confused by all the curves in the background im-
age clutter. It becomes like looking for a needle in a
haystack. The point is that the chances of confusing
a specificbackground curve with the target curve are
very small. But there are so many background curves
that it is possible that one of them may be confused
with the target curve. The precise theoretical results are
stated in Sections 3 and 4. They apply in the limit as the
sizeN of the target curve tends to infinity and they ig-
nore curves which are partially on and partially off the
target curve. In some conditions, we can prove mathe-
matically that the Bayes risk has a jump from 0 (perfect
detectability) to 1 (perfect indetectability) as the param-
eterK passes through a critical value. In other cases,
we prove a weaker result that theexpected numberof
background clutter curves which can be confused with
the target curve becomes infinite at this critical value
of K . We then use computer simulations to show that
the Bayes risk does jump from 0 to 1 at this critical
value. We refer to this informally as aphase transition
by analogy to statistical physics (A phase transition is
“a qualitative change in the dynamical properties of a
system of many degrees of freedom due to a change of
externally controlled parameters” Amit, 1989).

In addition, we analyze what happens if we at-
tempt to perform Bayes inference using a simpler

approximate model. An approximate model may be
used because: (i) we may not know the correct models,
or (ii) it may be more computationally efficient (i.e.
quicker) to use an approximate model. In this case,we
are concerned with how much prior knowledge about
the target is required in order to detect it. Some detec-
tion tasks, see Fig. 1, are far more difficult than others
depending on the different statistical properties of the
target and the background. For some of these tasks low-
level general purpose algorithms will be sufficient to
segment the target from the background but other tasks,
such as the dalmation dog, appear to require high-level
knowledge about dogs. Our theoretical analysis shows
that the parametersK change as we use simpler models.
We concentrate our study on a specific form of approxi-
mation, motivated by Minimax Entropy learning theory
(Zhu et al., 1997), and compute explicitly the change
of K . This helps us determine how much prior knowl-
edge about the target is required in order to detect it.
(Our preliminary results on this topic were presented in
a conference proceedings (Yuille and Coughlan, 1999)
and applied only to factorizable distributions.)

In a previous paper (Yuille and Coughlan, 2000) we
address different aspects of the same problem for the
special case of the Geman and Jedynak model (Geman
and Jedynak, 1996) for detecting roads, see Section
3. We exploited the factorizability of the Geman and
Jedynak model to put tight bounds on the probability
of successful detection of road targets offinite size N.
In addition, we were able to provide analysis which
included paths that were partially on and partially off
the target road (although this analysis included assum-
ing a tree representation which has some limitations,
see Section 3). In particular, we showed that many
properties of the tasks such as detectability (Yuille and
Coughlan, 2000) and expected complexity (Coughlan
and Yuille, 1999) fell off exponentially as 2−NK where
N is the length of the target road andK is a parameter.
See Section 3 for a more detailed description of how
this previous work overlaps with this paper.

In the next Section 2, we briefly review Bayesian de-
cision theory and describe how it can be applied to prob-
lems such as target detection. Section 3 describes the
Geman and Jedynak model for road tracking (Geman
and Jedynak, 1996), briefly summarizes our previous
results (Yuille and Coughlan, 2000) and then extends
the analysis to deal with situations where we use an
approximate model to detect the road and to determine
how much information is required to solve the task. In
Section 4 we extend the analysis to deal with a more
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general class of probability models, including those
learnt by Minimax Entropy learning (Zhu et al., 1997),
and obtain similar results for how much information is
required to solve the curve detection task.

2. Bayesian Decision Theory

Image analysis, like all inference problems, can be ex-
pressed in terms of Bayesian decision theory. In sub-
section 2.1 we briefly review decision theory
(DeGroot, 1970) and in subsection 2.2 we apply it to
target detection.

2.1. Decision Theory

There is a setd ∈ D decisions, a set of observations
z ∈ Z and a set of statess ∈ Sof the system observed.
We have a prior distributionP(s), a likelihood func-
tion P(z|s), and a loss functionl (d, s) (without loss of
generality we assume that the loss functions never take
negative values). For any observationz, the risk (i.e.
expected loss) is:

R(d; z) =
∫

ds l(d, s)
P(z | s)P(s)

P(z)
. (1)

For a set of observations drawn fromP(z), we define
a decision ruled = c(z). The risk of the decision rule
involves averaging over the observationszwith respect
to P(z). The expected risk is the loss averaged over all
statess and observationsz:

R(c) =
∫

dz ds l(c(z), s)P(s, z)P(s). (2)

Note that this average is taken with respect to the
joint distribution P(s, z), which we term theBayes
Ensemble, or distribution over all problem instances.1

The strength of Decision Theory is that it allows us to
determine thetypicalperformance of inference proce-
dures by averaging over all problem instances of the
Bayes Ensemble, rather than focusing on worst-case
performance measures, which may seldom be relevant
in practice.

The Bayes estimatorc∗ is chosen to minimize the
risk R(c). The Bayes risk isR(c∗) and is a natural per-
formance measure for visual tasks. Note that, provided
weak technical conditions are satisfied, theBayes risk
is obtained by minimizing equation (1) separately for
all d andz. Intuitively, if the Bayes risk is low then

the visual task is easy. In this paper we concentrate on
classification tasks, where each observationz contains
a single target and multiple distractors, and the loss
function takes value 1 if the target is misclassified and
is 0 if the target is correctly classified. In some situa-
tions, however, it may be impractical to use the Bayes
estimator (e.g. it may be impossible to compute) so we
may instead compute the expected loss of a different
(usually more easily computable) estimator.

Most performance measures used to evaluate visual
algorithms can be interpreted as being the Bayes risk
(once the problem has been framed in these terms).
In other words, the problem is formulated as Bayesian
inference with state variables, probability distributions
and loss functions. The best estimatorc∗ is found and
the Bayes risk evaluated. For classification problems
the Bayes risk will correspond to the misclassification
rate (e.g. false positives and false negatives sometimes
with certain errors weighted more highly than others).

Calculating the Bayes risk is often impossible to do
analytically. In the cases we study in this paper, self-
averaging (or ergodic) properties of the probability dis-
tributions makes it possible to estimate the Bayes risk
for large systems.

We are also interested in how performance (i.e. the
risk) is degraded by using the wrong probability distri-
butions for inference (e.g. because the true probability
models are unknown). This means that we will not use
the optimal decision rule (because we will pick the de-
cision rule appropriate to the wrong distributions) and
hence our performance will be worse than the Bayes
risk. Intuitively, small errors in the distributions will
only change the decision rule slightly and hence will
cause performance to degrade by a small amount. A
standard result, the concavity of the Bayes risk, formal-
izes this intuition (DeGroot, 1970). However, a more
important situation arises when a simplified probability
distribution (which may be significantly different from
the true distribution) is deliberately used for computa-
tional purposes, see Sections 3.4 and 4.5.

2.2. Discriminating A from B

The first task is to determine whether a samplez has
been generated by one of two distributionsPA(z) or
PB(z). We assume that the sample is equally likely to
be generated by modelA or model B. The penalty
for misclassification is symmetric so that we pay
penalty 1 if a sample fromA is misclassified asB and
vice versa. We pay no penalty if the sample is correctly
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Figure 3. Discriminating betweenPA and PB. Left panel, the distributionsPA(Ez) and PB(Ez) whereEz is a two-dimensional vector. Right
panel, plots of the induced distributionŝPA(r ) (solid line) andP̂B(r ) (dashed line) as functions of the log-likelihood ratio (or reward)r (Ez) =
log{PA(Ez)/PB(Ez)}. The induced distributions provide a complete description of the problem of discriminatingPA and PB. Note that this
description is in terms of the log-likelihood ratio, which means that the discrimination problem has been reduced toone dimensionregardless
of the dimensionality ofEz. The greater the overlap betweenP̂A(r ) and P̂B(r ), the greater the misclassification rate.

classified. The optimal decision, given these assump-
tions, is to use the likelihood ratio test and classify
the sample asA if log{PA(z)/PB(z)}> 0 and asB if
log{PA(z)/PB(z)}< 0. The Bayes riskR∗ is then given
by summing the probabilities that a samplez is gener-
ated by one distributionPA(·) or PB(·) but is misclas-
sified as being generated by the other. More precisely:

R∗ = 1

2

∫
{z:log{PA(z)/PB(z)}>0}

dz PB(z)

+ 1

2

∫
{z:log{PA(z)/PB(z)}<0}

dz PA(z). (3)

We can re-express the Bayes risk completely in terms
of the log-likelihood ratior (z) = log{PA(z)/PB(z)},
which we also refer to as thereward function. The dis-
tributions PA(z) and PB(z) inducedistributions onr
given by the formulas:

P̂A(r ) =
∫

dz PA(z)δ
(

r − log
PA(z)
PB(z)

)
,

(4)

P̂B(r ) =
∫

dz PB(z)δ
(

r − log
PA(z)
PB(z)

)
.

The induced distributionŝPA(r )andP̂B(r )provide a
complete description of the problem ofdiscriminating
PA(z) from PB(z) (although there are many possible
choices ofPA(z) andPB(z)which give rise to the same
induced distributionsP̂A(r ) and P̂B(r )). For instance,
P̂A(r )andP̂B(r )uniquely determine the ROC curve for

discriminating PA(z) from PB(z) (Yuille, Coughlan,
Zhu, 2000), see Fig. 3.

It is straightforward to show that log(P̂A(r )/
P̂B(r ))= r for all r . The Bayes risk may then be re-
expressed in terms of log-likelihood space:

R∗ = 1

2

∫ ∞
0

dr P̂B(r )+ 1

2

∫ 0

−∞
dr P̂A(r ). (5)

2.3. Target in Clutter

To detect a target in clutter, the task is to determine
which of M + 1 samplesz0, z1, . . . , zM is the target.
Without loss of generality we assume thatz0 is the tar-
get so it is generated byPA(z0) and the background
z1, . . . , zM is generated by the background distribu-
tion PB(z1, . . . , zM). Observe that we are assuming
that the background samplesz1, . . . , zM arenot nec-
essarily independent. We do, however, assume that
all the distractors have the same marginal distribution
PB(z). (i.e.

∑
{zi :i 6= j } PB(z1, . . . , zM) = PB(z j ) for all

j = 1, . . . ,M .)
Once again, the expected lossR∗ will be determined

by the misclassification rate. We define the loss to be 0
when sampleA is correctly identified and to be 1 oth-
erwise. The optimal decision rule (assuming a uniform
prior on which of theM + 1 samples comes fromA) is
to estimate thatA generates the samplei ∗ given by:

i ∗ = arg max
i=0,...,M

log
PA(zi )

PB(zi )
= arg max

i=0,...,M
r (zi ).

(6)
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Figure 4. Target in clutter: discriminating one sample ofPA from many samples ofPB. Left panel, the induced distributionŝPA(r ) andP̂B(r ),
drawn as before, and the distribution̂PBmax(r Bmax) (dash-dot line) of the maximum reward of all thePB samples. This maximum reward will
cause a misclassification error if it is higher than the reward of thePA sample. Note that̂PBmax(r Bmax) overlaps more withP̂A(r ) than P̂B(r )
does. Right panel, the probability of misclassification can be expressed as the overlap betweenĈBmax(r ) (dashed line), the anti-cumulative of
P̂Bmax(r ), andP̂A(r ) (solid line).

To determine the misclassification rate we define two
random variables:

r A = r (z0), r Bmax= max
j=1,...,M

r (z j ), (7)

where we have assumed, without loss of generality, that
the 0th sample is fromA and the remaining samples
z1, . . . , zM are fromPB(·). Misclassification will occur
wheneverr Bmax is larger thanr A. In this sense,r Bmax is
the reward of the most misleading sample fromPB(·),
see Fig. 4.

We induce a probability distributionP̂A(r A) on
r A as before by requiring thatz is generated by
PA(z). A distribution P̂Bmax(r Bmax) is also induced on
r Bmax by requiring thatz1, . . . , zM are generated by
PB(z1, . . . , zM). This is calculated directly (in the next
two sections we will discuss how to compute it for the
problems of interest) from the formula:

P̂Bmax(r Bmax)=
∫

dz1 · · ·dzM PB(z1 · · · zM)

× δ(r Bmax− max(r (z1), . . . , r (zM))).

(8)

Let ĈBmax(r Bmax) be the “anti”-cumulative distri-
bution of P̂Bmax(r Bmax), i.e. ĈBmax(r Bmax)=

∫∞
r Bmax

P̂Bmax(r ) dr . (The term “anti”-cumulative is chosen
since the limits of integration are non-standard.) Then
the probability of misclassificationis given by:

R∗ = Pr (r A < r Bmax) =
∫

dr P̂A(r ) Pr (r < r Bmax)

=
∫

dr P̂A(r )ĈBmax(r ), (9)

and so the danger of misclassification depends on the
overlap between̂PA(r ) andĈBmax(r ).

For the problems we are interested in, see the next
two sections, there is an additional parameterN which
determines the size of the target (N is a positive inte-
ger). We normalize the reward function byN and con-
sider the distributionŝPA(r/N) andĈBmax(r/N). The
structure of the problem (e.g. the ergodicity of the dis-
tributions) means that̂PA(r/N)will be sharply peaked
andĈBmax(r/N)will tend to a step function. The Bayes
risk will therefore tend to be zero or one depending on
whether the step of̂CBmax(r/N) is to the right or left
of the peak ofP̂A(r/N), see Fig. 5.

Clearly the results depend on the peakedness of the
distributions. For the models that we study this can
be determined using results from the theory of large
deviations (Demba and Zeitouni, 1998). This will be
described in the following sections.

A very important issue, in the context of this pa-
per, is how the analysis is modified if theinferenceis
performed using incorrect probability models. We de-
fine new variables

s(z) = log
QA(z)
QB(z)

,

sBmax({z j : j = 1, . . . ,M}) = max
j=1,...,M

log
QA(z j )

QB(z j )
,

(10)

whereQA, QB are “wrong models” used for inference
instead of the correct modelsPA,PB (i.e. thez j are
generated byPA,PB as before). Then we induce distri-
butions Q̂A(s) =

∑
z PA(z)δ(s− log QA(z)/QB(z))
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Figure 5. The Phase Transition. In each panel the solid line denotesP̂A(r/N) (sharply peaked about̄r A) and the dashed lines denotes
ĈBmax(r/N). Left panel shows a large chance of misclassification becauseĈBmax(r/N) takes a large value nearr̄ A. The right panel shows a
very small chance of misclassification becauseĈBmax(r/N) takes small values nearr̄ A.

and similarly compute the new “anti”-cumulative
distributionD̂Bmax(sBmax)on the best distractor reward.
The expected loss is then:

R∗Q =
∫

ds Q̂A(s)D̂Bmax(s). (11)

Once again, for the problems in this paper,Q̂A(s/N)
andD̂Bmax(s/N)will tend to a delta function and a step
function respectively for largeN. The expected risk
will be zero, or one, depending on whether the step is
to the left or the right of the delta function spike.

This corresponds to analysing the problem using
the wrong models. (Recall that the wrong model may
be used because of either computational ease of in-
ference or because the true model is not accurately
known). As we will show in the next sections, there
will be situations where the task can be solved (i.e. the
loss is asymptotically zero) even when the wrong mod-
els are used. In other situations, the task can only be
solved using the correct models.

3. Road Tracking

In this section we use concepts from Decision theory
to analyse variants of the Geman and Jedynak model
(Geman and Jedynak, 1996). This model was success-
fully applied to detecting roads from aerial images of
the south of France.

We restrict ourselves to the question of whether the
task can be solved (i.e. is the expected loss sufficiently
small?). Our analysis will also show how the difficulty
of the problem increases when we use approximate
models for inference. Our analysis is done in the large

N limit where the law of large numbers (or the “self-
averaging” in physicists’ terminology), makes estimat-
ing the expected loss straightforward (see Yuille and
Coughlan (2000), for bounds on how fast the error rates
change as a function of the lengthN of the road). We
will only deal with the difficulty of distinguishing be-
tween the true road path and a set of distractor paths
which have no overlap with the road. (Some analysis
of the case when the distractor paths overlap with the
road is presented in Yuille and Coughlan (2000)).

This paper is not concerned with specific algorithms
for solving the problem. In their application domain,
Geman and Jedynak (1996) demonstrated experimen-
tally that their algorithm converged close to the optimal
solution in linear expected time (i.e.O(N)). In related
work (Coughlan and Yuille, 1999), we described an A∗

algorithm. We proved that, provided the task is solv-
able, the A∗ algorithm converges to a close approxi-
mation to the MAP estimate with expected complexity
O(N). (Properties of this algorithm, such as the size of
the approximation error and the constants in the com-
plexity results, were given in terms of quantities simi-
lar to the order parameters which we will derive in this
section).

3.1. The Geman and Jedynak Model

Geman and Jedynak formulate road detection as tree
search, see Fig. 6, through a Q-nary tree. The start-
ing point and initial direction is specified and there
are QN possible distinct paths down the tree. A road
hypothesis consists of a set of connected straight-line
segments calledsegments. We can represent a path by
a sequence of moves{ti } on the tree. Each moveti
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Figure 6. Geman and Jedynak’s tree structure with a branching
factor ofQ = 3. The prior probabilities may express a reference for
certain paths, such as those which are straight.

belongs to analphabet{aµ} of size Q. For example,
the simplest case studied by Geman and Jedynak sets
Q = 3 with an alphabeta1, a2, a3 corresponding to the
decisions: (i)a1—go straight (0 degrees), (ii)a2—go
left (−5 degrees), or (iii)a3—go right (+5 degrees).
This determines a pathx1, . . . , xN in the image lattice
wherexi , xi+1 indicate the start and end points of thei th
segment. The relationship between the two representa-
tions is given byxi+1 = xi + w(xi − xi−1, ti ), where
w(xi −xi−1, ti ) is a vector of approximately fixed mag-
nitude (7 pixels plus small corrections to ensure that the
segment ends on a pixel) and whose direction depends
on the angle of the moveti relative to the direction of
the previous segmentxi − xi−1.

There are some difficulties in mapping this tree rep-
resentation onto an image lattice. These will be de-
scribed in subsection 3.3 where we describe our com-
puter simulations.

Geman and Jedynak place a prior probability on the
set of paths down the tree. This can be expressed by a
probability distributionP({ti }) =

∏N
i=1 P(ti ). For our

Q = 3 example, we may choose to go straight, left or
right with equal probability (i.e.P(a1)= P(a2)=
P(a3)= 1/3). In a later section, we will consider
first order Markov chain models whereP({ti })= P(t1)∏N−1

i=1 P(ti+1|ti ).
Geman and Jedynak derive their likelihood function

by applying an oriented non-linear filter which is de-
signed to detect straight road segments (by estimating
a quantity related to the image gradient). The filter is
quantized so that its responsey can take one ofJ values
{bµ}. The filter is trained on examples of on-road and
off-road segments. For example, for all road segments
(xi , xi+1) (for any i ) we align the filter to the segment
and compute its responseyi as a function of the image
intensities on the segment (for precise details of the fil-
ter see Geman and Jedynak, 1996). This gives an em-

pirical probability distributionPon(yi = bµ). Similarly,
they compute the empirical probability distribution
Poff(yi = bµ) for the filter response evaluated off the
road segments (i.e. the background). (See (7) for exam-
ples of loglikelihoods and see Konishi et al., 1999, for
a detailed survey.) For any path{ti } through the tree we
have a corresponding set of observations{yi }. If the i th
segment does lie on the true road thenyi is distributed
by Pon(·) (otherwise byPoff(·)). The filter responses
are assumed to be independent for different segments,
see Fig. 7.

As described in Geman and Jedynak (1996), MAP
estimation corresponds to finding the path{ti } with fil-
ter measurements{yi } which maximizes the (scaled)
loglikelihood ratio:

r ({ti }, {yi }) = 1

N

{
log P(Y | X)+ log P(X)

−
N∑

i=1

logU (ti )

}
(12)

= 1

N

N∑
i=1

log{Pon(yi )/Poff(yi )}

+ 1

N

N∑
i=1

log{P1G(ti )/U (ti )}, (13)

whereU (·) is the uniform distribution (i.e.U (t) =
1/Q ∀t) and so

∑N
i=1 logU (ti ) = −N log Q which is

a constant. The introduction ofU (·) helps simplify the
analysis in the following subsections.

3.2. Analysis of the Geman and Jedynak Model
Using Sanov’s Theorem

In this subsection, we analyze the performance of the
Geman and Jedynak model from the perspective of de-
cision theory. This analysis is a simplification of the
more extended results (e.g. including partially overlap-
ping paths and bounds for finiteN) which are reported
elsewhere Yuille and Coughlan (2000). Here we con-
centrate only on the qualitative aspects of performance
(i.e. can we detect the road or not).

We assume that we have one sample{ti }, {yi } of
measurements generated by the road model (i.e.Pon(·),
P1G) and we have to distinguish it from a background
of distractor samples generated byPoff(·),U (·). In addi-
tion, we assume that the distractor paths are based on a
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Figure 7. The quantized distributionsPon (Left) andPoff (Right) for the| E∇ I (x)| learnt from image data. Observe that, not surprisingly,| E∇ I (x)|
is likely to take larger valuesonan edge rather thanoff an edge.

Q-nary tree so that these paths can overlap and are not
independent. This is an approximation to the Geman
and Jedynak model where one assumes that one path
on the tree is the road and the otherQN − 1 paths are
distractors (see analysis in Yuille and Coughlan (2000).
See subsection 3.3 for a discussion of the approxima-
tions needed to map the tree structure onto the image
lattice.

To analyze the road detection task from our decision
theory perspective, see Eq. (9), requires us to compute
P̂A(r ) andĈBmax(r ) where A indicates the road path
andB the distractor paths.

For the road detection problem, the variablez =
(t, y) wheret = (t1, . . . , tN) describes the spatial ge-
ometry of the path andy = (y1, . . . , yN) are the mea-
surements of the edge detection filters along the path.
The probability distributionPA(z) and PB(z) are re-
placed by:

PA(z) =
N∏

i=1

Pon(yi )P1G(ti ),

(14)

PB(z) =
N∏

i=1

Poff(yi )U (ti ).

The (scaled) log-likelihood ratior = (1/N) log
PA(z)/PB(z) is identical to the criterion, Eq. (13), that
Geman and Jedynak seek to maximize. Observe we
havescaledthe log-likelihood ratio by 1/N so that it
will tend to a finite limit asN 7→ ∞.

We now introduce an alternative representation
for the problem which is crucial for our analy-
sis. Recall that the movesti and the observations
yi take values within thefinite alphabets{aµ} and

{bν}. For any path{ti }, {yi } we can definetwo
histogramsEψ , Eφ with componentsψµ= 1

N

∑N
i=1 δti ,aµ

(µ= 1, . . . , Q) andφν = 1
N

∑N
i=1 δyi ,bν (ν= 1, . . . , J).

These histograms aresufficient statistics(De Groot,
1970) for the distributionsPA(z), PB(z) (i.e. the dis-
tributions PA(z) and PB(z) can be expressed asfA

( Eψ(z), Eφ(z)) and fB( Eψ(z), Eφ(z)) for functions fA(·)
and fB(·)). In particular, the (scaled) log-likelihood
ratio can be expressed as:

r ({ti }, {yi }) = Eα · Eψ + Eβ · Eφ, (15)

where we define the two vectorsEα and Eβ to have
componentsαµ = log P1G(aµ)

U (aµ)
for µ = 1, . . . , Q and

βν = log Pon(bν )
Poff(bν )

for ν = 1, . . . , J.

We first determine the behaviour of̂PA(r ) for
large N. The result is that, for largeN, P̂A(r ) be-
comes sharply peaked about its mean valuer̄ A=
〈 r 〉P̂A

= (1/N)D(P̂A‖P̂B) where D(P̂A‖P̂B)=
∑

r

P̂A(r ) log P̂A(r )
P̂B(r )

is theKullback-Leiblerdivergence be-
tween P̂A(r ) and P̂B(r ). This result follows from the
law of large numbers which implies that the normalized
sum of a set ofN independent identically distributed
(i.i.d.) variables tends to themeanof the distribution
as N 7→ ∞. Moreover, the distributionP̂A(r ) falls
off from its peak value, atr = r̄ A, exponentially with
N. The proof of this second result follows from
Sanov’s theorem, see Appendix A, which is a result
in the large deviation theory literature. Large deviation
theory (Dembo and Zeitouni, 1998) is an area of statis-
tics which attempts to put bounds on the probabilities
of rare events. This result is important because it means
that weonly need to determine the value ofĈBmax(r A)
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(becauseP̂A(r ) is peaked about̄r A for large N). For or-
ganizational purposes we state this result as a theorem.

First we introduce the notation
.= used in Cover and

Thomas (1991) to simplify the results derived from
Sanov’s theorem and to concentrate on the important
aspects. Letx be a variable that takesJ distinct val-
ues. Then we say thatf (x; N) .= eNg(x) to mean that
there exist polynomial functions ofN, poly1(N) and
poly2(N), whose order depends only onJ, such that

1
poly1(N)

eNg(x)≤ f (x; n)≤ poly2(N) eNg(x) for all x, N.

Theorem 1. The mean reward of the road is given by

r̄ A = (1/N)D(P̂A(r ) ‖ P̂B(r ))

= D(Pon‖ Poff)+ D(P1G ‖U ).

Moreover,∫
r :|r−r̄ A|≥ε

P̂A(r ) dr
·= e−N{D(φε‖Pon)+D(ψε ‖ P1G)},

whereφε, ψε are chosen so as to minimize D(φε‖Pon)

+ D(ψε ‖ P1G) subject to the constraint that|r − r A|
≥ ε.
Proof: r̄ A can be computed directly. The remain-
ing results follow from Sanov’s theorem (Cover and
Thomas, 1991) which we state in Appendix A. The de-
tails of this derivation are available as a technical report
(Yuille et al., 2000). 2

We now consider what is the probability distribu-
tion for the best rewardr Bmax for the distractor paths.
This is done in two stages. The first stage computes
E[Z(γ, N)], the expected number of distractor paths
of length N which have rewards greater thanγ . This
also makes use of Sanov’s theorem. The result, see
Theorem 2, shows that there is a critical valueγ ∗. The
precise value ofγ ∗ is given by a set of simultaneous
non-linear equations, see Appendix A.

Theorem 2. Let Z(γ, N) be the number of dis-
tractor paths of length N with rewards greater than
γ and let E[·] be the expectation with respect to
PB(z). Then there exists a critical valueγ ∗ such that
limN 7→∞ E[Z(γ, N)] 7→ 0 for γ >γ ∗ and limN 7→∞
E[Z(γ, N)] 7→ ∞ for γ ≤ γ ∗.

Proof: The probability that any one distractor path
has reward greater thanγ can be tightly bounded using
Sanov’s theorem and shown to be of form

.= e−Ng(γ ) for
a positive monotonically increasing functiong(·), see

Appendix A. Multiply by QN to obtain the expected
number

.= e−N{g(γ )−log Q} of distractor paths with re-
wards greater thanγ . The critical valueγ ∗ is the so-
lution of the equationg(γ )= log Q. See the technical
report for more details. 2

A further theorem is required to prove that the max-
imum reward of all distractor paths isγ ∗ for largeN.
We emphasize that a key part of this proof requires that
the distractor paths form a tree structure.

Theorem 3. If the distractor paths are defined on a
Q-nary tree thenlimN 7→∞ ĈBmax(r ) = 0 for r >γ ∗ and
limN 7→∞ ĈBmax(r ) = 1 for r <γ ∗.

Proof: E[Z(r Bmax, N)]≥ P̂Bmax(r Bmax) and so
limN 7→∞ P̂Bmax(r Bmax) = 0 for r Bmax > γ ∗. To com-
plete the proof requires showing that, with high proba-
bility, there exist distractor paths with rewardsr arbitar-
ily close toγ ∗. This result follows from generalizing a
theorem by Karp and Pearl (1984) and exploits the fact
that the distractor paths form a tree. See the technical
report (Yuille et al., 2000) for more details. 2

To complete our analysis of the expected loss, see
Eq. (9), (asN 7→ ∞) we must determine whetherγ ∗

is greater than, or less than,r̄ A. Our final theorem of
this section gives a simple condition to determine this.

Theorem 4. Let K = D(Pon‖Poff)+ D(P1G‖U )−
log Q. ThenlimN 7→∞ R∗ = 0 if, and only if, K > 0.

Proof: This result follows straightforwardly by ana-
lyzing the relative size of̄r A= D(Pon‖Poff)+ D(P1G

‖U ) and γ ∗. See the technical report (Yuille et al.,
2000) for details. As a first step, it follows directly
from Sanov’s theorem that the expected number of dis-
tractor paths with rewards greater thanD(Pon‖Poff)+
D(P1G‖U ) (the expected reward of the road) is of form
.= e−N K . 2

The bottom line is that whether the road is detectable
or not depends only on the size of theorder parameter
K . (We use the words “order parameter” by analogy to
parameters in statistical physics.) The order parameter
increases the more reliable the local cues for detecting
the road are (as measured byD(Pon(·)‖Poff(·))) and
the more specific the prior knowledge about the road
shape is (as measured byD(P1G(·) ‖U (·))). The or-
der parameter decreases as the number of distractors,
as measured byQN , increases. ForK < 0 it will be
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Figure 8. Left panel: the tree structure superimposed on the lattice. Right panel: the pyramid structure used in the simulations.

impossible, on average, to detect the road (because the
probability becomes high that at least one distractor
path has higher reward than the road). ForK > 0 it will
be possible to detect the road. (Other aspects of the
problem, such as algorithmic complexity (Coughlan
and Yuille, 1999) and error rates for partially overlap-
ping paths, Yuille and Coughlan, 2000, will depend on
the precise value ofK .)

3.3. Computer Simulations: From Tree to Pyramid

The tree representation used by Geman and Jedynak
must be modified when we map onto an image lattice,
see Fig. 8. The easiest way to do this involves defining
a pyramidwhere paths start at the apex and the only
allowable “moves” are: (i) one step down, (ii) one step
down and one step left, and (iii) one step down and one
step right. This can be represented byxi+1 = xi +w(ti )
whereti ∈ {−1, 0, 1} andw(−1) = −Ei − Ej , w(0) =
−Ej , w(1) = +Ei − Ej (whereEi , Ej are thex,y directions
on the lattice).

To obtain computer simulations of roads in back-
ground clutter we proceed in two stages. In the first
stage, we stochastically sample from the distribution
P1G(t) to produce a road path in the pyramid (start-
ing at the apex and moving downwards). In the second
stage, we must sample from the likelihood function to
generate the image. We make this simple by choosing
our filter responsesy to be the intensity variables. So
if a pixel x is onor off the path (which we generated in
the first stage) then we sample the intensityI (x) from
the distributionPon(I )or Poff(I ) respectively. Dynamic
programming is used in each sample image to obtain
the path with best reward which is the MAP estimate
of the target path.

There is one critical differences between the lattice
and the tree representations: the distractor paths on
the lattice canseparate and then rejoin each other.

Although the are 3N possible paths in the pyramid
(starting at the apex) there are only(N + 1)2 total
samples from the likelihood function (as against 3N

samples for the tree model). This does not affect the
proofs of Theorems 1 and 2—so the expected reward
of the road is as stated and theexpected number of dis-
tractor paths with rewards greater thanγ has a phase
transition atγ = γ ∗. But the proof of Theorem 3 de-
pends on the tree structure so wecan no longer be sure
that the maximum reward of all distractor pathstend
to γ ∗. By the first line of the proof, however, we do
know that the maximum reward of the distractor paths
cannot exceedγ ∗ but it may be lower.

We use computer simulations to estimate the maxi-
mum reward for distractor paths on the pyramid for the
special case where the prior geometry is given by the
uniform distribution. Our computer simulations, see
Table 1, show that the maximum reward of the dis-
tractor paths is typically slightly smaller thanγ ∗ for
a range of different choices ofPon(·), Poff(·). This im-
plies that the order parameter obtained by the calcula-
tion on the trees do need to be increased slightly for the
lattice. We observe two trends in our simulations, see
Table 1. Firstly, the shorter the length of the path then
the larger the difference betweenγ ∗ and the empirical
mean maximum reward. Secondly, the more similar the
distributions,P(·|on) andP(·|off), then the smaller the
difference.

It should be stressed that the calculation for the
expectednumber of distractor paths with rewards
higher than the mean true path reward is exact for both
the lattice and the tree representations. So if the task is
formulated in this way then performance in both cases
is measured by the same order parameter. It seems more
reasonable, however, to evaluate the task difficulty in
terms of the Bayes risk. In which case the order param-
eters for the lattice are slightly bigger than those for the
tree.
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Table 1. Comparison of the Maximum reward of all distractor
paths withγ ∗ for the pyramid case.

Emp. mean Standard
P(· |on) P(· |off) γ ∗ N max. reward deviation

(0.4, 0.6) (0.6, 0.4) 0.3638 20 0.307 0.044

(0.4, 0.6) (0.6, 0.4) 0.3638 100 0.35 0.01

(0.4, 0.6) (0.6, 0.4) 0.3638 200 0.353 0.01

(0.4, 0.6) (0.6, 0.4) 0.3638 400 0.362 0.0032

(0.3, 0.7) (0.7, 0.3) 0.6182 20 0.46 0.1

(0.3, 0.7) (0.7, 0.3) 0.6182 100 0.55 0.04

(0.3, 0.7) (0.7, 0.3) 0.6182 200 0.57 0.02

(0.1, 0.9) (0.9, 0.1) 0.34 20 −0.31 0.3

(0.1, 0.9) (0.9, 0.1) 0.34 100 −0.1 0.1

(0.1, 0.9) (0.9, 0.1) 0.34 400 −0.02 0.05

The first two columns give the Bernouilli distributionsP(· |on),
P(· |off) respectively. The third column gives the theoretical cal-
culation ofγ ∗ which is the value of the reward at which there is
a phase transition in the expected number of distractor paths. The
fourth column gives the lengthN of the path. Columns five and six
give the empirical mean maximum reward of the distractor paths
(we ran several simulations and computed the mean of the maximum
reward distractor path) and the standard deviation (with respect to
our simulation runs). Observe that the empirical mean maximum re-
wards approachγ ∗ quickly for the first two cases, as a function of the
length of the path, but convergence is much slower for the third case
where the distributionsP(· |on) andP(· |off) are very different.

This small shift in the order parameter values makes
little change in the ability to detect the true road path.
In our experiments, see Fig. 9, the order parameterK
computed on the tree accounts well for whether the true
road can be detected. The only exceptions occur when
K is negative but with small modulus. In this case, the
shift in the order parameters (from tree to lattice) is
needed.

3.4. High-Low for Geman and Jedynak

The analysis in the previous two subsections assumed
that we used the correct reward function to perform

Figure 9. The difficulty of detecting the target path in clutter depends, by our theory, on the order parameterK . The largerK the less
computation required. Left, an easy detection task withK = 0.8647. Middle, a harder detection task withK = 0.2105. Right, an impossible
task withK = −0.7272.

inference. In this subsection, an early version of which
appeared in a conference proceedings (Yuille and
Coughlan, 1999), we analyze the value of information
lostby using a weaker prior model. (A similar analysis
can be used to investigate the effects of using approxi-
mate models for the likelihood termsPon(·), Poff(·).)

More precisely, in place of the correcthigh-level
geometric modelP1G,H (t) we replace it by a weaker
genericmodelP1G,G(t). This defines two different re-
wardsRG andRH :

RG({ti }) =
∑

i

log
Pon(yi )

Poff(yi )
+
∑

i

log
P1G,G(ti )

U (ti )
,

RH ({ti }) =
∑

i

log
Pon(yi )

Poff(yi )
+
∑

i

log
P1G,H (ti )

U (ti )
.

(16)

The optimal Bayesian strategy to search for the road
would be to use the high level model and evaluate paths
based on their rewardsRH . But this strategy ignores the
extra computation time which may be involved in using
the prior P1G,H . For example,P1G,H might be a first
or higher order Markov model (see next section) while
P1G,G might be a zeroth order Markov model which
would be easier to search over. (But applying Sanov’s
theorem to a first-order model does require further tech-
nical conditions to hold, see Yuille et al., 2000). Also,
we might not know the exact form ofP1G,H . Perhaps
the most important situation, to be considered in a later
section, is when we can use a single generic model to
search for a target which may be one of several differ-
ent models. Using a single generic model (provided it
is powerful enough) to detect the road can be signifi-
cantly faster than testing each possible road model in
turn.

In this paper we will be concerned with theAmari
condition, which was motivated by results in Amari’s
theory of information geometry (Amari, 1982). This
condition relates the high-level geometric distributions,
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P1G,H (t), to the generic distributionsP1G,G(t) by:∑
t

P1G,H (t) log P1G,G(t)

=
∑

t

P1G,G(t) log P1G,G(t). (17)

This condition is special in that it allows us to obtain
analytic expressions for the order parametersand an
important connection to the Minimax Entropy Learning
scheme (Zhu et al., 1997) (as we will describe in the
next section). But it should be emphasized thatorder
parameters can be derived for other conditionsbut they
may not have the simple analytic expressions which
arise from the Amari condition.

The analysis of the inference usingP1G,H was done
in the previous two subsections. The critical concern
was whether the expected high-level reward for the best
pathD(Pon‖ Poff) + D(P1G,H ‖U ) was greater than,
or equal to, logQ.

To deal with the generic model, we find that the ex-
pected reward for the true path using the generic model
is:∑

y

Pon(y) log
Pon(y)

Poff(y)
+
∑

t

P1G,H (t) log
P1G,G(t)

U (t)

= D(Pon‖ Poff)+ D(P1G,G ‖U ), (18)

where we have used the Amari condition to ob-
tain the second term on the right hand side. Thus
the effect of changing the model is merely to shift

Figure 10. The Ultra RegimeKH < KG < 0. Left, the input image. Centre, the true path is shown in white and theerrorsof the best path found
using the Generic model are shown in black. Right, similar, for the High-Level model. Observe that although the best paths found are close to
the true path there is comparatively little overlap. A dynamic programming algorithm was used to determine the best solution for either choice
of reward.

Figure 11. The Challenging RegimeKG < 0< KH . Same conventions as previous figure. Observe that the Generic models fails (centre) but
the High-Level model succeeds (right).

the spike of the distribution of the true path from
D(Pon‖ Poff)+ D(P1G,H ‖U ) down to D(Pon‖ Poff)

+ D(P1G,G ‖U ).
The analysis of the best distractor path and its com-

parison to the expected reward of the road proceeds as
before, see the technical report (Yuille et al., 2000) for
details, to yield an order parameterKG for the generic
geometry model which can be contrasted with the or-
der parameterKH when the high-level model is used.
This gives:

KH = D(Pon‖ Poff)+ D(P1G,H ‖U )− log Q,
(19)

KG = D(Pon‖ Poff)+ D(P1G,G ‖U )− log Q.

It follows from the definition of the Amari condi-
tion thatKH − KG= D(P1G,H ‖U )− D(P1G,G ‖U )
= D(P1G,H ‖ P1G,G) (where D(p‖q)= ∑y p(y)
log p(y)/q(y) is theKullback-Leiblerdivergence be-
tween distributionsp(y)andq(y)). Therefore the high-
level prior P1G,H has an order parameter larger by
an amount which depends on the distance between it
andP1G,G as measured by the Kullback-Leibler diver-
genceD(P1G,H ‖ P1G,G). Recall Yuille and Coughlan
(1999) that the target detection problem becomes in-
solvable (by any algorithm) when the order parameter
is less than zero. Hence there are three regimes: (I) The
Ultra Regime, see Fig. 10, is whenKG< KH < 0
(i.e. D(P1G,H ‖U ) + D(Pon‖ Poff) < log Q) and
the problem cannot be solved (on average) by any
model (or algorithm). (II) TheChallenging Regime, see
Fig. 11, whereKG< 0< KH (i.e. logQ< D(P1G,H
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Figure 12. The Easy Regime 0< KG < KH . Same conventions as previous figure. In this regime both the Generic and High-Level models
succeed.

‖U ) + D(Pon‖ Poff)< log Q + D(P1G,H ‖ P1G,G))
within which the problem can be solved by the high-
level model but not by the generic model. (III) TheEasy
Regime, see Fig. 12, whereKH > KG> 0 and the prob-
lem can be solved by either the generic or the high-level
model.

We illustrate these results by computer simulations
which use the same setup described in subsection 3.3.
We show examples of the ultra, the challenging, and the
easy regimes in Figs. 10–12. As before, todetectthe
best path we apply a dynamic programming algorithm
to optimize the high-level or generic reward functions
applied to the generated data. Dynamic programming
is guaranteed to find the solution with highest reward.

3.5. Multiple Hypotheses and Higher-Order
Markov Models

We extend the theory to deal with multiple (two or
more) high-level models, see Fig. 13. In particular, we
formulate the idea of a hierarchy in which the priors
for several high-level objects can all be approximated
by the same low-level prior, see Fig. 13. For example,
we might have a set of priors{PHi : i = 1, . . . ,M} for
different members of the cat family. There might then

Figure 13. The Hierarchy. Two high-level modelsP1G,H1, P1G,H2

“project” onto a low-level generic modelP1G,G1. In situations with
limited clutter it will be possible to detect eitherP1G,H1 or P1G,H2

using the single generic modelP1G,G1. This idea can be extended
to have hierarchies of projections. This is analogous to the superor-
dinate, basic level, and subordinate levels of classification used in
cognitive psychology.

be a generic priorPG which approximate all these mod-
els {PHi } and which is considered the embodiment of
“cattiness.” (In Section 4.4 we show that approxima-
tion can be nicely formulated in terms of projection in
probability space).

In addition, we consider high-level models defined
by second-order Markov chains. For second order
Markov models the geometry is no longer i.i.d. but
we can still apply Sanov’s theorem for certain classes
of model. See the technical report (Yuille et al., 2000)
for the details.

The prototypical case for two, or more, high-level
models is illustrated in Fig. 14. High-level model
P1G,H1 prefers roads which move to the right (see the
white paths in the left hand panels of Fig. 14) while
high-level modelP1G,H2 likes roads moving to the
left (see white paths in the right panels). Both mod-
els P1G,H1 and P1G,H2 project to the same generic
model P1G,G, by Amari projection, and thus form part
of a hierarchy, see Fig. 13. Our theory again enables
us to calculate order parameters and identify three
regimes: (I) The Ultra Regime where none of the mod-
els (P1G,H1,P1G,H2 or P1G,G) can find the target. (II)
The Challenging Regime where the high-level models
P1G,H1,P1G,H2 can find targets generated byP1G,H1

and P1G,H2 respectivelybut the generic modelP1G,G

cannot find either. (III) The Easy Regime where the
high-level models find their appropriate targets and the
generic models find both types of target. Once again,
the best paths for the different rewards was found using
dynamic programming (which is guaranteed to find the
global solution).

In the Easy Regime, little is gained by using
the two high-level models. It may indeed be more
computationally efficient to use the generic model to
detect the target. The target could then be classified as
beingP1G,H1 or P1G,H2 in a subsequent classification
stage. We will discuss computational tradeoffs of these
two approaches in the next section.

We now repeat this example using high-level models
P1G,H3,P1G,H4 defined by second order Markov chains,
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Figure 14. Two High-Level modelsP1G,H1, P1G,H2. Three sets of four panels for Ultra, Challenging, and Easy regimes (left to right). For
each of the three sets, the data in the left and right columns is generated byP1G,H1 andP1G,H2 respectively. The lower rows gives the solutions
found by the High-Level model (P1G,H1 or P1G,H2 as appropriate) and the upper rows give the solutions found by the Generic model with
the true paths (white) and the errors of the best paths (black). Observe that all models give poor results in the Ultra regime (left panel). In the
Challenging regime (centre panel) we get good results for the High-Level models and significantly poorer results for the Generic. The rightmost
panel (same conventions) demonstrate the effectiveness of all models in the Easy regime.

Figure 15. Two High-Level models second-order Markov modelsP1G,H3,P1G,H4. Three sets of four panels for Ultra, Challenging, and Easy
regimes (left to right). For each of the three sets, the data in the left and right columns is generated byP1G,H3 and P1G,H4 respectively. The
lower rows gives the solutions found by the High-Level model (P1G,H3 or P1G,H4 as appropriate) and the higher rows give the solutions found
by the Generic model with the true paths (white) and the errors of the best paths (black). Observe that all models give poor results in the Ultra
regime (left panel). In the Challenging regime (centre panel) we get good results for the High-Level models and significantly poorer results for
the Generic. The rightmost panel (same conventions) demonstrate the effectiveness of all models in the Easy Regime.

see Fig. 15. This second order property allows us to
obtain more interesting models. For example, model
P1G,H3 generates very wiggly roads (“English” roads)
(see left panel of Fig. 15) while modelP1G,H4 gen-
erates roads that have long straight sections with oc-
casional sharp changes in direction (“Roman” roads,
see right hand panels). It is straightforward to compute
order parameters for these models (the second-order
Markov property requires slight modifications to the
earlier calculations) and, as before, we get order pa-
rameters which specify the three standard Ultra, Chal-
lenging, and Easy regimes—see Fig. 15. In this figure,
we point out a fluke where the high-level modelP1G,H4

correctly found the target even in the Ultra Regime. By
our theory, this is possible though highly unlikely. An-
other unlikely outcome is shown in the bottom right
panel where theP1G,H4 model has detected the target
to one hundred percent accuracy. This is reflected in
the overall darkness of the panel because, with no black
pixels to indicate errors, our graphics package has al-
tered the brightness of the panel (compared to the other
panels which do contain black errors). Dynamic pro-
gramming is used to find the best solutions by global
optimization.

4. Order Parameters
for Non-Factorizable Models

So far, our results have assumed that the data is gen-
erated by factorizable models which enables us to use
Sanov’s theorem for our analysis. In this section we use
more general techniques from large deviation theory to
analyze more general distributions.

We are particularly interested in analyzing the be-
haviour of a more general class of probability distri-
butions which includes those resulting from Minimax
Entropy learning (Zhu et al., 1997; Zhu, 1999). This is
a class of Gibbs distributions which are shift-invariant
and obey certain scaling results (to be described later).
Each distribution is of form:

P(z | Eβ) = e−N Eβ·Eh(z)

Z( Eβ) , (20)

wherez= (z1, . . . , zN) hasN components,Eβ is a pa-
rameter (independent ofN), Eh(·) are statistics defined
onz, andZ( Eβ) is the partition function (a normalization
constant). We could, for example, letz be an intensity
image of sizeN with the{zi } being the pixel intensities.
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In this case, the statistics could be the (normalized) his-
tograms of filter outputs over the entire image. Alterna-
tively z might represent the geometry and image filter
values on an image curve.

Our previous results can be obtained as a special case
when the distributionP(z) is factorizable. More specif-
ically, letβµ,hµ be the components of the vectorsEβ, Eh.
Then lethµ(z) = (1/N)

∑N
i=1 δ(µ,zi ) (i.e. the standard

histogram). It is then straightforward to calculateP(z)
from Eq. (20) and show that it is factorizable and equals∏N

i=1 P(zi ) whereP(zi = µ) = eβµ .
The distributionP(z) given by Eq. (20) determines

an induced distribution on thefeature spaceof all pos-
sible values of the statistics:

P̂(Eh | Eβ) = |ÄN(Eh)|e
−N Eβ·Eh

Z( Eβ) , (21)

whereÄN(Eh)={I : Eh(I )= Eh} and|ÄN(Eh)| is the size
of this set. LetQ be the number of grayscale levels so
that the total number of all possible images isQN. Then
|ÄN(Eh)|/QN can be considered to be a normalized
probability distribution onEh induced by the uniform
distribution on all images (i.e.

∑
Eh |ÄN(Eh)|/QN = 1).

As before, we want to analyze the chances of mis-
classification of data generated by models of this form
and, in particular, for curve detection. To do this re-
quires determining the probability of rare events such
as when random alignments of background clutter ap-
pear to look like the target curve.

4.1. Bounds for Log-Likelihood
Discrimination Tasks

In this second, we give results on detection for the new
class of probability models. Our results are weaker than
those obtained for the i.i.d case (see previous section) in
two respects. Firstly, the results areasymptotic(i.e. they
apply only in the limit asN 7→ ∞) and not bounds for
finite N. Secondly, because the analysis is based on a
grid (rather than a search tree) we are unable to compute
the probability distribution of the best bad path. We
are, however, able to obtain results for theexpected
number of distractor paths with rewards greater than
γ . This gives an upper bound for the reward of the best
distractor path and our computer simulations suggest
that this upper bound is exact.

To obtain our results, we make use of theorems
from the large deviation theory literature. These are
described in Appendix B. They can be thought of as

extension of Sanov’s theorem to non-factorizable dis-
tributions.

Our main result is Theorem 5 which deals with
the expected number of distractor paths with rewards
greater than the expected reward of the true. The fol-
lowing subsection gives three theorems which are gen-
eralizations to the non-iid case of results obtained by
Yuille and Coughlan (2000) for the i.i.d. case. They are
included here for completeness.

We state the result in this section without proof. The
proofs are given in our technical report (Yuille et al.,
2000) and build on the large deviation theory results of
the previous section.

Theorem 5. Suppose we have eN log Q samples from
distribution PB(·) and one sample from PA(·). Then
the expected number that have rewardlog PA(·)/PB(·)
higher than 〈R〉PA is given by e−N{d(PA ‖ PB)−log Q},
where d(PA ‖ PB) = limN 7→∞(1/N)D(PA ‖ PB). This
defines an order parameter K= d(PA ‖ PB)− log Q.

This result is used to determine whether the true
road, the sample fromPA, can be distinguished from
the eN log Q distractor paths sampled fromPB. There
is clearly a phase transition atQ= d(PA ‖ PB). If
d(PA ‖ PB)> log Q then we expect there to be no dis-
tractor paths (in the largeN limit) with rewards as high
as those from the distractor paths. It should therefore
be possible to detect the true road. On the other hand, if
d(PA ‖ PB)< log Q then we expect it to be impossible
to detect the true path.

This result is similar to that we obtained from study-
ing the Geman and Jedynak model, see Section 3. It
is slightly weaker because, like the result for Geman
and Jedynak on the lattice (see subsection 3.3) it can
only determine theexpected numberof distractor paths
with rewards greater than the expected true reward. It
doesnotdetermine whether thebest distractor path has
a reward higher than the average true reward(Recall
that the proof of Theorem 3 requires a tree structure for
the distractors).

We performed computer simulations to investigate
the effect of having an unknown starting point and a
more realistic (i.e. non-pyramidal) image lattice. The
simulations were performed using an i.i.d. model. They
showed, as for Geman and Jedynak on a lattice, that the
difference betweenγ ∗ and the maximum distractor re-
ward is usually small, see Table 2. As with the pyramid
case we observe that the bigger the difference between
the two distributions the bigger the difference between
γ ∗ and the empirical results. We also observed that,
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Table 2. Comparison of the maximum reward of all distractor
paths withγ ∗ for the lattice case withunknownstarting point.

Emp. mean Standard
P(· |on) P(· |off) γ ∗ N max. reward deviation

(0.4, 0.6) (0.6, 0.4) 0.3638 20 0.399 0.0015

(0.4, 0.6) (0.6, 0.4) 0.3638 100 0.384 0.0065

(0.4, 0.6) (0.6, 0.4) 0.3638 400 0.3726 0.003

(0.3, 0.7) (0.7, 0.3) 0.6182 20 0.74 0.05

(0.3, 0.7) (0.7, 0.3) 0.6182 100 0.67 0.02

(0.3, 0.7) (0.7, 0.3) 0.6182 400 0.63 0.01

(0.1, 0.9) (0.9, 0.1) 0.34 20 0.48 0.24

(0.1, 0.9) (0.9, 0.1) 0.34 100 0.25 0.7

(0.1, 0.9) (0.9, 0.1) 0.34 400 0.12 0.03

Conventions as in Table 1. Observe, once again that the empiri-
cal mean maximum rewards approachγ ∗ quickly for the first two
cases, as a function of the length of the path, but convergence is
much slower for the third case where the distributionsP(· |on) and
P(· |off) are very different.

in contrast to the case for the pyramid, the empirical
results werebiggerthan the theoretical prediction. We
believe that this is because the starting point of the
path is unknown for the lattice (it is for the pyramid)
and this produces an extra factor which is negligible
in the asymptotic regime but which is significant when
the sizeN of the path is too small for the asymptotic
results to hold.

4.2. Three Related Vision Tasks

We now consider three additional visual tasks. These
tasks were used in Yuille and Coughlan (2000) applied
to distinguish between two different i.i.d. textures. The
generalization here (see also Wu et al., (2000)) allow
the results to apply to the realistic textures generated
by Minimax Entropy learning (Zhu et al., 1997), see
Fig. 16.

In this subsection we are concerned only with images
and so we replacez by I throughout. Now sup-
pose we have probability distributions,PA(I | EβA) and
PB(I | EβB), with corresponding potentialsEβA, EβB, see
Eq. (20) (with same functionEh(·)). For concreteness,
the dataI can be thought of as being a texture image
but the results are general.

The results involve two measures of distance be-
tween probability distributions: the Chernoff informa-
tion and the Bhattacharyya bound. To define Chernoff
and Bhattacharyya, we must introduce thee-geodesic

Figure 16. Texture examples, two textures generated by Minimax
Entropy learning distributions.

betweenPA(I ) andPB(I ). This e-geodesic consists of
all distributions of formPλ(I )= Pλ

A(I )P
1−λ
B (I )/Z[λ]

where 0≤ λ≤ 1 andZ[λ] is a normalization constant.
TheChernoff informationis defined byC(PA, PB)=
D(Pλ∗ ‖ PB) whereλ∗ obeysD(Pλ∗ ‖ PA)= D(Pλ∗ ‖
PB). The Bhattacharyya bound is defined to
be B(PA, PB)= (1/2)(D(P1/2 ‖ PA)+ D(P1/2 ‖ PB))

and results ifλ = 1/2. Our results will be summa-
rized in the next section with detailed proofs given in
Yuille et al. (2000).

We now consider three texture tasks which involve
ways of distinguishing between the two textures. Each
task will involve the log-likelihood ratio testR =
log PA(I )/PB(I ).

Theorem 6. The negative log probability per pixel
that a sample from PB(I ) generates a reward R
greater than, or equal to, the average reward〈R〉PA

of a sample from PA tends to d(PA ‖ PB) =
limN 7→∞(1/N)D(PA ‖ PB) as N 7→ ∞. More infor-
mally Pr(R(I ) ≥ 〈R〉PA | I drawn from PB(·)) ∼
e−Nd(PA ‖ PB).

The second texture task involves determining
whether a sampleI is generated byPA or PB.

Theorem 7. The negative log probability per pixel
that a sample from PA(I ) is misclassified as being from
PB (and vice versa) tends to c(PA, PB) = limN 7→∞
(1/N)C(PA, PB) as N 7→ ∞,where C(PA, PB) is the
Chernoff information. Pr(R(I ) < 0 | I drawn from
PA(·)) ∼ e−Nc(PA,PB).

The third texture task involves two texture samples,
one each fromPA and PB, and requires determining
which is which.

Theorem 8. The negative log probability per pixel
that the two samples from PA(I ) and PB(I ) (one
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from each) are misclassified tends to b(PA, PB)=
limN 7→∞(1/N)B(PA, PB) as N 7→∞, where B(PA,

PB) is the Bhattarcharyya information. Pr(misclassi-
fication) ∼ e−Nb(PA,PB).

4.3. Detecting Curves in Images

We now return to the task of detecting curves in images.
The model we use defined directly on the image lattice
(i.e. there is no tree structure). It is chosen to satisfy the
conditions for large deviation theory results to apply,
see Eq. (20).

The starting point is now unknown (by contrast to
the pyramid case in Section 3). This does not affect the
theoretical analysis in the asymptotic limit because the
number of starting points is only polynomial in the
image size (which we take to be a multiple of the target
sizeN).

The target curve position is defined to beX =
{x1, . . . , xN}. The prior model for the road byP(X) =
p(x1)

∏N
i=2 p(xi |xi−1) (the prior is chosen to prevent

the curve from ever intersecting itself). In some cases
we extend this to a second order Markov chain prior
determined by distributions such asp(xi |xi−1, xi−2).

To define the likelihood function we first choose
three filters:

F1(I (x)) = E∇ I (x) · Êt(x) if x ∈ X,= E∇ I · Ei
otherwise

F2(I (x)) = E∇ I (x) · Ên(x) if x ∈ X,= E∇ I · Ej (22)

otherwise

F3(I (x)) = I (Ex)

whereÊt(x), Ên(x)are the tangent and normal to the curve
atx, andEi , Ej are the horizontal and vertical unit vectors
of the image plane. The curveX hasN pixels and there
are a total ofM pixels in the entire image. In our simu-
lations we typically allowF3 to have eight components
(i.e. the images have eight grey-level values) andF1,F2

are quantized to have six components.
We define{Ehαon(I ), Ehαoff(I ):α = 1, 2, 3} to be the

empirical histograms of the filters{Fα :α = 1, 2, 3}
evaluatedon-curve and off-curve for an image I
(whereα labels the filtersF1, F2, . . .). More precisely,
hαon,z(I ) = 1

N

∑
x∈X δz,Fα(I (x)) are the components—

indexed byz—of the vectorEhαon, and similarly forEhαoff ,
hαoff,z = 1

M−N

∑
Ex/∈X δz,Fα(I (x)) are the components—

indexed by z—of the vector Ehαon. The likelihood

function is then given by:

P(I | X) = 1

Z
e6

3
α=1{N Eβαon(I )·Ehαon+(M−N) Eβαoff ·Ehαoff(I )}, (23)

which we can express in terms of the curve position
x1, . . . , xN as:

P(I |X) ∝ e6α6i {βαon(F
α(I (xi )))−βαoff(F

α(I (xi )))}, (24)

whereβαon,z, β
α
off,z are the components ofEβαon,

Eβαoff .
This gives an overall reward function:

R(X | I ) =
∑

i

log p(xi | xi−1)+
∑
α

∑
i

× {βαon(F
α(I (x)))− (βαoff(F

α(I (x))
)}
.

(25)

To specify the model uniquely we caneither choose
the potentials directlyor use Minimax Entropy learn-
ing (Zhu et al., 1997; Zhu, 1999) tolearn the poten-
tials from a set of empirical histogram responses. We
tried both approaches and noticed no significant differ-
ences in results. Note that because our problem can be
approximated as being one-dimensional, we used a re-
cursive algorithm to estimate the potentials, as required
by Minimax Entropy learning, instead of the MCMC
methods used by Zhu et al. (1997).

We obtain order parameters for these models using
Theorem 5. But calculating the order parameters re-
quired estimating the Kullback-Leibler distances. We
again exploited the one-dimensional structure to com-
pute these order parameters recursively. These order
parameters have contributions both from the geome-
try and the pixel intensity information, see Yuille et al.
(2000) for details. Figure 17 shows the results of simu-
lating from the curve model for different distributions.

4.4. The Wrong Reward Function

We now return to the question of what happens if we
have a weak approximate model of the probability
distributions, see subsection 3.4. We are now able to
generalize our previous results and show how order
parameters change when a weaker model is used.

In particular, we demonstrate an important con-
nection to Amari’s theory of information geometry
(Amari, 1982) and to Minimax Entropy learning (Zhu
et al., 1997). The approximations can be viewed as
projections in probability space (Amari, 1982).
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Figure 17. (Top) Samples from the Minimax Entropy curve model,
K = 1.00 on left andK = −0.43 on right. (Middle) The true curve
positions for the corresponding samples are shown in white. The
solution path, found by dynamic programming, is in black. Places
where the solution overlaps with the true path are shown in grey.
(Bottom) The true path and the solution forK = 1.0 (far left, and
left). The true path and the solution forK = −0.43 (right, and far
right). Observe that for positiveK , on the left, the solution is very
close to the true path. But ifK is negative, on the right, then the
solution is very different from the true path—i.e. the task becomes
impossible. The order parameters calculated for the models are con-
sistent with the results. The best paths are determined by optimizing
the reward functions using a dynamic programming algorithm that
does not require known starting point.

Minimax Entropy learning (Zhu et al., 1997)
naturally gives rise to a sequence of increas-
ingly accurate Gibbs distributions by pursuing ad-
ditional features and statistics. The sequenceP0 =
U, P1, P2, . . . , Pk→ Ptrue (wherek is the number of
features and statistics included in the modelPk) starts
with p0 being a uniform distributionU and approaches
the true distributionPtrue in the limit ask 7→∞ (Zhu
et al., 1997). The more high-level (i.e. target specific)
the model then the more target specific the statistics.
Conversely, low-level (i.e. general purpose) models
will only use those statistics which are common to
many targets. More precisely, each Gibbs distribution
Pi is anAmari projection(Amari, 1982) of the “true”

Figure 18. TheAmari projectionand a sequence of prior models
for animate object shapes by minimax entropy using an increasing
number of feature statistics. See text for interpretation.

distribution Ptrue onto the sub-manifoldMi , with Pi

being the closest element toPtrue in Mi , in terms of
Kullback-Leibler divergenceD(Ptrue‖ Pi ), see Fig. 18.
Distributions related byAmari projectionwill also sat-
isfy the Amari conditiondescribed in Section 3.4—
i.e.

∑
t Ptrue(t) log Pi (t)=

∑
t Pi (t) log Pi (t). (But the

converse is not true). As shown in Fig. 18, the first
row, from left to right are typical shapes sampled
from three minimax entropy models (Zhu, 1999): a
uniform model, a model matching contour based statis-
tics, and a model matching both contour and region
based statistics.

For simplicity, recall that in Theorem 6 of subsection
4.2 we gave the probability that a sampleI from PB(·)
has higher reward than the expected reward of a smaple
from PA(·). Now approximate the distributionPA(·)
by PÂ(·). We compute the expected reward〈R̂〉PA =
D(PÂ ‖ PB) if the data is generated byPA(·) and es-
timate the probability that data generated byPB will
have higher reward. We assume the Amari condition∑

I PA(I ) log PÂ(I ) =
∑

I PÂ(I ) log PÂ(I ) and the
additional condition

∑
I log PB(I ){PÂ(I )− PA(I )} =

0 (for example, this is satisfied ifPB is the uniform
distribution). More general conditions are described in
Yuille et al. (2000).

Now we ask, what is the probability that we get a
sampleI from PB(·) with rewardR̂(I )> 〈R̂〉PA? The
problem can be formulated as in Theorem 6 of the
previous section.The only difference is that, because
〈R̂〉PA = D(PÂ ‖ PB), we can replace PA by PÂ every-
where in the calculation.
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We therefore obtain that the probability of error goes
like ∼ e−D(PÂ ‖ PB). This means that the order parame-
ter is higher by an amountD(PA ‖ PB)− D(PÂ ‖ PB)

when we use the “correct” reward function. This can
be expressed as:

D(PA ‖ PB)− D(PÂ ‖ PB)

=
∑

PA log
PA

PB
−
∑

PÂ log
PÂ

PB
,

= D(PA ‖ PÂ)+
∑

log PB{PÂ − PA},

where we have used the Amari condition
∑

PA

log PÂ =
∑

PÂ log PÂ.
Using the condition

∑
log PB{PÂ−PA} = 0 we see

that the order parameter increases byD(PA ‖ PÂ)when
we use the correct reward function.This is precisely the
entropy criterion used in Minimax Entropy learning in
determining the benefit of using an additional statistic
because H(PÂ)−H(PA) = D(PA ‖ PÂ)! This demon-
strates that accurate prior models increase the order
parameters.

4.5. Experimental Curves with Amari Projection

In this section we consider the effects of using
the wrong prior. More specifically, we will consider
two possible geometry priorsPH and PG related
by an Amari projection,

∑
X PH (X) log PG(X) =∑

X PG(X) log PG(X). We call PH (X) the high-level
model and it is used to generate the data (i.e. it is the
“true prior”). By contrast,PG(X) is called thegeneric
prior (i.e. it is the “wrong prior”).

We will perform inference on the data in two ways.
Firstly, we use the high-level prior in the reward func-
tion (i.e. standard Bayesian inference). Secondly, we
will use the generic prior in the reward function. As
in Section 3.4, the theory predicts there will be three
regimes,ultra, challenging, andeasy, see caption of
Fig. 19.

In Fig. 20, we consider two high-level models, sec-
ond order Markov chains, which we call roman road
and english road. They are both approximated by the
same generic, first order Markov, road model. We
illustrate the three different regimes.

5. Summary and Conclusions

This paper formulated target detection in terms of
Bayesian inference so that the performance rates can

Figure 19. The Challenging regime figure. In theultra regime, de-
tection of the curve is impossible even if the high-level model is
used. In thechallenging regimewe will be able to detect the curve if
we use the high-level model butnot if we use the generic model. In
theeasy regime, both models are adequate to detect the curve. The
data is shown in the top left square and the true path is shown in the
top right square. The results of estimation using the high-level and
generic models are shown in the left and right middle squares respec-
tively. Their overlaps with the true path are shown in the bottom two
squares (similar conventions to the previous figures). Observe that
the high-level model correctly finds the true path (with a few pixels
of error) but the generic model fails (apart from finding one small
subsection).

be evaluated by the expected loss. We then investi-
gated how much prior knowledge is needed to detect
a target road or curve in the presence of clutter. We
used order parameters to determine whether a target
could be detected using a general purpose “generic”
model or whether a more specific high level model was
needed. At critical values of the order parameters the
problem becomes unsolvable without the addition of
extra prior knowledge. This theory was initially de-
scribed in CVPR’99 (Yuille and Coughlan, 1999) for
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Figure 20. Three panels, of two rows each, top to bottom giving
examples of ultra, challenging, and easy regimes. For each panel,
the top row gives a sample generated by anroman road model(left),
the best path found using theroman road model(center), and the
best path found using thegeneric road model(right). Similarly, for
each panel, the bottom row gives a sample generated by anenglish
road model(left), the best path found using theenglish road model
(center), and the best path found using thegeneric road model(right).
In the ultra regime, top panel, no method works. In the challenging
regime (centre panel), the high-level models (roman and english) find
their targets but the generic models make errors. In the easy regime,
everything works.

the restricted class of factorized probability distribu-
tions.

Our results hold for a class of probablity distribu-
tions which includes those learnt by Minimax Entropy
learning theory (Zhu et al., 1997; Zhu, 1999). This

generalizes our previous results (Yuille and Coughlan,
2000) on factorizable distributions (which also did not
address the issue of how much prior information is
needed).

The results of this paper were obtained by analysis of
the Bayesian ensemble of problem instances. We antic-
ipate that our approach will generalize to other vision
problems and can be used to determine performance
measures for models in terms of order parameters.

We observe that our results are in a similar spirit to
the theoretical analysis by Tsotsos on the complexity of
visual search (Tsotsos, 1990). Tsotsos uses techniques
from computer science to analyze the complexity of
detecting targets in background. This is very different
from our Bayesian approach and relationship between
these two approaches is a topic for further study.

Hopefully, analysis of the type performed in this
paper can help quantify when high-level knowledge is
needed for visual tasks. This may throw light into the
development of efficient algorithms for segmentation
and recognition.

Appendix A: Sanov’s Theorem

Sanov’s theorem is the main theoretical tool used to
obtain our results in Section 3. This appendix describes
the theorem and gives examples of how to apply it. We
also give an expression for the functiong(γ ) which
occurs in Theorem 2 and which determines the critical
valueγ ∗. We refer to Yuille et al. (2000) for a detailed
description of how we apply Sanov to prove the results
stated in Section 3.

To describe Sanov’s theorem we need some notation.
The variablesz are quantized so that they can take one
of a set ofJ valuesa1, . . . ,aJ . We refer to{a1, . . . ,aJ}
as thealphabetandJ as thealphabet size. A samplez
of N elementsz1, . . . , zN can be represented by the his-
togramn1, . . . ,nJ of the frequency that each member
of the alphabet occurs (i.e.

∑J
j=1 nj = 1 andaj occurs

nj N times in the samplez). There are a finite num-
ber of histograms which can occur and each possible
histogram is called atype. Because the dataz is i.i.d.
then the probability of it occuring depends only on the
probability of its type (i.e. the ordering of the data is
irrelevant).

Sanov’s Theorem. Let z1, z2, . . . , zN be i.i.d. from a
distribution Ps(z) with alphabet size J and E be any
closed set of probability distributions. Let Pr( Eφ ∈ E)
be the probability that the type of a sample sequence
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Figure 21. Left, Sanov’s theorem. The triangle represents the set of
probability distributions.Ps is the distribution which generates the
samples. Sanov’s theorem states that the probability that a type, or
empirical distribution, lies within the subsetE is chiefly determined
by the distributionP∗ in E which is closest toPs. Right, Sanov’s
theorem for the coin tossing experiment. The set of probabilities
is one-dimensional and is labelled by the probabilityPs(head) of
tossing a head. The unbiased distributionPs is at the centre, with
Ps(head) = 1/2, and the closest element of the setE is P∗ such that
P∗(head) = 0.7.

lies in the set E. Then:

2−ND( Eφ∗ ‖ Ps)

(N + 1)J
≤ Pr( Eφ ∈ E)

≤ (N + 1)J2−ND( Eφ∗ ‖ Ps), (26)

where Eφ∗ = arg minEφ∈E D( Eφ ‖ Ps) is the distribution
in E that is closest to Ps in terms of Kullback-Leibler
divergence.

Sanov’s theorem can be illustrated by a simple coin
tossing example, see Fig. 21. Suppose we have a fair
coin and want to estimate the probability of observing
more than 700 heads in 1000 tosses. Then setE is the set
of probability distributions for whichP(head) ≥ 0.7
(P(head)+ P(tails) = 1). The distribution generating
the samples isPs(head) = Ps(tails) = 1/2 because
the coin is fair. The distribution inE closest toPs

is P∗(head) = 0.7, P∗(tails) = 0.3. We calculate
D(P∗ ‖ Ps) = 0.119. Substituting into Sanov’s the-
orem, setting the alphabet sizeJ = 2, we calculate
that the probability of more than 700 heads in 1000
tosses is less than 2−119× (1001)2 ≤ 2−99.

To obtain the results of Section 3 requires specify-
ing setsE which corresponds to specific values of the
reward function (e.g. letE be the set of types such that
the reward of a distractor path is higher than the ex-
pected reward of a true path). We then solve the equa-
tion Eφ∗ = arg minEφ∈E D( Eφ ‖ Ps) to obtain the fall-off
rate.

For example, we can apply Sanov’s theorem to de-
termine the probability that a samplez from PA(z)will
have log-likelihood reward logPA(z)/PB(z)which dif-
fers from the mean rewardD(PA ‖ PB) by more than
ε. In this case, the setE is defined by:

E = {Eφ : | Eφ · Eα − D(PA ‖ PB)| > ε}, (27)

where the vectorEα has J components logPA(ai )/

PB(ai ) for i = 1, . . . , J.
To apply Sanov’s theorem, we have to extrem-

ize D(φ ‖ PA) subject to the constraintEφ ∈ E. By
optimization, using lagrange multipliers, we obtain:

φε(a) = Pµ(ε)

A (a)P1−µ(ε)
B (a)

Z(µ(ε))
, (28)

whereZ(µ(ε)) is a normalization constant andµ(ε) is
choosen by solving the equation:

Eφε · Eα − D(PA ‖ PB) =
J∑

j=1

φε(aj ) log PA(aj )/PB(aj )

− D(PA ‖ PB) = ±ε (29)

This equation will have two solutions depending on
the sign. We choose the solution for whichD(φε ‖ PA)

is smallest (because this determines the slowest fall-off
rate).

The probability of a deviation from the mean greater
thanε is then less than 2(N+1)J2−ND(φε ‖ PA) for large
N and so falls to zero exponentially fast. Note that
limε 7→0 D(φε ‖ PA) = 0. In other words, the smallerε
the smaller the fall-off factor.

Finally, we give an exact expression for the function
g(γ )which is referred to in Theorem 2 and whose form
determines the critical valueγ ∗. See Yuille et al. (2000)
for the technical derivation ofg(γ ).

The functiong(γ ) is given by:

g(γ ) = γ + D(φγ ‖ pon)+ D(ψγ ‖ p1G), (30)

which is a monotonically nondecreasing function ofγ

with:

φγ = pλ(γ )on p1−λ(γ )
off

Z1(λ(γ ))
, ψγ = pλ(γ )1G U1−λ(γ )

Z2(λ(γ ))
,

where Z1(λ(γ )), Z2(λ(γ )) are normalization con-
strants andλ(γ ) is chosen so that

∑
y φγ (y) log Pon(y)

Poff(y)+∑x ψγ (x)
log P1G(x)

U (x) = γ .
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The expected number of distractor paths with re-
wards greater thanγ is given by E[Z(γ, N)]

.=
2−N{g(γ )−log Q}. The critical valueγ ∗ occurs when
g(γ )= log Q.

Appendix B: Large Deviation Theory

The results in Section 4 require techniques from large
deviation theory (Dembo and Zeitouni, 1998) which
we summarize in this appendix and refer to Yuille et al.
(2000) for more details.

For probability distributions of the form specified
by Eqs. (20) and (21) the analysis becomes simplified
as the image, and/or target size, becomes large (Lewis
et al., 1995). Intuitively, this isbecause the probability
distribution in feature space becomes peaked as the size
increases due to ergodicity. Moreover, the theory gives
results on how fast the distributions become peaked as
N gets large. Recall that the equations are:

P(z | Eβ) = e−N Eβ·Eh(z)

Z( Eβ) ,

P̂(Eh | Eβ) = |ÄN(Eh)|e
−N Eβ·Eh

Z( Eβ) ,

We first state two limit results from the large devia-
tion theory literature (Lewis et al., 1995; Griffiths and
Ruelle, 1971).

Lemma 1. limN 7→∞ 1
N log |ÄN (Eh)|

QN = s(Eh), where

s(Eh) ≤ 0 is a concave function.

Lemma 2. limN 7→∞ 1
N log Z( Eβ)

QN = ρ( Eβ) where the

“pressure” ρ( Eβ) is strictly convex.

Figure 22. The left panel illustrates Corollary 2—each point is a statisticEh, H is a set of statistics, andEh∗H is the dominant statistic inH . The
right panel uses duality to give the same result expressed in terms of distributions, see Yuille et al. (2000)—each point is a probability distribution
with the setEH of distributions corresponding to the setH of statistics, and withφ∗ corresponding toEh∗H .

From these Lemmas we can determine directly the
probabilities of rare events for largeN. First, observe
that the form of the induced distribution in feature space
must obey:

Corollary 1. limN 7→∞ 1
N log P̂(Eh | Eβ) = s(Eh) − Eβ ·

Eh− ρ( Eβ).

This corollary implies that, for largeN, P̂(Eh | Eβ) ∼
eN{s(Eh)− Eβ·Eh−ρ( Eβ)}. This shows exponential fall-off for
largeN.

The concavity ofs(Eh), and hence ofs(Eh)− Eβ · Eh−
ρ( Eβ) means that oneEh dominates for largeN. More
precisely,

Corollary 2. limN 7→∞ 1
N log P̂(Eh ∈ H | Eβ) = s(Eh∗H )

− Eβ · Eh∗H − ρ( Eβ), where Eh∗H = arg maxEh∈H {s(Eh)
− Eβ · Eh− ρ( Eβ)}.

For example,H could consist of the set of rare
events that would cause misclassification (e.g. by log-
likelihood ratio tests) and hencêP(Eh ∈ H | Eβ)∼
eNs(Eh∗H )− Eβ·Eh∗H−ρ( Eβ) says we only need to be concerned
with thesingle most likely rare event in H, see Fig. 22.

These results can be used to give asymptotic expres-
sions on the expected loss for visual tasks. They are
therefore generalizations of Sanov’s theorem which we
used in the previous section for the i.i.d. case. There is,
however, one important distinction. Sanov’s theorem
givestight boundson the expected errors as a function
of the numberN of samples. The results in this sec-
tion areasymptoticonly (i.e. only valid in the limit of
infinite N). This limitation is not a major concern but
it does reduce the power of our results for the non-iid
case.

The results above are expressed in terms of the proba-
bility of observing certain statistics. There is, however,
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a duality between the statisticsEh and the potentials
Eβ (which determine the probability distributions), see
Langford (1973). Corollary 1 says that for any fixedEβ
there will be a unique valueEh∗ of the statistics which
dominate P̂(Eh | Eβ) for large N. Conversely, for any
value of the statistics we can determine a corresponding
Eβ (i.e. by finding the distribution which gets peaked at
this value of the statistics). (There will be uniqueness
up to simple transformations). By using this duality
we can re-express these results in terms reminiscent of
Sanov’s theorem such as Kullback-Leibler divergences
(D(PA ‖ PB) =

∑
I PA(I ) log PA(I )/PB(I )) between

probability distributions. See Yuille et al. (2000) for
this analysis.
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Note

1. The term “ensemble” is sometimes used to refer to the largeN
limit (i.e. large systems with many degrees of freedom) but we do
not restrict ourselves to this limit.
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