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Abstract

In this paper, we present a framework for parsing video events with stochastic
Temporal And-Or Graph (T-AOG) and unsupervised learning of the T-AOG
from video. This T-AOG represents a stochastic event grammar. The alphabet
of the T-AOG consists of a set of grounded spatial relations including the poses
of agents and their interactions with objects in the scene. The terminal nodes
of the T-AOG are atomic actions which are specified by a number of grounded
relations over image frames. An And-node represents a sequence of actions. An
Or-node represents a number of alternative ways of such concatenations. The
And-Or nodes in the T-AOG can generate a set of valid temporal configura-
tions of atomic actions, which can be equivalently represented as the language
of a stochastic context-free grammar (SCFG). For each And-node we model
the temporal relations of its children nodes to distinguish events with similar
structures but different temporal patterns and interpolate missing portions of
events. This makes the T-AOG grammar context-sensitive. We propose an un-
supervised learning algorithm to learn the atomic actions, the temporal relations
and the And-Or nodes under the information projection principle in a coherent
probabilistic framework. We also propose an event parsing algorithm based on
the T-AOG which can understand events, infer the goal of agents, and pre-
dict their plausible intended actions. In comparison with existing methods, our
paper makes the following contributions. i) We represent events by a T-AOG
with hierarchical compositions of events and the temporal relations between the
sub-events. ii) We learn the grammar, including atomic actions and temporal
relations, automatically from the video data without manual supervision. iii)
Our algorithm infers the goal of agents and predicts their intents by a top-down
process, handles events insertion and multi-agent events, keeps all possible in-
terpretations of the video to preserve the ambiguities, and achieves the globally
optimal parsing solution in a Bayesian framework; iv) The algorithm uses event
context to improve the detection of atomic actions, segment and recognize ob-
jects in the scene. Extensive experiments, including indoor and out door scenes,
single and multiple agents events, are conducted to validate the effectiveness of
the proposed approach.
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1. Introduction

1.1. Motivation and Objective

Cognitive studies [1] show that humans have a strong inclination to interpret
observed behaviors of others as goal-directed actions. In this paper, we take such
a teleological stance for understanding events in surveillance video, in which
people are assumed to be rational agents [2] whose actions are planned to achieve
certain goals. In this way, we infer the underlying goals and predict the next
actions on the fly as the events unfold.

Imagine an office scene, where an agent picks up a cup, and walks to a desk
on which there is a tea box. One might infer that his goal is to make a cup
of tea, and predict that his next action is to put a tea bag in the cup. But
instead, he picks up the phone on the desk, one then infers that his goal has
been interrupted by an incoming call. After the call, he walks to a dispenser,
and his action is obscured due to our viewing angle. After some time, he is
observed drinking. One can now infer that he had poured water in the cup in
the occluded time interval.

Daily videos contain a large variety of actions and events, which are defined
through gestures and interactions between agents and environments. These
action and event concepts constitute a large portion of human visual knowledge,
therefore learning from video data is a promising way to acquire rich common
sense knowledge.

To achieve the above event understanding capability, we need to address the
following problems:

i) Events are compositional. An event can often consist of a sequence of
actions and can be executed in multiple ways. Therefore a good represen-
tation must be hierarchical and account for temporal relations between
sub-events.

ii) An inference algorithm must deal with event insertions, interruptions,
multi-agent events and agent-object interactions. The inference process
must also preserve the ambiguities both in the lower level atomic action
detection and higher level event recognition to achieve globally optimizal
solution.

iii) A learning algorithm must discover the structure of the events from video
data with minimal user supervision.

1.2. Overview of our work

In this paper, we represent events by Temperol And-Or Graph (T-AOG).
The AOG was first introduced to computer vision in [3] and [4] for modeling
visual objects, and has been used in [5] to analyze sports videos.
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The T-AOG consists of a set of terminal nodes and And, Or-nodes. A
terminal node specifies a contextual atomic action defined by a set of spatial re-
lations (e.g. agent poses, agent’s interaction with objects in the scene) grounded
in the images. The And-nodes and Or-nodes represent verb concepts and are
composed by the atomic actions. And-nodes represent temporal compositions
of their children nodes. Or-nodes represent alternative ways to realize events,
where each alternative has an associated probability to account for its branch-
ing frequency. With recursively defined And, Or-nodes, the T-AOG specifies
a stochastic context free grammar (SCFG) whose language is the set of valid
configurations of events. For each And-node, we model the temporal relations
of its children nodes to distinguish events with similar structures but different
temporal patterns and interpolate missing portions of events. This makes the
T-AOG grammar context-sensitive.

We propose an inference algorithm for T-AOG based on the Earley Parser
[6]. It finds the most likely parse graph by iterative bottom-up detection and
top-down inference similar to the image parsing algorithm in [7]. Our inference
algorithm is designed to have the capacity of handling interleaving events (e.g.
event A interrupts event B) and online prediction of future events. Due to
ambiguity arising from bottom-up detections, the parsing algorithm needs to
keep a large number of parse graphs. For computational efficiency we prune the
parse graphs at the time points corresponding to “decision moments”, so it is
much more affordable than its counterpart in image grammar.

We propose an unsupervised learning algorithm to learn a T-AOG from
video. The learning algorithm uses a recursive block pursuit procedure to gen-
erate terminal nodes and And-nodes from the data matrix of detected spatial
relations. The ambiguity of bottom-up compositions is resolved during the re-
cursive block pursuit. Then a graph compression procedure is then used to
generate Or-nodes of T-AOG. The learning algorithm is guided by the informa-
tion projection principle that minimizes the total description length.

1.3. Related work

Existing methods for event representation and recognition can be divided
into two categories.

1) HMMs and DBN based methods. Brand et al. [8] modeled human actions
by coupled HMMs. Natarajan [9] described an approach based on Coupled
Hidden Semi Markov Models for recognizing human activities. Kazuhiro
et. al. [10] built a conversation model based on dynamic Bayesian network.
Al-Hames and Rigoll [11] presented a multi-modal mixed-state dynamic
Bayesian network for meeting event classification. Although HMMs and
DBN based algorithms achieved some success, the HMMs do not model
the high order relations between sub-events, and the fixed structure of
DBN limits its power of representation.

2) Grammar based methods. Ryoo and Aggarwal [12] used the context
free grammar (CFG) to model and recognize composite human activities.
Ivanov and Bobick [13] proposed a hierarchical approach using a stochastic
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context free grammar (SCFG). Joo and Chellappa [14] used probabilistic
attribute grammars to recognize multi-agent activities in surveillance set-
tings. Zhang et al [15] applied an extended grammar approach to modeling
and recognizing complex traffic events. These methods focus on the hier-
archical structure of events, but the temporal relations between sub-events
are not fully utilized. There are other methods for event representation
and reasoning in the higher level, such as VEML and VERL [16, 17], and
PADS [18].

In contrast to HMMs and DBN, the T-AOG can model higher order con-
straints than HMMs, while the Or-nodes enable the reconfiguration of the struc-
tures. So the T-AOG is more expressive than the fixed-structured DBN. The
T-AOG also represents the temporal relations between multiple sub-events by
the horizontal links between the nodes, so the resulting grammar is context-
sensitive.

Most of the existing work predefine the event models manually and learn (or
define) the parameters of the models for a predefined set of event classes. In
contrast, we study an unsupervised learning algorithm that can generate richer
event classes, reduce tedious manual labeling, thus provide more scalability for
knowledge acquisition systems. Our work is inspired by recent progress in unsu-
pervised learning and data mining [19, 20] as well as grammatical learning and
inference [13, 21, 15] on video data. For event grammar learning, our strategy is
most similar to Zhang et al. [15], which learns a stochastic context free grammar
for trajectory analysis of multiple agents (e.g. vehicles in street intersections).
In contrast, we adopt a richer feature representation including interactions be-
tween agents and environments. In addition, we append a Markov model of
time constraints for adjacent events, resulting in a stochastic context sensitive
grammar, which was introduced into computer vision by Zhu and Mumford in
[4]. The stochastic T-AOG provides an efficient representation for knowledge
extracted from video.

Last but not least, our work also bears some similarity with [5], though
with significant differences: 1) In [5], the AND-OR graph is used to model the
sequential and casual relations of events; while in our work, the AND-OR graph
is used to decompose events hierarchically, that is, to decompose events into
sub-events and to decompose sub-events into atomic actions. 2) We use non-
parametric filters to model the temporal relations rather than by Allens Interval
Logic as in [5], since the Allens temporal model is ambiguous to describe the
temporal relations.

1.4. Main contributions

The contributions of our paper are:

1) We represent events by a T-AOG which represents the hierarchical com-
positions of events and the temporal relations between the sub-events.

2) We propose an unsupervised learning algorithm to learn the T-AOG au-
tomatically from video, based on the information projection principle.
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3) Our parsing algorithm can afford to generate all possible parse graphs of
single events, combine the parse graphs to obtain the interpretation of the
input video, and achieve the global maximum-a-posteriori inference.

4) The agent’s goal and intent at each time point is inferred by a bottom-
up and top-down process based on the top-ranked parse graphs as the
most probable interpretations. We show in human experiments that our
parsing algorithm can correctly infer agent’s goals and intents according
to the video content.

5) We show that event context can be used to improve the detection result
of atomic actions, and to better segment and recognize objects in the
scene. We put the event learning and inference in the perspective of scene
context, where there is a rich collection of agent-environment interactions.
By inference on the joint probability of agent and environment events, we
show how to use recognition of actions to help object recognition and scene
segmentation.

6) We collect a video data set, which includes videos of daily life captured
both in indoor and outdoor scenes to evaluate the proposed algorithm.
The events in the videos include single-agent events, multi-agent events,
and concurrent events. The results of the algorithm are evaluated by
human subjects and our experiments show satisfactory results.

Figure 1: The detection result of objects in the office scene

This paper is an enhanced combination of our previous conference papers
[22] and [23] which focus on event parsing and grammar learning respectively.
Here we integrate them into a coherent framework. We add more experimental
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results to evaluate the proposed algorithm, and new experiments on segmenting
and recognizing objects in scene are shown in this journal paper.

2. Event representation by T-AOG

In this section, we introduce the T-AOG for event representation.
T-AOG is based on interactions between agents and objects in the scene. In

the videos that we collected, there are 13 classes of interest objects including
mug, laptop, water dispenser in our training and testing data. These objects
should be detected automatically, however, detection of multi-class objects in
a complex scene cannot be solved perfectly by the state-of-art. Therefore, we
adopt a semi-automatic object detection system. The objects in each scene are
detected by the Multi-class boosting with feature sharing [24], and segmented
by a recent indoor scene parsing algorithm [25]. This is not time consuming
as it is done only once for each scene, and the objects of interest are tracked
automatically during the video events. Figure 1 shows the detection result of
the objects of interest in an office.

2.1. Grounded relations — the alphabet

The T-AOG is defined on a set of unary and binary relations which can be
directly detected from video. We call these relations the grounded relations.

• A unary relation r(A) is a time varying property of the agent or object A in
the scene. As Figure 2 shows, it could be agent poses, e.g. Stand(person1)
and Bend(person2), and object states, e.g. Open(door) and Closed(door).

• A binary relation r(A,B) is the spatial relation (e.g. Touch(person1.hand,
phone)) between A,B which could be agents, body parts (hands, feet), and
objects. Figure 3 illustrates some typical relations.

In our experiments we use video data from relatively simple scenes with
few people appearing at the same time. In this case, we can detect the spatial
relations with minor ambiguity. It is beyond the scope of this paper to study
complex behaviors in crowds (e.g. [26]).

Table 1 specifies the 24 unary and binary relations in the office scene. There
are four types of relations: agent location (r01 ∼ r13), agent-environment inter-
action (r14 ∼ r17), agent pose (r18 ∼ r21) and environment event (r22 ∼ r24).
Here we do not use the “Off” relation as shown in Figure 3 since we can infer
the status of “Off” from the status of “On”. The details of how these relations
are detected are explained in Section 3.2.

2.2. Atomic actions — the terminal nodes

An atomic action is a vector of grounded relations a = (r1, ...rJ) that happen
sequentially in the joint domain of space and time.

Figure 4 shows three atomic actions defined on the grounded relations. Table
2 shows the atomic actions used in the office scene. These atomic actions are
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Table 1: The grounded spatial relations of T-AOG: directly detectable from video.

Name Definition Description

r01 absent(agent) not found in the frame
r02 near(agent, other agent) near other agent
r03 near(agent, board) near the white board
r04 near(agent, door) near the door
r05 near(agent, dispenser) near the water dispenser
r06 near(agent, trash can) near the trash can
r07 near(agent, mug) near the mug
r08 near(agent, laptop) near the laptop
r09 near(agent, phone) near the phone
r10 near(agent, basin) near the basin
r11 near(agent, microwave) near the microwave
r12 near(agent, tea box) near the tea box
r13 in(agent, door) agent is in the door
r14 touch(agent, keyboard) typing on keyboard
r15 touch(agent, mug) grabbing the mug
r16 touch(agent, phone) grabbing the phone
r17 touch(agent, tea box) grabbing the tea box
r18 bend(agent) bend down
r19 sit(agent) sitting on something
r20 raise arm(agent) raising arm
r21 stand(agent) standing straight
r22 occlude(soccer match, screen) soccer match on the screen
r23 on(phone) phone is in use
r24 on(screen) screen is on

learned automatically from the training data. The learning process is explained
in Section 3.

An atomic action is detected when all its relations are detected with proba-
bility higher than a given threshold, and the probability of the atomic action is
computed as the product of the probabilities of all its constituent relations. An
atomic action a = (r1, ..., rJ), has the following probability given a short video
snipet I1:t,

p(a | I1:t) =
1

Z

J∏
j=1

p(rj) ∝ exp{−E(a)} (1)

where

E(a) = −
J∑
j=1

log p(rj)

is the energy of a and Z is the normalizing constant for all atomic actions. We
use n = 26 learned atomic actions shown in Table 2.
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Figure 2: Some unary relations. The left part of the table shows the four unary relations
as agent poses, including ’Stand’, ’Stretch’, ’Bend’ and ’Sit’. The right part shows the two
fluents (’On’ and ’Off’) of the phone and the screen of laptop.

Figure 3: Some binary relations between agents (parts) and background objects.

In our experiments, we only detect several simple agent poses (e.g. standing,
sitting) as we focus on interactions between agents and objects in the scene. In
future work, we will extend our experiments to detect a richer collection of more
sophisticated agent poses using animated AND-OR Templates [27].

Given the input video I∧ in a time interval ∧ = [0, T ], multiple atomic actions
are detected with probabilities to account for the ambiguities in the grounded
relations contained in the atomic actions, for example, the relation ’Touch(A,B)’
cannot be clearly differentiated from the relation ’Near(A,B)’ unless kinect data
is used. The other reason is the inaccuracy of foreground detection. Fortunately,
most of the ambiguities can be removed by the event context in the top-down
bottom-up inference, we will show this in the experiment section.

2.3. The T-AOG for events

An T-AOG (see Figure 5 for an example) is specified by a 6-tuple

T−AOG =< S, VN , VT , R,Σ, P > .
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Figure 4: Some atomic actions. Each atomic action is defined on a set of grounded relations
shown by 2 half circles. Unary relations ’Bend’ and ’On’ are defined in Figure 2. Binary
relations ’Near’ and ’Touch’ are defined in Figure 3. For the atomic action ’ShakeHands’,
when P1 is considered as the agent, P2 is regarded as object and vice versa. See [27] for a
more sophisticated system to detect agent poses and interactions with the scene.

Figure 5: T-AOG for events in the office scene. S is the root node which represents the
sequential events happened in the office. It is a Set-node and could be any combinations of
K single events. For example, S could be E1|E2|E1E2|E3E2E3|.... E1, ..., E7 are And-nodes
representing single events. The atomic actions are also represented by Set-nodes, and could
last for 1 to n frames. The temporal relations are given by the ratio of the lasting time between
related nodes. For clarity, only the temporal relations between sub-events are shown.

S is the root node for an event category, VN = V and ∪ V or is the set of non-
terminal nodes (events and sub-events) composed of an And-node set and an
Or-node set.

Each And-node represents an event or sub-event, and is decomposed into
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Table 2: Learned atomic actions.

Node Name Semantic Name Contained relations

a01 absent r01

a02 arrive at door r04, r21

a03 enter door r04, r21, r13

a04 stand near phone r09, r21

a05 sit near phone r09, r19

a06 stand and use phone r09, r21, r16, r23

a07 sit and use phone r09, r19, r16, r23

a08 arrive at trashcan r06, r21

a09 throw trash r06, r18

a10 arrive at basin r10, r21

a11 dump water r10, r18, r15

a12 arrive at dispenser r05, r21, r15

a13 use dispenser r05, r18, r15

a14 arrive at tea box r12, r21, r15

a15 use tea box r12, r21, r15, r17

a16 arrive at board r03, r21

a17 discussion r03, r21, r02

a18 arrive at laptop r08, r21

a19 sit near laptop r08, r19

a20 watch soccer r08, r19, r22, r24

a21 celebrate r08, r20, r22, r24

a22 use laptop r08, r19, r14, r24

a23 arrive at microwave r11, r21

a24 use microwave r11, r18

a25 arrive at mug r07, r19

a26 take mug r07, r19, r15

sub-events or atomic actions as their children nodes. The children nodes must
occur in a certain temporal order.

An Or-node has a number of alternative ways to realize an event or sub-
event, and each alternative has a probability associated with it to indicate the
frequency of occurrence. A Set-node is a special Or-node which can repeat m
times with probability p(m) and accounts for the time warping effects.

VT is a set of terminal nodes for atomic actions. R is a number of relations
between the nodes (temporal relations), Σ is the set of all valid configurations
(possible realizations of the events) derivable from the T-AOG, i.e. its language,
and P is the probability model defined on the graph. The T-AOG for events in
the office scene is shown in Figure 5. These events are learned from the training
data automatically which is illustrated in the next section.
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2.4. Non-parametric temporal relations

The And-nodes have already defined the temporal order of its children-nodes,
and the Set-nodes representing atomic actions have modeled the lasting time of
the atomic action by the frequency of its production rules. Here we augment
the T-AOG by adding temporal constraints between related nodes.

Unlike [13] and [15] which use Allen’s 7 binary temporal relations [28], we use
non-parametric filters to model the relations between multiple nodes. The Allens
temporal relations are insufficient to describe the temporal relations in practice
for two reasons: Firstly, In video the action/event can only be detected in an
time interval with uncertainty [29], while the 7 relations in the Allen algebra
is logic and rigid which have to be softened to account for such uncertainty.
Secondly, The relations in the Allen algebra do not model the relative duration
information.

We use the T-AOG of E1 shown in Figure 5 to illustrate the temporal rela-
tions. E1 is an And-node and A, B and C are three sub-nodes; τA, τB and τC
are the lasting time of A, B and C, respectively. There is a constraint between
the lasting time of A, B and C. For example, when an agent does event E1 in
a hurry, the lasting time of A, B and C will be shorter than usual, while the
ratio of the lasting time between A, B and C will remain stable. This relation
r is modeled by a distribution of a function response over the nodes included
in the relation. We use τE1

= (τA, τB , τC) to represent the lasting time of E1,
and F = (F1, F2, F3) to represent the function on which the response of τE1

is
modeled, F could be regarded as a filter and < τE1

, F > could be regarded as
a filter response. We use histogram to model the distribution of the response,
and the F ∗, on which the distribution of the training data’s response has the
minimum entropy, are selected to model the relation as in [4]. Given τ and F ∗,
the probability of the relation r is

p(r) ∼ h(< τ, F ∗ >) (2)

where h is the histogram of the training data’ s response over F ∗. One may
use multiple F to model the relations if needed.

2.5. Parse graph

A parse graph is an instance of the T-AOG obtained by selecting variables
at the Or-nodes and specifying the attributes of And-nodes and terminal nodes.
We use pg to denote the parse graph of the T-AOG of a single event Ei. We
denote the following components in pg:

• V t(pg) = {a1, ..., ant(pg)} is the set of leaf nodes in pg.

• V or(pg) = {v1, ..., vnor(pg)} is the set of non-empty Or-nodes in pg, p(vi)
is the probability that vi chooses its sub-nodes in pg.

• R(pg) = {r1, ..., rn(R)} is the set of temporal relations between the nodes
in pg. Without temporal relations, the pg reduces to a parse tree.
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The energy of pg is defined as in[4]:

ε(pg) =
∑

ai∈V t(pg)

E(ai) +
∑

vi∈V or(pg)

− log p(vi)

+
∑

ri∈R(pg)

− log p(ri) (3)

The first term is the data term. It expresses the energy of the detected
terminal nodes (atomic actions) which is computed by Eq. 1. The second term
is the frequency term. It accounts for how frequently each Or-node decomposes
in a certain way, and can be learned from the training data. The third term is
the relation term which models the temporal relations between the nodes in pg
and can be computed by Eq. 2.

Given input video I∧ in a time interval ∧ = [0, T ]. We use PG to denote
parse graph for a sequence of events in S and to explain the I∧. PG is of the
following form,

PG = (K, pg1, ..., pgK)

where K is the number of parse graphs for events.

3. Learning the T-AOG

3.1. Information projection

The unsupervised learning of stochastic T-AOG is conducted under the in-
formation projection and minimum description length principle [23]. Here we
provide a review of the related theoretical instruments.

Let X+ = {x1, ...,xN} be positive examples (e.g. observed video clips)
governed by an unknown target distribution f(x). Let X− be a large set of
random negative examples governed by a reference distribution q(x) (here q is
an i.i.d. uniform distribution). For each example x, a list of spatial relations

(r1(x), r2(x), ..., rD(x))

are extracted from the video clip. These relations form a predefined alphabet,
just like the set of weak classifiers in adaboost. Our objective of learning is to
pursue a model p(x) to approximate f(x) in a series of steps:

q(x) = p0(x)→ p1(x)→ · · · pT (x) = p(x) ≈ f(x)

starting from q.
The above model updates are performed by selecting a most informative

subset from all the spatial relations. The model p after T iterations contains
T selected spatial relations {rt : t = 1, ..., T}. If the selected spatial relations
capture all the related information about the scene semantics in x, it can be
shown by variable transformation [30] that:

p(x)

q(x)
=
p(r1, ..., rT )

q(r1, ..., rT )
.
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Figure 6: Pursuing homogeneous blocks from the data matrix. Each block corresponds to a
terminal node or an And-node in T-AOG.

So p can be constructed by reweighting q with the marginal likelihood ratio on
selected spatial relations.

Under the maximum entropy principle, p(x) can be expressed in the following
log-linear form:

p(x) = q(x)

T∏
t=1

[
1

zt
exp {βtrt(x)}

]
. (4)

where βt is the parameter for the t-th selected spatial relation rt and zt (zt > 0)
is the individual normalization constant determined by βt:

zt =
∑
rt

q(rt) exp{βtrt}.

By the information projection principle [31, 32, 30], we adopt a step-wise
procedure for selecting spatial relations. In particular, the t-th spatial relation
rt is selected and model pt is updated by:

pt = arg min K(pt|pt−1)

s.t. Ept [rt] =
1

N

N∑
i=1

rt(xi) (5)

where K denotes the Kullback-Leibler divergence, and by minimizing it we se-
lect a most informative spatial relation rt to augment pt−1 towards pt. The
constraint equation in Eq. (5) ensures that the updated model is consistent
with the observed training examples on marginal statistics. The optimal βt can
be found by a simple line search or gradient descent to satisfy the constraint in
Eq. (5).

3.2. Block pursuit on data matrix

Data matrix. Firstly we set up a data matrix R using spatial relations
of positive training examples as shown in Figure 6. Each row of R is the
vector of spatial relations detected from one example (or video clip) in X+.
For simplicity, we assume all positive training examples are aligned and have
the same dimensionality. Therefore R is a matrix with N (number of positive
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examples) rows and D (number of all candidate spatial relations) columns, and
each entry

Rij = rj(xi)

is a binary response. Rij = 1 means the spatial relation j holds in example xi.
Block pursuit. On the data matrix, we pursue large homogeneous blocks

{Bk : k = 1, ...,K}. A block is specified by a set of common spatial relations
(columns) that co-occur in a set of examples (rows). Each block corresponds to
a frequent verb concept, i.e. an terminal node or And-node composed by several
spatial relations. For example, the verb concept a02 (arrive at the door) in Table
2 is composed by two spatial relations: near(agent, door) and stand(agent). The
verb concept emerges from data because it appears frequently and with high
confidence, thus it is readily represented by an AND node that strongly binds
its constituent relations. Quantitatively, we can measure this by the information
gain of block Bk, computed by the summation over the block:

Gain(Bk) =
∑

i ∈ rows(Bk)
j ∈ cols(Bk)

(βk,jRi,j − log zk,j) (6)

where rows(·) and cols(·) denote the rows and columns of block Bk. cols(Bk)
correspond to the selected spatial relations, capturing their co-occurrence in
space and time. And rows(Bk) are the examples that belong to the k-th block.
βk,j is the multiplicative parameter of selected spatial relation j, and zk,j is the
individual normalizing constant determined by βk,j . Eq. (6) measures the in-
formation gain by explaining the submatrix covered by Bk using the foreground
model p instead of the background model q. [33] provides more detailed expla-
nation about the block pursuit algorithm applied on learning visual parts from
images. Similar approaches have also been adopted in the grammar learning of
textual data [34].

Recall that we pursue a series of models starting from q(x) to approximate
the target distribution f(x) governing training positives X+. This corresponds
to maximizing the log-likelihood log p(x) on X+. Initially p = q, and the data
matrix has a log-likelihood L0(R). After pursuing K blocks, the resulting image
log-likelihood is:

L = L0 +

K∑
k=1

Gain(Bk). (7)

The block pursuit algorithm is a greedy procedure that maximizes the log-
likelihood in Eq. (7). Each time we select rows and columns of the data matrix
to pursue the block with the largest gain as computed in Eq. (6). The entries
covered by the block are then explained away and excluded from subsequent
block pursuit. This procedure is repeated until the information gain of the
newly pursued block is negligible.
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To penalize the model complexity, we apply a constant penalty for each
additional block learned. This is equivalent to imposing a Laplacian prior on
the size of the learned grammar.

The above block pursuit procedure can be implemented either by clustering,
which produces multiple blocks or non-terminal nodes at the same time, or by
stepwise pursuit, which produces one block or non-terminal node at a time.

The block pursuit procedure for T-AOG is carried out into two stages. (1)
Learn a set of terminal nodes as blocks on the data matrix of grounded spatial
relations. These terminal nodes account for atomic events which directly specify
spatial temporal configurations of grounded relations. This is done by clustering.
(2) Learn non-terminal nodes as blocks on the data matrix of atomic actions,
to account for longer events composed of atomic actions.

3.3. Detecting grounded spatial relations

As a preprocessing step, we perform one round of bottom up detection for
grounded spatial relations.

Firstly we use a standard background subtraction algorithm to segment mov-
ing agent and fluent changes of objects, and use a commercial surveillance sys-
tem to track the detected agent.

The relations of agents’ location (r0 ∼ r13) are detected by the distance
between agent and objects which belongs to normal distribution. The location
of the agent is detected by combining foreground segmentation and skin color
detection that locates head and hands of the agent . Then the distance between
agent and objects is computed directly as the location of objects are known
(automatically detected or manually labeled).

The agent pose is inferred by a nearest neighbor classifier using both pixels
and foreground segmentation map within the estimated bounding box for the
agent. An illustration of four poses using segmented foreground mask is shown
in Figure 7. The agent-environment interaction touch(agent, keyboard) and
touch(agent, phone) are detected by checking whether there is enough skin
color within the designated area for the laptop and phone, which are static ob-
jects in the office environment. The relation touch(agent, mug) and touch(agent,

tea box) are also detected using skin color, and also the unique color and shape
of the mug and tea box. When a relation involves an object, the object is tracked
until the relation finishes and the new position of the object will be updated.

The environment relations occlude(soccer match, screen) is determined
by checking whether there is large amount of green color within the designated
area of laptop. The on relations are detected by the properties of the object
area such as intensity histogram of the bounding box.

Using the techniques described above, we detect grounded relations for every
video frame. The detection result is organized as a spatial temporal table where
each row corresponds to a time frame. Each column corresponds to a grounded
relation.
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Figure 7: Standing, bending, sitting and raising-arm poses.

3.4. Learning atomic actions
We define atomic actions to be simple and transient events composed spa-

tially and temporally by grounded relations. To learn an alphabet of atomic
actions, we use a temporal scanning window spanning 5 frames to collect a
large number of small clips. Each 5-frame clip is described by the detected
relation vector:

{(r1,1, ..., r1,D, ..., r5,1, ..., r5,D)}
where D = 24 is the number of grounded relations detected per frame. A k-

means clustering is then performed on the grounded relation vectors of these 5-
frame clips, using the simple Hamming distance as the metric. And a centroid of
a cluster is simply determined as the grounded relation vector that has minimal
distance to all the cluster members. As the time span is very small, we can
assume that the grounded relations (e.g. agent location, pose) stay constant
during the short period. So we constrain the centroids to be stationery, i.e.
r1,d = r2,d = ...r5,d,∀d = 1, ...D. For each cluster, we estimate the symbol
probabilities p(r1), ..., p(r24) by counting the member sub-sequences of the
cluster. And we represent this stochastic model by its mode (the most likely sub-

sequence) as the cluster prototype r
(k)
1:24 for brevity. Each cluster corresponds to

a block pursued in the data matrix in Figure 6.
The result of clustering is a list of 26 atomic actions shown in Table 2. Each

atomic action is represented by a list of grounded relations that are activated.
The semantic description for these atomic actions is in Table 2. The atomic
actions that happen most frequently include a19 (sit near laptop), a22 (use
laptop), a20 (watch soccer) and a03 (enter door). a19, a22 can be considered as
constituent components of a longer event “working by laptop”. a03 indicates
the student is entering or leaving. The the learned atomic actions and their
relative frequencies are representative and truthful to the video data.

Now the sequence of multi-dimensional relations is encoded by the alphabet
of 26 atomic actions. For the computational efficiency in discovering longer
events, we use hard assignments by computing the most likely atomic action
per every 5 frames. The resulting sequence of atomic actions is

w1:T = (w1, ..., wT ), where wt ∈ {a01, ..., a26}

and T is the total number of video frames divided by 5.

3.5. Learning longer events and T-AOG

There is large variation in the duration of atomic actions. For example,
a student may repeatedly enter the office, work for a varying time and leave
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Figure 8: The duration model for the length of repetition.

the office. If we naively group atomic actions into longer ones, we get a large
number of repetitive patterns of various lengths, providing little information. To
deal with temporal variation, we perform a simple compression operation: every
repetitive sub-sequence is summarized into one symbol (e.g. bbbb substituted
by b ). We may interpret this operation as learning a large number of grammar
rules in the form Ñ → NN...N with various lengths of repetition. We estimate a
non-parametric model (Figure 8) for the length of repetition, or duration under
maximum likelihood principle. These duration models are used to adjust the
data term E(ai) in Eq. (3).

After compression, the original sequence of atomic actions w1:T is trans-
formed into a much shorter one c1:M (M << T ) where each symbol ci takes
value from the same domain as wi.

There will be some frames that non of the relations are activated except
r21, that is, in these frames the agent just stand somewhere that not near
any interested objects. These frames are regarded as background frames, that
is during these frames, no interest event or action happened. The background
frames and the frames in which absent is detected are used to separate the video
into different sequences, each sequence is an single event. One example sequence
(event) is a01, a02, a03, it is the entering event, which composed of absent, arrive
at door and enter door. Another example is a25, a26, a14, a15, a12, a13. It is the
taking water event, which composed of arrive mug, take mug, arrive at tea box,
use tea box, arrive dispenser, use dispenser. These sequences are used to learn
the grammar.

We then scan the sequence c1:M to collect subsequences of length l (l = 2 in
our system) and form a data matrix. Now the columns of this data matrix are
atomic actions instead of grounded relations. A large number of homogeneous
blocks (i.e. frequent sub-sequences) are identified from the data matrix. They
are candidates for the right hand side of production rules in the event grammar.
From the candidates, we select a subset of production rules in a step wise fashion.

The proposed candidate production rule takes the form α → βγ. It re-
encodes the current sequence into a new sequence by replacing all occurrences
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Table 3: Learned production rules of T-AOG. For simplicity, we omit the starting symbol S
and the branching probabilities that S produces the following non-terminal nodes.

Production rule Semantic

N01 → a01a02a03a02 absent, arrive at door, enter door, arrive at door

N02 → a02a03a02a01 arrive at door, enter door, arrive at door, absent

N03 → a04a06 stand near phone, stand and phone

N04 → a05a07 sit near phone, sit and use phone

N05 → a25a26 arrive at mug, take mug
N06 → a10a11 arrive at basin, dump water
N07 → a14a15 arrive at tea box, use tea box
N08 → a12a13 arrive at dispenser, use dispenser
N09 → a26a25 take mug, arrive at mug

N10 → N05N06N07N08N09 take mug, dump water, make tea, take water, take mug

N11 → N05N07N08N09 take mug, make tea, take water, take mug

N12 → N05N08N09 take mug, take water, take mug

N13 → N05N06N08N09 take mug, dump water, take water, take mug

N14 → a18a19a22 arrive at laptop, sit near laptop, use laptop

N15 → N14a19 use laptop, sit near laptop

N16 → a20a21 watch soccer, celebrate

N17 → N14N16, a19 use laptop, watch soccer, sit near laptop

of βγ by α. By doing this, the reduction in description length is computed as:

reduction = ∆1 + ∆2 + ∆3 − constant (8)

and,

∆1 = n′α ·
(

log
nα
n′

)− log
nβ
n
− log

nγ
n

)
∆2 = n′β ·

(
log

n′β
n′
− log

nβ
n

)
+ n′γ ·

(
log

n′γ
n′
− log

nγ
n

)
∆3 = (n′ − n′β − n′γ − n′α) · log

n

n′

where n′α, n
′
β , n
′
γ are the frequencies of α, β, γ in the new sequence respectively,

nβ , nγ are the corresponding frequencies in the current sequence. n is the length
of the current sequence. n′ = n − n′α is the length of the new sequence. We
rank the candidate production rules using Eq.8 and select the largest one. This
learning procedure is recursively carried out, until the reduction of description
length is too small for any new candidate production rule.

As a result, we obtain a dictionary of new production rules shown in Table
3, where to make the grammar more compact we merge shorter production rules
into a longer ones that maximally reduce the description length.

We can see from the table that N10 ∼ N13 are taking water events, we can
cluster them by the objects involved in them, the mug. Similarly, N15 and N17
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Figure 9: The aligned rules of fetching water.

Figure 10: The learned T-AOG of fetching water.

are clustered by the laptop. Then, we can align them to learn the OR-Node. We
introduce a special event (action) “NULL” to represent the NULL event(action).
It represents the event or action that is not interested. We put NULL event in
the aligned sequence as show in Figure. 9, and by combining the production
rules (e.g. N4NULL ∪N4N5 → N4(NULL ∪N5)) we get a stochastic T-AOG
for each clustered event. The T-AOG of the take water event is illustrated in
Figure. 10, where for brevity we only show the graph structure and omit the
branching probabilities of OR nodes. Here an AND node represents an event
which is decomposed into sub-events or atomic actions; an OR node represents
alternative ways to realize an event. The T-AOG presents a large amount of
node sharing in the compositional hierarchy.

The terminal nodes {a1, a2, ...} and non-terminal And-nodes form a compo-
sitional hierarchy. By learning them altogether, we greatly reduce the ambiguity
of segmenting video into events and atomic actions.

3.6. Learning the parameters of T-AOG

After the structure (i.e. And-Or nodes) of T-AOG is learned, we can com-
pute the probability of each branch of OR-Node by counting the time each
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Figure 11: (a) A small T-AOG. (b) A typical input of the algorithm. (c),(d) and (e) are three
possible parse graphs (interpretations) of the video I∧[t1,t4]. Each interpretation segments
the video I∧[t1,t4] into single events at the event level and into atomic actions at the atomic
action level.

branch appears. This is essentially a maximum likelihood estimation. The de-
tails can be found in [4]. Let V ori be an Or-node and v be an index of one of
V ori ’s branches, then

p(V ori = v) =

∑
pg∈PG 1Vi(pg)=v

|PG|

where PG is the set of all parse graphs on the training data.

4. Event parsing with Goal inference and Intent Prediction

In this section, we first show the event parsing process by assuming that
there is only one agent in the scene in Section 4.1 - 4.3. In Section 4.4 we show
how to parse events when there are multiple agents in the scene.

4.1. Formulation of event parsing

The input of our algorithm is a video I∧ in a time interval ∧ = [0, T ],
and atomic actions are detected at every frame It. We denote by ∧pgi the
time explained by parse graph pgi. PG = (K, pg1, ..., pgK) is regarded as an
interpretation of I∧ where{

∪Ki=1∧pgi = ∧
∧pgi ∩ ∧pgj = ∅ ∀ij i 6= j

(9)

We use a small T-AOG in Figure 11(a) to illustrate the algorithm. Figure
11(b) shows a sample input of atomic actions. Note that there are multiple
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atomic actions at each time point. Figure 11(c), (d) and (e) show three possible
parse graphs (interpretations) of the input up to time t4. PG1 = (1, pg1) in
figure 11(c) is an interpretation of the video I[t1,t4] and it segments I[t1,t4] into
one single event E1 at the event level, and segments I[t1,t4] into three atomic
actions a1, a3 and a4 at the atomic action level. PG2 = (2, pg2, pg3) in Figure
11(d) segments I[t1,t4] into two single events E1 and E2, where E2 is inserted in
the process of E1. Similarly PG3 = (2, pg4, pg5) in 11(e) is another parse graph
and segments I[t1,t4] into two single events E1 and E2.

We can see that the segmentation of events is automatically integrated in
the parse process and each interpretation could segment the video I∧ into single
events, and remove the ambiguities in the detection of atomic actions by the
event context. The energy of PG is

E(PG | I∧) = p(K)

K∑
k=1

(ε(pgk | I∧pgk )− log p(k)) (10)

where p(k) is the prior probability of the single event whose parse graph in
PG is pgk, and p(K) is a penalty item that follows the poisson distribution as

p(K) =
λKT e

−λT

K! where λT is the expected number of parse graphs in I∧. The
probability for PG is of the following form

p(PG | I∧) =
1

Z
exp{−E(PG | I∧)} (11)

where Z is the normalization factor and is summed over all PG. The most
likely interpretation of I∧ can be found by maximizing the following posterior
probability

PG∗ = arg max
PG

p(PG | I∧) (12)

When the most possible interpretation is obtained, the goal at frame IT can
be inferred as the single event whose parse graph pgi explains IT , and the intent
can be predicted by the parse graph pgi.

4.2. Generating parse graphs of single events

We implemented an online parsing algorithm for T-AOG based on Earley’s
[6] parser to generate parse graphs based on the input data. Earley’s algorithm
reads terminal symbols sequentially, creating a set of all pending derivations
(states) that is consistent with the input up to the current input terminal sym-
bol. Given the next input symbol, the parsing algorithm iteratively performs
one of three basic operations (prediction, scanning and completion) for each
state in the current state set.

For clarity, we use two simple T-AOGs of E1 and E2 without set nodes as
shown in Figure12(a) to show the parsing process. Here we consider the worst
case, that is, at each time, the input will contain all the atomic actions in E1

and E2 as shown in Figure12(b). At time t0, in the prediction step, E1’ s first
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Figure 12: (a) The two T-AOGs of single event E1 and E2. (b) The input in the worst case.
(c) The parse graphs at time t1. (d) The parse graphs at time t2

atomic action a1 and E2’ s first atomic action a4 are put in the open list. At
time t1, in the scanning step, since a1 and a4 are in the input, they are scanned
in and there are two partial parse graphs at t1 as shown in Figure 12(c). Notice
that we do not remove a1 and a4 from the open list. This is because the input
is ambiguous, if the input at t1 is really a1, then it cannot be a4 and should not
be scanned in and should stay in the open list waiting for the next input. It is
the same that if the input at t1 is really a4. Then based on the parse graphs,
a2, a3 and a5 are predicted and put in the open list. Then at time t1, we have
a1, a2, a3, a4, a5 in the open list. At time t2, all of the five nodes in the open list
are scanned in and we will have 7 parse graphs (five new parse graphs plus the
two parse graphs at t1) as shown in Figure 12(d). The two parse graphs at t1
are kept unchanged at t2 to preserve the ambiguities in the input. This process
will continue iteratively and all the possible parse graphs of E1 and E2 will be
generated.

4.3. Run-time incremental event parsing

As time passes, the number of parse graphs will increase rapidly and the
number of the possible interpretations of the input will become huge, as Fig-
ure 13(a) shows. However, the number of acceptable interpretations (PG with
probability higher than a given threshold) does not keep increasing, it will fluc-
tuate and drop sharply at certain time, as shown in Figure 13(b). We call these
time points the “decision moments”. This resembles human cognition. When
people watch others taking some actions, the number of possible events could
be huge, but at certain times, when some critical actions occurred, most of the
alternative interpretations can be ruled out.

Our parsing algorithm behaves in a similar way. At each frame, we com-
pute the probabilities of all the possible interpretations and only the acceptable
interpretations are kept. The parse graphs which are not contained in any of
these acceptable interpretations are pruned. This will reduce the complexity of
the proposed algorithm greatly.
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4.4. Multi-agent Event parsing

When there are multiple agents in the scene, we can do event parsing for
each agent separately. That is, for each agent in the scene, the atomic actions
are detected (all other agents are regarded as objects in the scene) and parsed
as mentioned above, then the interpretations of all the agents in the scene are
obtained.

Figure 13: (a) The number of possible interpretations (in logarithm) vs time (in seconds).
(b) The number of acceptable interpretations vs time. The decision moments are the time
points on which the critical actions happen and the number of acceptable interpretations drops
sharply.

5. Experiments

5.1. Data set

Figure 14: Some screen shots of the data.

For evaluation, we collect videos in 5 indoor and outdoor scenes, including
office, lab, hallway, corridor and near vending machines. Figure 14 shows some
screen-shots of the videos. The training video total lasts for 60 minutes, and
contains 34 types of atomic actions (26 of the 34 types of atomic actions are
listed in Table 2 for the office scene) and 12 events categories. Each event
happens 3 to 10 times.
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The structures of the T-AOG are learned automatically from the training
data as described in section 3, the parameters and temporal relations are also
learned from the training data. The testing video lasts 50 minutes and contains
12 event categories, including single-agent events like getting water and using
a microwave, and multi-agent events like discussing at the white board and
exchanging objects. The testing video also includes event insertion such as
making a call while getting water.

5.2. Event recognition

Figure 15: Experiment results of event parsing for multiple agents. Agent P1 works during
frames 4861 to 6196, agent P2 enters the room from frames 6000 to 6196, then they go to
the white board, have a discussion and leave the board. The semantic meaning of the atomic
actions are shown in Table 2.

The performance of event recognition is shown in Table 4. Figure 15 shows
the recognition results of events which may involve multiple agents and happen
concurrently.

Using the learned T-AOG, we parse the sequence of atomic actions extracted
from a long video in Figure16. The sequence is already compressed so that
repeating subsequences are suppressed into single symbols. In the zoomed-out
parts of the parse graph in Figure16, we also show the detected bounding boxes
of the agent. The semantic description for different non-terminal nodes is also
illustrated.

5.3. Goal inference and intent prediction

Besides the classification rate, we also evaluate the precision of the goal
inference and intent prediction online. We compare the result of the proposed
algorithm with 5 human subjects as was done in the cognitive study with toy
examples in a maze world in [2]. The participants viewed the videos with several
judgement points, at each judgement point, the participants were asked to infer
the goal of the agent and predict his next action with probability.

Figure 17 (a) shows five judgement points of an event insertion (making a call
in the process of getting water). Figure 17 (b) shows the experimental results
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Figure 16: Video parsing result.

Table 4: Recognition accuracy of our algorithm.

Scene Number of
event instances

Correct Accuracy

Office 32 29 0.906
Lab 12 12 1.000
Hallway 23 23 1.000
Corridor 9 8 0.888
Outdoor 11 11 1.000

of event segmentation and insertion. Figure 17 (c) shows the goal inference
result obtained by participants and our algorithm respectively, and Figure 17 (d)
shows the intent prediction results. Our algorithm can predict one or multiple
steps according to the parse graph. Here we only show the result of predicting
one step. Although the probabilities of the goal inference and intent prediction
results are not the same as the average of the participants, the final classifications
are the same. In the testing video, we set 30 judgement points in the middle
of events. The accuracy of goal inference is 90% and the accuracy of intent
prediction is 87%.

5.4. Atomic action recognition with event context

Due to the ambiguity of bottom up detection, the sequence of detected
atomic actions is noisy and prone to error. We propose to use the learned
T-AOG to “de-noise” the atomic actions sequence. With the learned spatial
and temporal grammars as the prior, the detection of atomic actions follows a
Bayesian maximum-a-posteriori:

a∗ = arg max
a

p(r|a; Θ)p(a;G)

where r is the sequence of grounded relations in the video. It is more robust
than merely using bottom up proposals:

abottom up = arg max
a

p(r|a; Θ)
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Figure 17: Experiment results of event segmentation, insertion, goal inference and intent
prediction. The semantic meanings of the atomic actions in (d) are shown in Table 2.
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Figure 18: The ROC curve of recognition results of atomic actions.

where G is the learned grammar, and Θ are parameters of the bottom up de-
tectors of atomic actions. We perform an experiment on a collection of 12061
frames.

Figure 18 shows the ROC curve of the recognition results of all the atomic
actions in the testing data. The ROC is computed by changing the threshold
used in the detection of atomic actions. From the ROC curve we can see that
with event context, the recognition rate of atomic actions is improved greatly.

5.5. Scene labeling using events

In the previous sections, the learning and parsing of T-AOG relies on the
detection or manual labeling of objects in the scene. Now we try to release this
requirement of manual labeling, and use the T-AOG to infer scene semantics
automatically, thus closing the loop of unsupervised learning.

Our objective is to label the scene image, especially objects involved in the
event parsing for a video IΛ in a time interval Λ = [0, T ]. For example, a
drinking action indicates the location of a cup, while a sitting function indicates
a chair.

Suppose pg is an event parse graph from IΛ, and

R(pg) = {r1, ..., rN}

is the set of relations in pg for contextual actions involving the interactions
between agent at observed position xagt

i , and object at unknown position xli
where l is the object label: l ∈ ΩL = { “desk”, “chair”, “cup”, ...}. Thus
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Figure 19: Scene labeling by parsed trajectories. (a) The trajectories of the agent’s hands and
feet. (b) The segmentation of objects by the trajectory “scribbles”. (c) The segmentation of
adjacent areas of 4 and 5. (d) The final labeling result for interesting objects.

ri = ri(x
agt
i , xli). This can be easily extended to multi-way relations. We denote

by L = {L(x), L(x) ∈ ΩL,∀x ∈ image lattice} the scene label map.
The scene labeling problem is then formulated as a joint inference,

(L∗,pg∗) = arg max p(L,pg∗|IΛ)

where we denote pg = (R,pg−, R is the alphabet of the T-AOG and pg− is the
hierarchical parse graph. Or,

(L∗, R∗,pg−) = arg max p(L,R, pg−|IΛ)

= arg minE(L,R) + E(R,pg−)

+E(L) + E(pg−)

where E(L) is a smoothness prior on L. E(L,R) is the energy terms involving
the set of relations R and the object label L,

E(L,R) =

N∑
i=1

K(xli − x
agt
i ),

with K() being a distance function, and xli being the point that satisfies two
conditions:

1. xli ∈ Ωl = {x : L(x) = l};
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2. It is close to xagt
i .

So
xli = arg min

xi∈Ωl
K(xi − xagt

i ).

Thus the labeling component given pg or R(pg) is

L∗|pg = arg minE(L,R) + E(L).

The first time is similar to the “user scribbles” in interactive segmentation and
labeling [35]. Each label l ∈ ΩL has a set of scribble points {xlj : j = 1, ..., nl},
where

∑
l∈ΩL

nl = N . The second term utilizes the “scribble” and label the
whole scene based on image properties and smoothness assumptions. In Figure
19 we show an example of applying the above scene labeling inference procedure.

Figure 19 (a) shows the trajectories of the agent’s hands and feet. Figure 19
(b) shows the segmentation result by the trajectories. The ground is successfully
segmented by the trajectories of the feet. The keyboard, phone, microwave are
segmented by concentrated trajectories of hands.

The segments 4 and 5 in Figure 19 (b) are too large to be interest objects,
so we prune them.

Figure 19 (d) shows the final segmentation result of interesting objects in
the scene.

6. Discussion and Conclusion

In summary, we propose a prototype system for event learning, which ex-
plores all activities that happen in a certain environment, and organizes them
in a meaningful way by a hierarchical event dictionary and a stochastic T-AOG.
The learned T-AOG can be used to parse newly observed videos to recognize
events. We also show a promising application where it is used to discover scene
semantics without manual labeling of the scene. We are working towards ap-
plying to more diverse data sets and obtaining richer T-AOG.

We present an algorithm for parsing video events with goal inference and
intent prediction. Our experiments results show that events, including those
involving multi-agents and those happening concurrently can be recognized ac-
curately, and the ambiguity in the recognition of atomic actions can be reduced
largely using hierarchical event contexts. Our model is very efficient where there
is a lot of structure and only a few factors whose associations can be easily com-
puted. We are working on extending the model to more complex scenarios.

Future work. The objects of interest in the scene are detected semi-
automatically at present. The event context provides a lot of information of
the objects involved in the event, and can be utilized to detect and recognize
objects. We are actively pursuing further progress in the following aspects:

• Using kinect data to better define agent poses in the 3D setting.
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• Clustering more specific actions. An action can be defined as a set of
typical configurations, each specified by a number of spatial interactions
between agent and environment. E.g. a sitting pose can be specified by
interactions between person’s body and chair, hand and keyboard, body
and desk etc.

• Using n-nary relations to handle group activities.

• Employing the context information between multiple agents to further
improve our event modeling and parsing algorithm.
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