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Abstract. We describe a flexible object recognition and modelling system (FORMS) which represents and rec- 
ognizes animate objects from their silhouettes. This consists of a model for generating the shapes of animate 
objects which gives a formalism for solving the inverse problem of object recognition. We model all objects at 
three levels of complexity: (i) the primitives, (ii) the mid-grained shapes, which are deformations of the primitives, 
and (iii) objects constructed by using a grammar to join mid-grained shapes together. The deformations of the 
primitives can be characterized by principal component analysis or modal analysis. When doing recognition the 
representations of these objects are obtained in a bottom-up manner from their silhouettes by a novel method for 
skeleton extraction and part segmentation based on deformable circles. These representations are then matched to 
a database of prototypical objects to obtain a set of candidate interpretations. These interpretations are verified in 
a top-down process. The system is demonstrated to be stable in the presence of noise, the absence of parts, the 
presence of additional parts, and considerable variations in articulation and viewpoint. Finally, we describe how 
such a representation scheme can be automatically learnt from examples. 

1. Introduction 

This paper proposes a novel method for representing 
and recognizing flexible objects from their silhouettes. 
We will be specifically interested in animate objects 
such as people, hands, animals, leaves, fish and in- 
sects. The Modelling and recognition of such flexi- 
ble objects is made difficult by the following factors: 
(i) the silhouettes of these objects will vary greatly with 
their articulation and the observer’s viewpoint, so tech- 
niques such as linear combinations of views (Ullman 
and Basri, 1991) or view-point interpolation (Poggio 
and Edelman, 1990) seem inapplicable, (ii) such ob- 
jects rarely contain salient features, such as corners 
or straight lines, which often play a large role in rec- 
ognizing rigid objects (Grimson, 1990; Lowe, 1985; 
Huttenlocher and Ullman, 1987) (iii) such objects do 
not seem to possess geometric invariants of the type re- 
cently exploited for recognizing certain classes of rigid 
objects (Mundy and Zisserman, 1992). In short, there 
will be considerable variation in the silhouettes of the 

objects. The representation, therefore, must be flexible 
enough to capture these variations and the recognition 
system must be sophisticated enough to take them into 
account. The representation must also be simple, in the 
sense of depending on a small number of parameters, 
and be suitable for statistical analysis, reasoning and 
learning. 

The representation must also help capture the intu- 
itive concept of similarity between shapes. Although 
there exist many mathematical similarity measures, 
none of them seem adequate for capturing human in- 
tuitions (Mumford, 1991). In FORMS the similarity 
measure is based on the statistical variations of the rep- 
resentations of the shapes. 

Our approach builds on three important themes in 
object recognition. 

The first is the attempt to represent objects in terms 
of elementary parts, such as generalized cylinders 
(Binford, 1971; Navatia and Binford, 1977; Brooks, 
1983; Marr, 1982; Connell, 1985; Biederman, 1987). 
We model object shapes in three levels of complexity 
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(or granularity): the primitive shapes, the mid-grained 
shapes, and the object shapes. We will argue that such 
hierarchical descriptions match the nature of objects 
in our environment, and have advantages over the rep- 
resentation based on the curvature properties of the 
contour. 

The second is the use of deformable templates and 
deformable models (Grenander et al., 1991; Yuille, 
1991; Terzopolous et al., 1987; Saund, 1990; Pentland, 
1986; Hill et al., 1992). The essential purpose of the 
deformable models is to characterize the complex vari- 
ations of objects approximately by a low-dimensional 
shape space. We compare three approaches-principle 
component analysis (PCA), modal analysis (FEM), 
and Fourier analysis-for shape deformation. We 
find that all three approaches are derived from the 
same mathematical equation, and that the PCA are 
likely to be more efficient than the other two ap- 
proaches. 

The third is the effort to solve recognition in a 
bottom-up/top-down loop using specific knowledge 
of the models to resolve the imperfect description 
and ambiguities occurring in the bottom-up process 
(Mumford, 1993). In FORMS, we analyze all types of 
errors or ambiguities which may happen in the bottom- 
up process, and design a group of operators to refine 
the initial description. 

The general architecture of our approach is shown in 
Fig. 1. As we can see inside the dashed-rectangle, ob- 
ject modelling proceeds in two steps. Objects are made 
by joining mid-grained parts together using grammat- 
ical models. These parts are generated by deforming 

Bottom-up matching 

Mid-gralnbd parts 

I Primitlbes I ! 

top-down prac.ss 

Figure I. The architecture of our approach. 

elementary primitive shapes. In this paper we use two 
primitive shapes only, one is called the worm, the other 
is a circle. Deformations of these primitive shapes can 
be analyzed using principal component analysis (PCA) 
or finite element methods (modal analysis) to obtain a 
low-dimensional representation. 

Recognition is performed by a bottom-up/top-down 
control loop (outside the dashed-rectangle). The rep- 
resentation of the input is first calculated in a bottom- 
up manner, which uses only weak knowledge about 
animate objects, and is then matched to the proto- 
type objects in the database. This gives a hypothesis 
set of candidate prototype matches. These candidate 
prototypes are then matched to the representation and 
the matching residuals are evaluated by direct com- 
parison to the input data in a top-down verification 
process. The thirty-five objects in our database are 
successfully classified into one of seventeen categories 
despite variations due to viewpoint and articulation 
changes. 

The paper is arranged as follows. In Section 2 we 
briefly review some general shape properties of ani- 
mate objects and thus motivate our choice of repre- 
sentation. In Section 3 we introduce our method of 
modelling shapes properties of animate objects at an 
abstract level. This involves defining a low dimen- 
sional probability space for shape representation. In 
Section 4, we describe a bottom-up process for cal- 
culating this representation from binary silhouette in- 
puts. This can be thought of as the inverse of object 
modelling. We propose a novel skeleton algorithm, us- 
ing weak assumptions about animate objects, based on 
deformable templates and linear prediction and error 
correction techniques. In Section 5 we describe how 
recognition is achieved by a bottom-up/top-down loop. 
Finally, in Section 6 and the appendix, we discuss the 
current limitations of our system and how it can be 
extended. 

2. Motivation for the Representation 

In this section we motivate our choice of representation 
for animate objects. We argue that basic properties of 
such objects will enable us to describe them by a low- 
dimensional representation motivated by the statistical 
variations of their shapes. 

Although the shapes of animals and plants are very 
varied, their structure is not arbitrary. It is currently 
believed that all vertebrates evolved from fish in the 
Palaeozoic seas. Under the forces of climatic and 
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Figure 2. Typical bones for the skeletons of vertebrates; (a) is the bone for an elongated limb, which is usually decomposed into three pieces 
of long bones; (b) is a close view of a long bone; (c) and (d) are the backbone and the bones on the tail respectively, each segment in (c) and (d) 
is very short. There is free motion between those short segments, but such motion is limited and correlated by the muscles. After (Hildebrand, 
1988). 

geological changes, evolution generated a spectrum 
of animals ranging from fish to amphibia, reptiles, 
birds and tetrapods’. Elementary anatomical and phys- 
iological studies shows that all vertebrates are built 
upon a common plan (Young, 1981; Hildebrand, 1988) 
and share many common properties. These properties 
are: 

Skeletons. Every vertebrate has a tree-like2 skele- 
ton consisting of spines for the neck, torso, and tail, 
and bones for the limbs3 . Typical bones for the 
spine and limb are shown in Fig. 2. 
Parts. Each vertebrate can be decomposed into a set 
of parts with the skeleton forming the axis of that 
part. The axis is then surrounded by muscles. These 
parts can be further classified into two classes: (i) 
elongated parts like the torso, tail, and long limb, 
(ii) short parts like the fins and tails of fishes, the 
ears of horses, the heel of human feet, etc. Com- 
parative anatomical studies found that there exists a 
continuous evolution from short parts to elongated 
parts. Figure 3 shows the process of evolution from 
a fin below the body of a fish to a short limbs in an 
amphibia and to a long limb of tetrapod. 
Joints. There are many kinds of joints between 
bones, such as the serrate joint, the butt joint, the 
peg-and-socket joint and so on. Most of these are 
used to join the small bones in the skull, and only the 
hinge joints and ball-and-socketjoints are important 
for general animate shapes. The hinge joint joins 
two long bones together, and the ball-and-socket 

Figure 3. The continuous evolution from fin to limb; (a) is a fin of 
a fish; (b) is a short limb of an amphibia, and (c) is a long limb of a 
tetrapod. Modified from (Young, 1981). 

joints are used to join the limbs to the torso at the 
shoulder and hip. But when projected onto an image 
plane, a ball-and-socket joint is equivalent to a hinge 
joint. Figure 4 shows a typical hinge joint and its 
abstract representation. 

Although these properties are derived for vertebrate 
objects, they are valid for many other animate ob- 
jects like leaves, and trees. For example, the stems 
in leaves are quite similar to the bones in vertebrates. 
On the other hand, there are some properties which 
are common to some animate objects, but are not 
included here. We will discuss those properties in 
Section 6. 
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Figure 4. (a) Is a hinge joint from (Hildebrand 1988) and (b) is the 
abstract representation of an ankle joint, where the three parts-the 
leg, the foot, and the heel share the same joint circle in exclusive 
angle intervals. The ankle joint can be segmented into three parts 
in (c). 

3. Flexible Object Modelling 

In this section, we describe how to model the shapes of 
animate objects in three stages (see Fig. 1): (i) design- 
ing primitive shapes, (ii) characterizing their deforma- 
tions, and (iii) defining a grammar for combining the 
deformable parts. We will describe the deformable 
parts using a local coordinate system. It is straightfor- 
ward to add global transformations, such as translation, 
scaling and rotation, see Section 3.4. 

3.1. Designing Primitive Shapes 

In this paper we choose only two primitive shapes. The 
first is the worm, shown in Fig. 5(a). It is a rectangle 
with joint circles attached at both ends. As the worm 
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Figure 5. The worm, the circle and their deformations. The 
worm primitive is shown in (a) and the circle primitive is shown 
in (b). Deformations of the worm and circle are shown in (c) 
and (d). 

deforms, see Fig. 5(c), the scale of the circles may 
change but they will not deform in any other way. The 
second primitive is the circle, see Fig. 5(b). An angular 
section of this circle can deform, see Fig. 5(d)4 . We 
now describe how we model the deformations of these 
primitives. 

The shape of the worm can be characterized by a 
vector whose dimensions will depend on the precision 
required by the application. More precisely, this vector 
consists of the following components: 

l The axis: we uniformly sample n points on the cen- 
tral axis CiC2 of the rectangle, which we assume 
has length e. The stretching and bending of the axis 
will be represented-by the arc length L and the posi- 
tion of the points, X = (xi, yi, . . . , x,, y,). For the 
applications in this paper we set n = 36. 

l The rib: for each point on the axis, we measure 
the width perpendicular to the axis. For simplicity, 
we assume that the two sides are symmetric so the 
shape of the local deformations of the rectangle is * 
represented by the vector R = (rl, r-2, . . . , r,). 

The circle primitive is specified by: 

l The angle /I specifying the angular region within 
which the deformations occur. Within this region m 
rays are sent out, at angular intervals of jl/(m - l), 
to measure the distances di from the center to the 
boundary. _The deformed circle is represented by 
the vector C = (dl, dz, . . . , d,), the radius R and 
the angles /?. We choose m = 18 here. 

By referring back to the anatomic analysis of verte- 
brate shapes in Section 2, we see that the axis of the 
worm models the shape of bones, while the rib vector 
models the deformations of the muscles. As we will see 
in later sections, the circles at the ends of the worms are 
used as hinges to join deformed parts together (see also 
Figs. 4(b) and (c)). The circle primitives will model 
short parts like the fin of fish, etc., and the circle itself 
will also be used as the joint hinge. 

3.2. Designing Deformation Modes 

The deformations of the primitives correspond to the 
variations in the axis-vector {xi, yi} and the rib {ri}, for 
the worm, and the radials {di } for the circle. We denote 
these variables by the vector S, which will be used to 
describe either deformed worms or circles. 
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A deformed primitive ?, see Figs. 5(c), (d), can 
ke represented as the sum of a basic, average, shape 
Sc and deformations z . 4, where z is a scaling _con- 
stant. For the worm primitive we would set 4 = 
s = (Axt/z, Ayt/z, Art/z, . . .)r5. Similarly, for 
me circle primitive, 3 = (A&/z, Adz/z, . . .>‘. The 
range of each element in the deformation vector 4 
is bounded, because large deformations will cause 
changes of the object structure, which we will model 
by grammatical rules, see Section 3.4. Therefore the 
possible shapes obtained by deforming a primitive are 
i_ncluded in a hyper-box centered on the average shape 
So. Each point in the box is called a mid-grained 
shape. 

The regularity of animate objects in our environmenr 
makes the components of the deformation vectors 4 
highly correlated, and hence enables drastic dimen- 
sional reduction. For each primitke we ca_” find a set 
of orthogonal basis vectors \Irt, \Jrz, . . . , Qk (k < n 
or m) which span a subspace within the hyper-box of 
mid-grained shapes, so that all meaningful mid-grained 
shapes can be approximated, to the degree of accu- 
racy required by our application, by their projections 
(c~t,o12, . . . , CQ)’ onto this subspace, where c~ is the 
projected length of the vector 4 onto the basis vectors 
$i. We call the Sri, i = 1,2, . . ;, k the deformation 
modes, because each basis vector ‘I’i deforms the prim- 
itive in a fixed way. The intuition is of an artist using a 
toolkit to deform his clay. 

More specifically, we will describe all mid-grained 
shapes deformed from the worm as worm(& ~1, 
a2, . . .1 WC). Suppose k = 4, and we only allow ten 
discrete values for each CX~. Then we can repre- 
sent lo4 mid-grained shapes in this way. Similarly 
we can defined the deformed circles by circle@, ~1, 
a27 *. . 9 w>. 

There are three possible approaches, the principal 
component analysis, the mechanic modal analysis (fi- 
nite element method)Land+Fourierfheory for calculat- 
ing the basis vectors 91, \u,, . . . , W,. We will discuss 
the first two in turn6. Relations between these three 
approaches are described in Section 3.3. 

Principal component analysis (PCA) is a data-driven 
method. To generate our data for PCA, we first parti- 
tioned a representative set of animate objects into 2 10 
deformed worm parts and 20 deformed circle parts. 
Some parts segmented for a dog and a fish are shown 
in Figs. 23 and 24. How these parts are segmented 
from the object shapes automatically by the computer 
will be addressed in Section 4. 

Figure 6. The shape in the top left comer is the mean and the shapes 
from left to right and top to bottom are the first five eigenvectors (plus 
the mean) of the covariance matrix sorted in decreasing order of their 
corresponding eigenvalues. 

6) For the deformed worm parts, we applied principal 
component analysis to the rib deformations only7, 
and we found that only the first four eigenvectors, 
see Fig. 6, are required to describe 98% of the mid- 
grained parts in our animate object database with 
relative errors of less than 10 percent, the aver- 
age relative error for all parts is P.i%. The rel- 
ative error is measured as Z”‘-$==~‘~‘Vi”. For 
example, in Fig. 7, we show two worm parts for 
a person: Fig. 7(a) is the torso and 7(c) is the 
head. Figures 7(b) and (d) are respectively the re- 
constructed parts with 4 eigenvectors. Thus all de- 
formed worm parts in FORMS are represented by 
five parameters (!, ~1, (~2, ~3, a4). 

Figure 7. (a) and(c) are respectively the torso and head of a person, 
and (b), (d) and the reconstructed shapes with the first 4 eigenvectors. 
Here the joint circles attached at the ends of these parts are not shown 
for reasons of clarity. Observe that the two ears are just visible in 
(c), but are lost in the reconstruction (d). 
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Figure 8. The shape on the left is the mean and the four shapes to its right are the first 4 eigenvectors (plus the mean) of the covariance matrix 
sorted in the decreasing order of their corresponding eigenvalues. 

(ii) Figure 9 shows the 20 circular parts segmented 
from the objects. They are the fins of fish, ears 
of horses, heads of butterflies, heels of feet, etc. 
The deformations occur in an angular region of size 
p within which m = 18 rays were sent to mea- 
sure the variations of the radius. PCA was then 
applied to the 20 m-dimensional vectors. Figure 8 
shows the mean and first 4 eigenvectors for a con- 
stant angle #I = ?r/2. We found that using these 
4 eigenvectors, all 20 circular parts can be recon- 
structed with relative error of less than 2%. The 
reconstructed shapes are also shown in Fig. 9 by 
the dark lines. Hence, each deformed circular part 

Figure 9. 20 typical circular parts with deformations shown as the 
shadowed areas. The reconstruction with the first 4 eigenvectors 
are shown by m dark lines. Reconstruction errors only occurs near 
the peaks of each deformation. 

will be represented by five parameters (#I, al, a2, 
a39 a4). 

The second approach for dimensional reduction 
is mechanical modal analysis by the finite element 
method (FEM). By contrast with PCA this is a model- 
based approach which assumes a physical model for 
the deformations. By analogy with mechanical engi- 
neering, we think of the primitive as a uniform plastic 
plate obeying the appropriate physical equations. 

The free vibration equation of the plastic plate in 
<EM can be written in terms of the deformation vector 
+!J yielding: 

where M, K are the mass and stiffness matrix respec- 
tively. Assume that the solution is of form $ = Geiwr, 
where G is the amplitude vector and w is the frequency 
of vibration. Then we have: 

m2M\ir = KG (2) 

This equation can be solved to obtain the eigenvalues 
Wl < 63 < ... < 04 and their corresponding eigen- 
vectors Gi,\i’2,..., Qk. The latter are orthogonal to 
each other with respect to the mass matrix M. 

We tried to calculate the deformation modes for 
both the axis vector 2 and the rib vector 2 simultan- 
eously’. To model the vibration of the rectangle ac- 
curately, we partitioned the rectangle into 36 x 36 re- 
gions, and acquire 35 x 35 rectangular finite elements. 
This number is much larger than those previously re- 
ported for vision Modelling (Pentland and Sclaroff, 
199 1). Then we calculated the modes of the free vibra- 
tion of the plastic rectangle. The resulting modes are 
shown in Fig. 10. 

It is argued in (Pentland and Sclaroff, 1991) that 
modal analysis is efficient for describing natural objects 
because it essentially ignores high frequency properties 
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Figure 10. The first six modes of free vibration are shown left 
to right and top to bottom sorted in increasing order of their corre- 
sponding vibration frequency. In the experiment, we set the boundary 
conditions such that the top and bottom lines keep straight during de- 
formation. The simulations were done with the ABACUS software 
package. 

of the objects. But by contrast, we argue that principal 
component analysis may often be more effective than 
modal analysis provided the necessary data is avail- 
able. Firstly, modal analysis assumes a specific model 
for describing the material, see Eq. (l), which is prob- 
lematic for animate objects. A more realistic model 
would have to take into account the material properties 
of bones and muscles, which currently seems imprac- 
tical. Secondly, most of the variations of shape in ani- 
mate object come out not from elastic deformations but 
from statistical variations. Thirdly, in PCA the eigen- 
values corresponding to the deformation modes give 
a measure of the amount of variation of these modes. 
Assuming that the data is approximately Gaussian then 
the distribution of the coefficients (ai, . . . , CQ) will 
be a product of 1-D Gaussians with zero mean and 
variance proportional to the eigenvalues. This gives a 
distribution P(c~i, ~2, as, ~4, e (or /Q) for the param- 
eters. In FORMS we therefore selected PCA instead 
of modal analysis to characterize the deformations of 
mid-grained shapes. 

It should be stressed that these representations are 
intended to describe the plane projections of 3D ob- 
jects. Therefore they will change with the viewpoints. 
In Appendix A, we briefly discuss the influence of the 
viewpoint, the tilt and slant angles, on the parame- 
ters for simple shapes. The conclusion is that if the 
tilt and slant angle are small, say less than rc/6, then 
the changes of parameters will be negligible (less than 
l/24). However, to describe an object in 3D from 
all viewpoints, we would need a set of characteristic 
views. 

3.3. The Continuous Case 

As the number of samples, nl tends to infinity we will 
obtain a continuous model S(t) for the deformations 
where 0 < t 5 1. This can be expressed as: 

S(t) = So(t) + cqqi(t) + noise. 
i=l 

(3) 

where So(t) is the basic, undeformed, shape (i.e., the 
mean in the PCA case), \yi (t) is ith deformation mode, 
and the higher order deformations \Yi (t), i > K are all 
treated as noise. 

This arises from taking the continuum limit as 
the number of sample points tends to infinity. In 
this case we _rep_lace the Kahunen-Loeve matrix, 
K = (l/Ns)C,@,$~ where ,LL = 1, . . . , NF labels the 
data samples, by a function K(t, t^) = s +(t, p) 
#(t^, p)p(@)dp, were p is a distribution over samples 
labelled by /.L. Then the Qi (t) will be solutions of the 
equation 

s 
dfK(t, t^)\u(t^) = h*(t). (4) 

Observe if K(t, t”) is shift-invariant, i.e., it is a func- 
tion of t - t^ only, then the solutions will be sinusoid 
functions and Eq. (3) reduces to Fourier series expan- 
sion. It is easy to see that Eq. (2) is also a special 
case of Eq. (4). Therefore both Fourier series and 
modal analysis correspond to choices of K and hence, 
include prior assumptions about the statistics of shape 
variations. Thus they are likely to be less efficient than 
PCA which determines K from data samples. 

3.4. Designing the Shape Grammar 

Some shapes like hammers, hearts, and potatoes, can be 
described simply as mid-grained shapes. More com- 
plex objects, such as humans, fish, and leaves con- 
sist of a set of connected mid-grained parts, whose 
axes form the skeleton graphs. Such graphs can be de- 
scribed in a formal grammatical manner. Grammatical 
models of this type have been reported by Mandelbrot 
(1982), Lindenmayer (1986) and many others in com- 
puter graphics (Smith, 1984)‘. They use simple line 
segments as primitives, and define grammatical rules 
to replace all line segments in the graph simultaneously 
to generate more complex graphs. In Mandelbrot’s 
approach these rules will apply recursively to gener- 
ate self-similar patterns, the segments of the tree have 
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Figure 1 I. Grammatical rules. The dashed line in each primitive shows the direction of bifurcation. Observe that parts may overlap with 
each other, 

fixed lengths. Neither of these approaches is directly 
applicable to our problem. 

The rules which we use are shown in Fig. 11. The 
shape starts from a live ceZZ-the shaded circle on the 
left of 1 l(a). The live cell is able to split to generate any 
of the structures on the right of the arrow: (a) an empty 
circle, i.e., a barren cell, (b) a circle primitive with its 
deformed section starting at angle 19, (c) a worm part 
with its axis in the direction 8, (d), (e), (f) two joined 
parts with directions 81, &Jz, (g) three joined parts, etc. 
This process repeats on all live cells until there is no 
shaded circle remaining. For example, Fig. 12 shows 
how the model for a person can be generated using 
the above method. There is also a global rigid trans- 
formation which can be easily specified: (i) the trans- 
lation and scaling of the whole shape is determined 
by the center and radius of the first live circle, (ii) 
each of the grammatical rules is parametrized by the 

Figure 12. Generating a human figure. 

bifurcation angles 8’s, which determine the orienta- 
tions for each part. 

More Formally: Each animate model M will 
have several prototypical skeleton graphs {S(i) 1 i = 
1,2,... , p} due to changes of viewpoint and articula- 
tion. Each So) has an associated conditional probability 
P(Sci) 1 M) for how often S(i) occurs in our application 
domain. For each S(i), there are a set of grammatical 
rules {R(ij) 1 j = 1, . . . , q} for generating its specific 
structure. For some objects these rules are determin- 
istic while for others they are probabilistic of form 
P((partijI (f?,), paqi2(&), . . . , } I R(ij,). Finally, de- 
formations of part(ijl) in rule Rcij, are given by the 
probabilities P(al, ~2, ~3, (~4, e (or @) 1 part(ijl)). 

4. Obtaining the Data Representation- 
The Bottom-Up Process 

The previous section has described a probabilistic rep- 
resentation for animate objects. But how can we com- 
pute this representation from an input silhouette and 
match it to a database of model objects? One possi- 
bility would be to take advantage of the probabilistic 
model in Section 3.4, in the spirit of Grenander’s pat- 
tern theory (1991), and to apply Bayes’ theorem to di- 
rectly obtain an optimization principle for estimating 
the data representation. Attempting to directly solve 
this optimization problem, however, would be difficult 
involving simultaneously determining the grammati- 
cal structure (i.e., the skeleton for animate objects), 
the number of mid-grained parts, the way they are 
joined, and the parameter values of the mid-grained 
parts. The grammatical model, moreover, would have 
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to be general enough to generate all possible animate 
models and their possible articulations. 

Instead we propose a step by step approach, see 
Fig. 1, which first calculates an initial representation for 
the input in a bottom-up process which only assumes 
weak knowledge about animate objects. This initial 
representation will be invariant to the scale and orienta- 
tion of the input shapes”, and it will include only small 
number of parametrized parts. But the representation 
obtained in the bottom-up process may not be perfect, 
so a top-down process will be used to fix the matching 
residuals using the information in the database of mod- 
els. Thus recognition, in FORMS, is a tightly coupled 
bottom-up/top-down process. 

We leave the top-down matching process to 
Section 5. The rest of this section is dedicated to 
describing the bottom-up process. We first propose 
a novel algorithm for calculating the skeleton- 
recovering the abstract grammatical structure, then 
we partition the objects into parts according to its 
skeleton-recovering the mid-grained shapes, then re- 
duce the mid-grained shapes into primitives-recov- 
ering the primitives. 

4.1. Obtaining the Skeleton Structure 

4.1.1. Skeleton Basics. One way to recover the skele- 
ton of an object is to calculate the medial axis (Blum, 
1973, 1978), which is also known as the SAT (symmet- 
ric axis transformation). There are several variations 
such as SLS (Brady, 1984) and PISA (Leyton, 1992). 
For our basic shape primitives in Fig. 5 the medial axis 
coincides with the central axis. But if the primitive 
undergoes local deformations and noise perturbations 
then the medial axis will become problematic. Local 
deformations and noise may not only cause additional 
branch axes but also distort the shape of the principal 
axis. Figures 13(b) and (c) show how a small amount 
of noise on the boundary of the rectangle results in 
large changes in the skeleton of Fig. 13(a). Although 
there are a log of algorithms (Blum, 1978; Brady and 
Asada, 1984; Pizer et al., 1987; Crowley, 1984) for 
improving the medial axis by smoothing the bound- 
ary or using multiresolution schemes, as pointed out in 
(Pizer et al., 1987; Ogniewicz, 1993), the smoothing 
approaches may cause other problems. For example, 
they may not preserve the topology or the shape of the 
original skeleton. 

Another problem for the medial axis which is less 
often noticed is that the axis is ill-defined around 

Figure 13. The sensitivity of the medial axis to noise (a) shows the 
ideal symmetry axes for a rectangle. (b) and (c) shows the distortions 
of these axes caused by small protrusions and indentations on the 
boundary. (Adapted from Fig. 8.21 in Ballard and Brown (1982), 
p. 253.) 
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Figure 14. The unreliability of the axis near bifurcation points. 

bifurcation points, and thus is unreliable. In fact in 
a two dimensional image any bifurcation point of de- 
gree larger than three will be unstable. Figure 14(a) 
shows the medical axis for the two orthogonal strips, 
but when one strip slants a little (see Fig. 14(b)), one 
joint point will bifurcate into two. Similarly Figs. 14(c) 
and (d) show how small smooth deformations on the 
boundary can perturb one joint point into three. 

Our representation scheme in Section 3 motivates 
a modular approach. The first module employs de- 
formable templates and linear estimation to determine 
the skeleton of each mid-grained part, see Section 4.1.2. 
The second module detects the bifurcation points, and 
deal with how mid-grained parts are joined together, 
see Section 4.1.3. 

In the following two subsections we describe these 
modules in depth. We will return td discuss the 
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problems of the medial axis in later sections after de- 
scribing our algorithm. Those readers who are not 
interested in the details of our algorithm are advised to 
skip to Section 4.1.4. 

4.1.2. Module 1: Estimating Skeletons of Mid- 
Grained Parts. First of all, we suppose that the 
images is preprocessed and the silhouette extracted, see 
Section 6 for a discussion of how this might be done. 
The silhouette can be represented by a binary image 
Z (x, y) such that Z (x, y) = 0 (black) if the pixel (x, y) 
is inside the shape and Z (x, y) = 1 (white) otherwise. 

Suppose (x, y) is a point on the axis of a deformed 
worm part and r is the rib at (x, y). Then (x, y, r) 
defines a circular domain 2), centered on (x, y) with 
radius r, shown in Fig. 15(a). To localize the point 
(x, y) and find its rib r, we design a deformable circle 
called the free traveling circle (FTC) whose behavior 
is determined by the following energy function: 

x Z(x + u, y + v)dudu - ir’ (5) 

The Dynamics of the FTC Center: By gradient de- 
scent with respect to x and y, we have the motion 
equation for the center of the FTC: 

= s rn~ (r - Jm)(-VZ) ds (6) 

where r is the boundary of the shape and -VI is the 
negative gradient direction. In the binary case, -VI is 
nonzero only on the boundary r. It is always perpen- 
dicular to the boundary and points inwards the shape 
as shown in Fig. 15(b) . r’ We can consider -VI as a 
force which is weighted by r - dm, so the closer 
the pixel (x + u, y + v) to the center (x, y), the larger 
the force. Thus according to Eq. (6), the motion of 
the center (x, y) is the result of the overall force inte- 
grated along the boundary inside the circle, as shown 
in Figs. 15(c) and (d). The center will converge when 
forces from all directions are balanced. 

The Dynamics of the FTC Radius. By steepest de- 
scent with respect to r, we have the motion equation 
for the radius of FTC: 

dr aEF -- 
dt= ar 

=- ss zcx + U, y + v) du dv + arue (7) 
D 

In Eq. (7), the first term is the total area of “white” 
pixels included in the circle domain D, see region A in 
Fig. 15(a). It represents a force which always makes 
the circle shrink whenever the circle domain D con- 
tains pixels outside the shape. The second term in Eq. 
(7) represents a stretching force to enlarge the circle. 
The circle will converge when the area of A is cua-‘. 
This allows the circle to tolerate some noise on the 
boundary12. How much noise the circle will tolerate 
depends on the choice of o! and a. 

(i) If a = 1 then A = a. Thus, after convergence, 
all circles will include the same amount of noise 
(i.e., the same number of white pixels). This is 

a !2 c d e 

Figure 15. The motion and convergency of the deformable circles. 
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Figure 16. Tracking the skeleton by linear prediction and error correction. 

(ii) 

(iii) 

undesirable, since a! may be too large for a small 
circle, and too small for a large one. If a = 1, 
and a! + 0, then the deformable circle degenerates 
to the maximal circle defined by the medial axis 
transformation. 
If a < 3, we are able to guarantee the conver- 
gence of the FTC Eq. (7). Because after the cir- 
cle gets larger than the shape region, the area A 
(or the shrinking force) will grow proportional 
to r2, while the stretching force grows only as 
cd1-1 < r2. 
The empirical choice used in this paper is a = 1.5. 
A drawback is that the radius r, after convergence, 
will not be invariant to the scale of the image. 
However, we tested the program for calculating 
the FTC on circles with radii 8, 16, 32, 64 and 
obtained convergence results of 7.9, 15.9, 31.2, 
63.2 respectively. We also calculated the FTC on 
rectangles with various width. All these results 
shows that the FTC is almost invariant to the scale 
of the images. 

Once the first point on the skeleton is localized, es- 
timating the skeleton for each mid-grained part pro- 
ceeds as a stepwise tracking process. As shown in 
Fig. 16(a), let P,, = (x,, yn) be a point on the skeleton 
estimated at time step n. We first predict the next point 
as kn+i = (x,, y,) + $, (cos 8,, sin &) (see the dashed 
line) with f$, being the estimated tracking direction, 
and $, the estimated step size. The prediction F,,+i is 
then refined to point P,,+I on the dark solid line by the 
deformable circle. In this manner, we are, in fact, ap- 
proximating the skeleton of each mid-grained part with 
a chain of short line segments. Such approximation is 
justifiable by referring to the anatomical analysis for 
the bones of vertebrates in Fig. 2. 

Figure 16(b) shows how &, is calculated. Let 
R, (6, r]), and RI(~, r]) be the perpendicular distances 
from point ($, q) on P,, Fe+1 to the right and left bound- 
aries. e^ is calculated easily by minimizing the sum of 
square errors: 

Error(&) = 
s 

(RI(~, r> - Rr(t, r7)12dl ^ 
pn PIE+1 

Because RI, R, are not analytical functions, in prac- 
tice, we calculate Error(&) around the old tracking 
direction @,,-I , and pick up the best &,. We also 
need to measure o;, which shows how accurate the 
estimated & is. For simplicity, once i,, is calcu- 
lated, for each, point (6, 7) on P,,p,,+, , we define 
AG(c, r) = 110, - arctan( “:;“~~;+“;~;~~~z)/l, the a, 

is the variance for the set {Ae(c, n) 1 V(e, q) E 
PnPn+lJ. 

The tracking step size $ can be estimated based 
on Error( For example, the smaller the Error(&), 
the larger S,. But such estimation is computationally 
expensive and moreover, the step size should be con- 
strained by some global conditions, i.e., if ,$ is too 
large, the skeleton tracking step may pass by a bifur- 
cating point on the skeleton. In our implementation, 
we choose S = 4 pixels13. 

Then based on these initial estimations & and a,,, 
we localized the next point P,+I by moving a de- 
formable circle using kn+i as the initial point for the 
center of the circle. Since we fix the tracking step 
size S, the deformable circle now has only two de- 
grees of freedom--+, and t-,+1. We call it the con- 
strained traveling circle (CTC). The CTC center is 
(x,+1, yn+l) = (x, + S cos 0,) y,, + S sin 6,), and the 
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energy for CTC is: 

The additional term is to constrain the motion of the 
center to a limited angle centered on the prediction. 

By gradient descent, we have: 

drfi+l aEC aEF -=--=-- 
dt ah+, ah+, 

aEF T 

-s ax,+l El - sin 9, = 
aEF ’ ( > cos en 

ah+l 

(9) 

(10) 

(11) 

The motion equation for r is the same as for the 
FTC’s The motion of the center is determined by two 
forces, the first term stands for the force which is the 
projection of the overall force in the FTC onto the di- 
rection perpendicular to 0,,, see line AB in Fig. 15(e). 
Because S is fixed, the center moves along an arc. The 
second term constrains the change of 0,. In the im- 
plementation, we choose a! = 4.5, h = 10.0, and if 
c < 2.5”, i.e., the estimation from the least square er- 
ror is very reliable, we do not need to update 6, in the 
CTC. 

4.1.3. Module 2: Bifurcation Analysis. The second 
module is implemented to detect whether the skeleton 

should bifurcate. This task is performed by calculating 
the range-angle function. This is similar to techniques 
used in sonar analysis, see Fig. (17). 

Imagine that the circle sends a set of rays RQ, from 
its center c at angles {ej E [elow, elow + A@, elow + 
2A8,. . . ,6&h], } where 0, is the angle between the ray 
and the horizontal axis, and we choose A0 = 5. Each 
ray RQ, reports the distance r(&) from c to the nearest 
point on the boundary and we define {(@i, r(6’i)) to be 
the range angle function. 

To detect the object boundary in binary image is easy. 
Each ray grows from the center along angle 0, until it 
meet a “white” pixel. Due to the imprecision of the 
discrete image, we use a b x b kernel centered at the tip 
of the ray to investigate the pixels near the tip. If there 
are more than d white pixels within the b x b kernel, 
then the ray stops growing. We use d = 2, b = 5 for 
images of size of order 128 x 128 pixels. 

The range-angle function is usually noisy. A typical 
profile has small local peaks imposed on large global 
peaks in a hierarchical structure. Each peak represents 
a possible branch in the shape’s skeleton. First of all, 
we pick up a set of angles /3i, 82, . . . , fin, (#3i < pi+] 
for i = 1,2,... , n - 1) with each @t satisfying: 
(I) r(/?i) is a minimum in the range-angle function, 
(II) r(/$) 5 2r,, where r, is the radius of the current 
traveling circle, i.e., we ignore all of the possible bifur- 
cation far away’? So for each 0 < i < n - 1, [pi, &+I] 
corresponds to a peak in the profile. It may result from 
a branch, a local deformation, or noise, depending on 
how salient it is. By observation we noted two im- 
portant cues for determining the salience of peaks: (i) 
a wide broad peak and (ii) a thin deep peak. Thus 
the saliency of a peak is measured by two properties: 
(1) the maximal range R,, within the peak [pi, /3i+t] 
(2) the area A within the peak-A = i J’+’ r*dO. 

Figure 17. Sonar rays and range angle function. 
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Figure 18. (a) See text. (b) The saliency measure must be chosen so that noise fluctuations on the boundaries do not cause bifurcations of the 
skeleton. 

The precise form of S[#$, ,&+I] is set by evaluating 
it for a reference shape, in this case a rectangle, see 
Fig. 18(a). The rectangle’s corner has R,, = 2/2 . 
r,, Area = r,‘, where r, is the radius of the current 
CTC. We set the saliency of this corner to be 0.75 which 
serves as a reference point. The saliency of the peak 
[pi, pi+i] is then defined by: 

R A 
S[/?i, fii+l] = 0.75 . max max 

(fi--$ 3 > 

This is actually an adaptive threshold, i.e., the 
saliency of a peak depends on the scale of the 
current deformable circle. Moreover, we set R = 
max(r,, 10) 2 10 to ignore the peaks when the radius 
Y, is very small. 

Because the saliency measure is continuous it is not 
always easy to pick a single fixed threshold to distin- 
guish between peaks due to genuine bifurcations of the 
skeleton and those caused by local deformations and 
noise. Hence, as for edge detection algorithms (Canny, 
1986), we choose two threshold values, Ttow, T’igh (see 
Fig. 19). 

Suppose that the saliencies are measured and N 
branch peaks are found. There are three cases: 

1. If N = 0, then the traveling circle has come to the 
end of a branch. The center of the traveling circle 
is defined to be a E-node. 

:  
a 

:  
:  

:  
:  

i dummy 
:  

noise ; branch 
peak i peak i peak 
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Figure 19. Bi-threshold classification of bifurcation points. 

2. If N = 1, i.e., there is only one branch peak 
[,!?k, #&+I], then the traveling circle is in the mid- 
dle of a branch. 

3. If N > 1, then the center of the current CTC is a 
B-node-i.e., a bifurcation point of the skeleton. 

Associated with each peak k are the angles Bk, bk+i, 
which define two point ~1, p2 on the boundary (see 
the angles shown around point CJ in Fig. 17). When 
we obtain the next point c in Fig. 17, the scan angles 
8tow, &gh are calculated so that the first and last sonar 
ray pass through ~1, pz respectively. 

Before ending the skeleton algorithm, two further 
points need to be addressed. 

First, the measurement of peak saliency will be prob- 
lematic when a peak is almost invisible from the cen- 
ter c. This situation occurs at the tails of animals in our 
application (see Fig. 20(a)). There are many ways to 
deal with this special case. For example, track along the 
boundary of the shape clockwise from A to B, when- 
ever a peak is classified as non-branch peak, to see 
whether some part is missing. In FORMS, we simply 
use some points (named “scout”) along the arc of the 
deformable circle between A and B (see the dark dots), 
from where sonar rays are sent to detect the boundary 
as shown in Fig. 20. It may still fail if the tail is very 
“jagged”, but such case never happen in our animate 
shapes displayed later, because the bones of animals 
cannot be too “jagged”. 

Second, suppose the circle at point 0 in Fig. 20(b) is 
a converged traveling circle, it detects a branch at angle 
interval [Oiow, @high] shown by the shadow region. This 
situation often happens when 0 is a bifurcation point 
on the skeleton. To estimate the tracking direction e^ 
discussed in Module 1, we need to measure the per- 
pendicular distances (RI, Rr)‘s. But since the boundary 
around point 0 outside the angle interval [6iow, &sh] is 
almost irrelevant to the tracking direction 8 of the cur- 
rent branch, we instead use the line segments OA OB 
as the boundary shown in Fig. 20(b) while measuring 
(RI, Rr)‘s. 
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Figure 20. Two further points for the skeleton calculation; (a) is the special case for peak detection; (b) is the detailed point in estimating the 
tracking theta. The circles are the converged deformable circle. 

4.1.4. The Results of the Skeleton Algorithm. The 
resulting skeletons for some typical objects are shown 
in Fig. 21. This figure also illustrates some important 
phenomena where the bifurcations seem unintuitive as 
we discussed in Fig. 14: (i) the bifurcation delay phe- 
nomenon (BDP), see the bifurcation of the rear legs 
of the dog, which usually results from self occlusion; 
(ii) the bifurcation splitting phenomenon (BSP), see 
the bifurcation of the front legs of the dog. Both BDP 
and BSP are not the fault of the skeleton algorithm. 
Without using a prior model for a dog there is no rea- 
son to require that the two bifurcation points at the 
front and rear parts of the dog be coincident. Such 
“errors” will be corrected, see Fig. 28, in the top-down 
stage where we directly match models of hypothesized 
objects15. 

To test how well the algorithm work on noisy images, 
and on images in other domains, we ran the program 
on a noisy leave and an image from an MRI medical 
image of the brain. The results are shown in Fig. 22. 
All the skeletons in Figs. 21 and 22 are calculated using 
the same set of parameters and thresholds. 

4.2. Recovering Mid-Grained Shapes 
and the Primitives 

After recovering the skeleton it is still a nontrivial 
problem to partition the object into a set of mid- 
grained parts. Bifurcations in the skeleton correspond 
to joining together mid-grained parts, but how exactly 
should these parts be joined? Usually people (Nava- 
tia and Binford, 1977; Brady and Asada, 1984; Siddiqi, 
Tresness, and Kimia, 1994) cut parts at minimum cur- 
vature points. But such a partition may be bad because: 
(i) curvature minima may not correspond to important 

features for flexible objects and may be unstable, (ii) 
after cutting away all the parts there remains a joint 
polygon, see Fig. 24(a), and (iii) sometimes the cutting 
of one part affects the shape of the rest. For exam- 
ple, in Fig. 24(b), a desirable partition for the dorsal 
fin of the fish is along a curve instead of a straight 
line. 

In FORMS we join mid-grained parts together by 
overlapping their corresponding joint circles. The in- 
tuition is that these joint circles form a “hinge” about 
which the parts can rotate. Each part has an angular 
segment [pi, /?i+i]. As shown earlier in Fig. 4(c), to 
partition a part, we simply remove one-layer of joint 
circle and the connected area within the angle section 
[/Ii, pi+t]. Intuitively, we do not saw off the trunk but 
instead unearth the “root”. 

A part whose axis is between two B-nodes is classi- 
fied as a deformed worm part. A part with axis between 
a B-node and a E-node will be considered as worm part 
if the length of its axis is larger than t times the radius 
of both deformable circles at the B-node and E-node, 
otherwise it is temporarily classified as a deformed cir- 
cular part. We choose t = 1.5 here. The classification 
will be finally determined by the model. 

The partition of animals seems intuitive, see Fig. 23, 
while the segmentations for shapes like fish are rela- 
tively hard. As an example, Fig. 24 shows the details 
of how FORMS segments a fish whose skeleton has 
been shown in Fig. 21. There are a total of five bifur- 
cation points (B-nodes) along the axis. Virtual lines 
in Fig. 24(c) are drawn to connect parts which share 
the same joint circle at each B-node. There are seven 
end points (E-nodes) on the skeleton, one of which is 
at the top of the head, and the rest are on the fins and 
tails. 
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Figure 21. Skeletons of typical objects. 

Figure 22. The skeletons calculated for a noisy leaf and an MRI 
image of a cross section of the brain. Figure 23. The dog and its segmentation into parts. 
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Figure 24. How to partition a fish into mid-grained parts. 

In Fig. 24, since the axes for the fins and tails are short 
compared with the radii of their corresponding joint cir- 
cles the six parts are considered as circular parts (see 
Fig. 5(b)) for which no rectangle description is needed. 
The white lines in Fig. 24(b) are either: (i) radial lines 
stemming from B-nodes, see the fins and tails, for de- 
tecting the variations on the boundary within the angle 
section [a, pi+i], or (ii) lines perpendicular to the axis 
to measure the ribs, see the head. 

After the mid grained parts have been extracted, we 
compute their characteristic vectors and then project 
them onto the parameterized deformable primitives de- 
scribed in Sections (3.1) and (3.2). For most animate 
objects the axes for these parts are almost straight lines, 
and the deformations of these axes are usually rigid 
transformations. Thus for the purpose of recognition, 
we ignore the detailed shape of axes for the worm parts. 
This is why we did not apply the principal component 
analysis on the axis vectors in Section 3.2. 

5. Matching and Recognition 

5.1. Data Structures for Representation 

The process described in the previous section yields 
a representation of the input object in the form of a 
skeleton graph with each edge in the graph representing 
a parameterized mid-grained part. The models for each 
object in the database are represented in the same way. 
Figure 25 is the model for a person. The two short parts 
on the feet model the heel and the toe respectively. 

B-node 

E-node 
parameter box 

Figure 25. The model for the human body. The skeleton graph. 

Figure 26. The butcher’s shop. 

We organize the models of all the objects into two 
databases. One collects all the mid-grained parts of 
the animate objects as shown in Fig. 26, and is named 
the butcher’s shop. It can be considered as a content 
addressable memory. Each cell hung in the butcher’s 
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shop contains two items: (i) the deformation parame- 
ter vector (-6 al, w, c+, a> or (B, ~1, ~2, w, 4, and 
other parameters such as the area, the radius of the 
joint circles of this part. (ii) the label indicating 
what objects it belongs to, for example, the head of 
the dag. The other database contains the skeleton 
graphs of all objects, with each object having sev- 
eral skeleton graphs due to changes of viewpoint and 
articulations. 

5.2. The Measurement of Similarity 

How to measure the similarity between objects is 
poorly understood both in mathematics (Otterloo, 
1991) and in psychology (Mumford, 1991). It seems 
that humans often use subjective criteria in their assess- 
ment of how similar shapes are. Human perception of 
the similarity of shapes is determined not only by ge- 
ometric properties but also by semantic content, and 
the latter is, in turn, influenced by the observer’s cul- 
tural and social background (Otterloo, 1991). More- 
over, people have argued that perceptual similarity be- 
tween shapes is not symmetric and hence cannot be 
described by a metric (Mumford, 1991). Similarly, 
Leyton has argued that shape representation proceeds 
by a process of ordered deformations (Leyton, 1992) 
(i.e., an ellipse is considered to be a deformed cir- 
cle, but a circle is not considered to be an undeformed 
ellipse). 

Our shape modelling framework discussed in Sec- 
tion 3 also organizes shapes into a partially ordered 
space based on deformations of primitives. These de- 
formation processes might be related to Leyton’s re- 
sults on human perception (Leyton, 1992). 

We argue that only objects which can be put in the 
same structured grammatical framework can be mean- 
ingfully compared. We consider geometrical similarity 
between shapes and will define similarity in a statistical 
sense. 

First we need to define the similarity between 
two mid-grained parts. Suppose that m = worrn(.f&, al, 
~2, ~3, ~4) is a mid-gained part for model shape M. 
Because the deformation modes are obtained by the 
use of principal component analysis, which can be 
thought of as computing the eigenvectors of the co- 
variance matrix of a multi-dimensional Gaussian, it is 
consistent to assume that the variations of mid-grained 
parts are subject to the Gaussian distribution. There- 
fore, if d = worm(f?, ,!?I, j32, ,&, 84) is a part in the 
input shape D, we define the similarity between parts 

m and d as the joint probability: 

P match[m, dl = ; exp-(ELO y+q% 
(12) 

where Z is the normalization factor, and the (T’S are the 
variances of the deformation parameters for model part 
m16. The similarity between circular parts is defined in 
the same way as Eq. (12). 

Now, let M = [ml, m2,. . . , m,] be the model 
which is matched against the input object 2) = 
[dl, dz, . . . , d,]. Suppose that the match @ between 
the shapes M and D corresponds to matching the mid- 
grained parts SO that <D(mj) = di for i = 1,2, . . . , ~1. 
The @ must, of course, match the grammar structures 
described in the planar tree-like skeleton graphs of both 
the model and the input shape. It is reasonable to as- 
sume that the presence or absence of one part in the 
object is independent of the matching of the others. 
Thus we define the similarity between M and D under 
the match Q as the probability17: 

f’c~[M, Dl 
= probability{mi matches di, i = 1,2, . . . , n} 

(13) 
n 

= 
l-I 

P match [ml > 4 1 
i=O 

(14) 

If the match CD is incomplete, in the sense that some 
parts of the model or the object are unmatched, then 
we define the similarity between M and V as the 
probability: 

Po[M, Dl= l-j Pmatchbb @Cm>1 
wdf0 
X fl pmissing[ml n Ptma[dl (15) 

O(m)=0 Q-'(d)=0 

where Pcssing[m] is the probability for part m in the 
model M to be missing from the observed input shape, 
and P,,,,[d] is the probability for part d in the input 
shape D to be a redundant part in the input, resulting 
from segmentation errors or because the input has an 
additional parts (for example, if the input is a human 
holding an umbrella in his hand). We could also incor- 
porate some subjective semantics into each part of the 
model. For example, for a less important part m, we 
can define Pessing[m] be close to 1 .O, while for impor- 
tant parts Pissing[m] should be close to 0.0. The latter 
means that if an important part of M is not observed 
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in the input shape D), then the probability of D being 
object M is very low. For example, the torso of a per- 
son is much more important than the feet for several 
reasons: (i) it is far larger, (ii) is a central part of the 
object rather than a peripheral one, and (iii) it is visible 
in far more viewing situations. 

For simplicity, we define Pisstns and P,,@, in the 
same way as followings: 

where h and Al. are scaling constants, and A(m) is the 
geometric measurement determining the relative im- 
portance of part m in the model M. In our implemen- 
tations we choose A(m) to be the area of part m, and 
similarly for A(d), and we set h = p = 2.8. 

The goodness of fit measure we showed in late sec- 
tion is defined to be e(~‘“sP@[M,D1), where N is the 
number of parts in the model. We use this because the 
probability P@[M, D] defined in Eq. (15) is typically 
the product of many probabilities factors and is thus 
very small. 

5.3. Matching and Recognition 

LetD=[di,dz,..., d,] be the input object, where the 
di are the mid-grained parts obtained using the methods 
described in Section 4. Then the recognition proceeds 
in two steps: 

First, for each mid-grained part di (i = 1,2, . . . , n), 
we hash the butchers shop to find the most similar mid- 
grained parts ml, m2, . . . , mk KJ that pmatch[ml, 41 1 
P m&[m2, di] > . . . > Pm&&[mk, di]. Then the object 
models indicated by the labels of the m’s receive 
credits cl > c2 . . . > ck respectively. After perform- 
ing this search and credit assignment for all di (i = 
1,2, . . . ) n), we select the m models whose credits are 
the highest. The accuracy of the match at this stage will 
depend on how accurately the skeleton is calculated by 
the bottom-up process. The first step is only needed 
when the database is really big18. 

Second, for each model M recommended by the 
first step, we need to find the best match between all 
skeleton graphs (due to the changes of viewpoint and 
articulation) of the model M and the input shape V 
using the similarity criterion defined in the previous 
section. 

The matching proceeds basically as the branch-and- 
bound algorithm. It searches over all possible matches 
between the skeleton graphs of the model and input 
shape on an and-or tree”, and trims those branches 
in the and-or tree whose costs are too large. If the 
data representation found in the bottom-up process is 
perfect then this would simply correspond to a weighted 
subgraph matching. But as we discussed in Section 4 it 
is unlikely to extract the perfect skeleton without using 
model specific information. Therefore, integrated into 
the searching algorithm is the top-down verification 
process. 

Two classes of problems need to be fixed in this 
top-down process. First, the skeleton structure may 
be wrong, as discussed in Section 4.1 .l. For example, 
a B-node may split into several B-nodes due to slight 
deformations on the boundary. Also a circular part 
may be miss-interpreted as noise. Secondly, the prim- 
itives derived from the skeleton may be wrong, i.e., we 
may get confused between circular parts and elongated 
worm parts. 

To treat the unreliability of the skeleton structure 
resulting from the bottom-up process, we employed a 
group of skeleton operators each of which can trans- 
form the skeleton graph into a new one. By applying 
these operators in sequence we can get a large num- 
ber of possible skeleton graphs for the input shape 
which can be matched against the model. As shown in 
Fig. 27, we mainly used four skeleton operators: cut, 
merge, shift, and concatenate (see the caption for de- 
tails). These operators are applied whenever matching 
residuals with the model are detected. 

Theoretically these four skeleton operators are 
enough to adjust for the possible errors occurred in 
the skeleton calculation step. Only two kinds of error 
arise. The first is the presence of an extra branch or 
even an extra sub-graph due to noise or real extra ob- 
jects, like a man on the horse. The opposite case when a 
real branch, or sub-graph, is absent can be treated simi- 
larly because it means that the corresponding branch, or 
sub-graph, in the model is extra. If the extra branches 
happen to appear at the B-node, then the cut operator in 
Fig. 27 can cut the extra branches correctly. Otherwise, 
if the extra branches appear between two nodes, like dy 
in Fig. 27(c), then the concatenate operator will cut the 
extra part and join the separated two part together. The 
second kinds of possible errors in the skeleton are the B- 
node splitting cases discussed in Fig. 14-due to small 
changes in the boundary a B-node may split into sev- 
eral B-nodes. Similarly the opposite case when several 
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Figure 27. The skeleton operators. This figure shows the skeleton operators which are used to fix the matching residuals; a) if node 1 is 
matched to a node with degree = 3 in the model, then two out of five branches should be cut off. There are ten possible combinations; b) if 
node 1 is matched to a node with degree = 4 in the model, then node 1 tries to find another branch by merging node 2 with itself; c) when 
node 1 is matched, then each branch connected to node 1 should be matched with the corresponding branch in the model. The adjustment is to 
concatenate dl and d2 and to consider branch d3 as noise or an extra part; d) in contrast to case c, we shift d3 to join node 3. 

B-nodes coincide by accident, which rarely happens, 
can be treated as a node splitting case in the model. 
The merge operator and shift operator are designed to 
deal with bifurcations. The difference between these 
two operators is that they treat different B-nodes as the 
“true” B-node. 

When adjusting the skeleton, the new skeleton seg- 
ments are calculated by interpolating the maximal cir- 
cles for the worm parts and re-estimating the radials for 
circle parts. When a new part is generated, we need to 
represent it as a deformed primitive shape, by project- 
ing it onto the deformation modes, and measuring the 
parameters. We include costs for applying the skeleton 
operators. For example, for the cut and join operators 
may pay the cost P,,,,[d] for a discarded part d, such 
as d3 in Fig. 27(c). 

The ambiguity between noise blobs and circular 
parts is represented by dummy branches in the skeleton 
graph. The dummy branches are detected as dummy 
peaks in Fig. 19. When aB-node of degree d is matched 
to a B-node of degree m in the model, if m > d, then 
the algorithm needs to find the m -d missing branches. 
One way to do this is to apply the merge and shift oper- 
ators discussed above, the other way is to re-interpret 
dummy branches at the current B-node as circular parts. 

Another place the dummy branch appears is during the 
skeleton operators. If the ignored branch (see d3 in Fig. 
27(c)) is a dummy branch then no cost will be paid. 

Whether a part is a circular part or an elongated worm 
part will be finally up to the model. Therefore the algo- 
rithm must actively switch a part between the circular 
and the worm representations. 

5.4. Matching Results 

Figure 28 shows some of the adjusted skeletons ob- 
tained using the skeleton operators after matching some 
of the skeletons shown in Fig. 21 with their correspond- 
ing models. The BDP and BSP observed in Section 
41.4 are fixed. Some dummy peaks are eliminated, 
such as the small peak on the leg of the human and 
on the tail of the crane. Conversely, some dummy 
peaks are judged to be real branches, such as the ear 
of the lion. The skeletons in Fig. 28 satisfy our sub- 
jective perception about the “true” skeletons of those 
objects. Based on these skeletons, the objects can be 
segmented and then a more precise parametric repre- 
sentation is available. Figure 35 shows the dataflow of 
the FORMS. 
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Figure 28. Skeletons matched with models. 

To test the performations of the FORMS, we col- 
lected a small database which contains 35 objects 
including people, hands, animals, fish, insects, and 
leaves. These objects are collected from some biology 
books and photographs, and they can be classified into 
17 categories. We collect silhouettes which can well 
represent the objects, in other words, FORMS cannot 
work well on those shapes where serious self-occlusion 
exist, like the Attneave’s cat. We will discuss this prob- 
lem in the final section. For some categories, we collect 
a small number of instances. For example, we collect 
7 different horses from the evolution diagram for in- 
tensive comparison, and we choose the modern horse 
as the model of that category. For many other cate- 
gories, we have only one or two instances, and these 
shapes are mainly used for similarity studies between 
categories. The model in these categories are selected 
by averaging two instances or we simply choose the 
more standard one as model. For all objects, we con- 
struct at least two view points by flipping transform. 
For some categories, like person, we have four view- 
points and articulations. But we didn’t study the view 
point intensively in this paper due to the lack of data. 

We note that the PCA was performed for the first 
25 objects only. The remaining 10 objects were then 
added. 

Some typical matching results between objects from 
difference categories are shown in Figs. 29-32. In ev- 
ery case the two objects are first matched against a 
model (hand, horse, human, giraffe respectively), then 
the matched skeletons are drawn in the figures. For 

Figure 29. One part is missing and the hand is rotated. The good- 
nessoffitis0.811. 

each pair of parts which are matched to the same part in 
the model, the program draws a line to connect the cor- 
responding points. These figures show the robustness 
of the matching under scale, rotation, and flip transfor- 
mations and with missing or additional parts. We also 
selected a group of objects of roughly similar form for 
intensive comparison. Figure 33 shows the differences 
in their similarities. 

We tested the similarities between shapes in 16 cat- 
egories, see Fig. 34 2o . On the top of each column is the 
input shape. The three rows below shows the closest 
categories and the similarity measurements. The table 
is non-symmetric because the goodness of fit between 
a dog input and the cat model has no direct relationship 
to the fit between a cat input and a dog model. 

Note for some categories, like the leaf, we have only 
one example. The model therefore is simply the exam- 
ple and thus the similarity measurement is close to 1. 
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Figure 30. The man on the horse in redundant, and is therefore ignored. The goodness of fit is 0.695. 

Figure 31. The corresponding parts of the lioness and the giraffe are 
matched, despite a flip transformation between the two animals and 
considerable differences in size of corresponding parts. The overall 
fit is only 0.542, which suggests that the two objects are different. 

6. Discussion 

In this paper, we first proposed a general model for 
how to generate the shapes of animate objects, such 
as fish, leaves, trees and insects. Then we formulated 
the recovery of their structures as an inverse process. 
We employed a bottom-up/top-down approach while 
matching the input shapes to the models stored in the 
database. The overall dataflow for the FORMS is 
shown in Fig. 35. Two more aspects need to be ad- 
dressed below: 

I. Learning. Figure 35 also shows the structure of 
dataflow for learning. Even though learning such sim- 
ple shapes as parallelograms was claimed to be a hard 
problem within Valiant’s PAC-learning framework 

,t:: 
:x.. ‘. 
> 

.! 

Figure 32. In the left figure the shapes undergo severe gesture and viewpoint deformations but the correct matching is attained with goodness 
of fit 0.761. The two shapes in the left figure, in fact, are matched to different skeletons graph of a person model, and the correspondence 
between them will be impossible in the early stages of vision. In the right figure we attempt to match our model to the figure in Picasso’s Rites 
of Spring. Our algorithm identifies Picasso’s figure as a human upside down! This occurs because the head is not connected to the torso and the 
hands appear like feet because they are holding mandolins. Our algorithm could be easily adapted to solve this problem correctly. The goodness 
offitisonly0.113. 
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model used 

The animals on the right are 
collected from the diagram 
of evolutions. This figure 
shows how the recognition 
performs among animals 
within the same category. 
The similarity list here is: 
exp( logP/#no.of parts) 

because P is the product of 
the probability of many 
parts and thus is very small. 

Figure 33. Similarities within the same category. 
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Figure 35. Dataflow of FORMS. 

(Anthorny, 1992; Shvaytser, 1990), it seems a trivial 
task for FORMS to learn flexible objects. As shown 
in Fig. 35 the total knowledge base in FORMS is or- 
ganized into three parts: (i) the deformation modes, 
(ii) the butcher’s shop, and (iii) the skeleton graphs. 
Therefore learning in FORMS means using examples 
to adapt this knowledge in the following ways: 

1. If the input shape is matched to a model and the 
error between the mid-grained parts and their pro- 
jection onto the deformation modes is large, then it 
means that these parts should be considered as out- 
hers to the principal component analysis. We can 
then recalculate the principal components by includ- 
ing the new mid-grained part into the covariance 
matrix. 

2. If the input shape is identified as a certain object in 
the model. We can use it to re-estimate the means 
and variances, (i.e., the parameters description) for 
each part of that model. -Thus we can adapt the 
butcher’s shop database. 

3. If there is no model in the database which can be well 
matched to the input shape, then we can identify the 
input shape as a novel object. We can use its skele- 
ton graph, as well as descriptions of its mid-grained 
parts, to start building a new model in the knowledge 
base. 

skeleton matched 
,agal~tmdel 

shape segmsnted into 
mid-grainad parts 

II. The Limits and Extension of Our Method. 
FORMS will work well only in situations where our 
shape model is applicable. The model was created to 
deal with animate objects and would htive to be com- 
pletely modified to deal with man-made objects like 
houses and industrial parts. 

Moreover, even for animate objects, our model is not 
complete. At least three factors are not taken into ac- 
count: 1. clothes may drastically change the shape of a 
person, such shapes may not be modeled by elastic de- 
formations, 2. fine-scale structure, for example, details 
on the heads of animals, are ignored so the recognition 
of a face silhouette will be imprecise. Objects involving 
folding mechanism, like the wings of birds and some 
wide fins of fish, see Fig. 36, are not well modeled by 
our primitives and deformations. 3. Our technique for 
calculating the representation is limited to those shapes 
which can be well represented by their 2D silhouettes. 
For example, the silhouette in Fig. 37 is insufficient to 
determine the object. But if internal edges are added 
then it is possible to identify the object as a sleeping 
cat. So the input representation must contain internal 
edges as well as the silhouette and a more complex 
recovery strategy should be investigated. To extract 
silhouetts from real images, recently a novel image 
segmentation algorithm is reported in (Zhu and Yuille, 
1996). 
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Figure 36. The folding structure in the wing of birds (left) and some wide fins of fish (right) are not modeled by the model in Section 3. 

Figure 37. The silhouette alone is not sufficient to identify the Attneave’s cat. But when internal edges are added it becomes straightforward 
to recognize it as a sleeping cat. 

Figure 38. The orthogonal projection of objects on planes. 

Appendix A. The Sensitivity of the Part 
Descriptions to the Affine Transformation 

In this appendix, we discuss how the parameters de- 
scribing the mid-grained parts in the 2D plane will 
be influenced by 3D articulated motion and viewpoint 
changes. First of all, we assume weak projective pro- 
jection from 3D objects to 2D silhouettes. Since the 
skeleton calculation is invariant to planar rotation and 
translation due to the isotropy of deformable circles, 
and furthermore since the vector for the ribs in the worm 

parts and the vector for the radials in the circular parts 
are divided by the radius of the corresponding maximal 
circles, we only need to consider the influences of the 
slant angle u and tilt angle t under orthogonal projec- 
tion ,as shown in Fig. 38. Let e’ = (ai, Q, ~3, ~4, e) 
and 0 = (ai, ~2, ~3, ~4, o) be the original parameter 
descriptions for the worm and circular parts respec- 
tively when a! = 0, t = 0. 

(i) For most animate objects, we assume that an 
elongated worm part has a straight axis and is 
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(ii) 

rotationally symmetrical, then only the slant an- 
gle a! can influences the parameters. As shown 
in Fig. 38(a), the new parameters under (II, t is 
(w,cf2, cf3,Q!4,~COS~). 
Let a circular part be in the up plane shown in 
Fig. 38(b). Let OA, OB be two of radials for the 
peak, OA is perpendicular to the y-axis in the pro- 
jection plane, and B be the angle between them. 
Their projections are O’A’, O’B’, and p’ respec- 
tively. Since all radial lengths are normalized, we 
need only to consider the change of the relative 
size m = fi A, i.e., to see how A is related 
to cq t, and /?. 

If r=O, then A=J1+sin2Btan2a!211+:sin2 
L 

,!?tan2~,whena=/l=~,A~1+$. There- 
lationship between the angle /I and its projection B’ is 
given by: tan/Y = tan /I/ cos a. 

If a! = 0, then A = /cos2 p + sin2 /l cos2 t. when 
cr =,!I = 9, AZ 1 - &. tan/I’= tan/3cost. 

The:efore, if r and o! are within 30”, the changes of 
off sin 0 will be negligible. But the w and f? change with 
a!, t. 

In summary, the parameter descriptions o$r derived 
in this paper are ratherly reliable if the view point is 
near the orthogonal directions. Otherwise if looking an 
animal in front of it, the description is unreliable. The 
parameter C and w include information for recovering 
the 3D orientations, but the calculation of 3D post is 
beyond this paper. 
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Notes 

1. A tetrapod is a vertebrate (e.g., a cat, bird, or frog) with two pairs 
of limbs. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

9. 
10. 

11. 

12. 

13. 
14. 

15. 

A tree is defined to be a connected graph without loops. In other 
words, there are no holes in vertebrates. 
At this level of resolution, we can ignore the small bones in the 
skull. 
We have also considered a worm-type primitive where the circles 
are also allowed to deform, but this primitive is not used in this 
paper, The worm and circle can be considered as special cases of 
this primitive. The relationship between the worm primitive and 
the circular primitive reflects the evolution process described in 
Fig. 3. More mundanely, one can think of the worm and the 
circle as corresponding to smoothed local symmetries (Brady 
and Asada, 1984) and local rotational symmetries (Fleck, 1985) 
respectively. 
The primitive is scaled so that the radius of its largest end circle 
is equal to 1. The arc length C is also scaled by z. At this stage 
we ignore rotation and translation. 
Fourier theory is too well known to require discussion here. 
For animate objects, the changes of the axis are typically rigid 
but the rib variations are usually nonrigid. Thus we treat the 
descriptions of the rib and the axis separately. 
For the worm primitive the joint circles are attached to the 
rectangle, so they are not considered when we calculate the 
modes. 
See also work by Mjolsness (1991) on visual grammars. 
As we will discuss later, the representation is invariant to orien- 
tation but will slightly change with scale due to the convergence 
property of the deformable circles. 
Strictly speaking VI becomes infinite at the boundary and can 
only be defined there using distribution theory. This will become 
irrelevant when we discretize the theory for implementation. 
This smooths the boundary adaptively. The larger the scale, the 
more the smoothing. 
The images scale we used are around 128 x 128 pixels. 
It is possible, in this situation, to fit a bifurcation model if we 
know a priori that the current node is a joint node of M mid- 
grained parts. Then we could fit M peaks to the range-angle 
function and partially relieve the problems discussed earlier in 
Fig. 14. But such prior knowledge is not available until the shape 
has been recognized, see next section. 
The skeleton of the object will depend weakly on the initial 
starting point of the algorithm. To remove this slight ambiguity 
we choose a starting point determined by global properties of the 
object, such as the center of mass. 

16. Theoretically, the u’s could be estimated by statistics on the 
distribution of parameters for model part m. Because we only 
have a few sample shapes for each model M, not enough for 
statistical analysis, the (r’s are choose to be constants for all 
models. For worm parts we choose or = 2.18 and for circular 
parts we choose oi = 2.88, i = 0, 1 . .4. 

17. The relative orientation between mid-grained parts joined at the 
same joint B-node (i.e., B’s described in Section 3.4) will be 
certainly useful information for similarity, but for simplicity, it 
is ignored here. 

18. In our experiments, we used m = k = 3, and cr = 10, cz = 
5, cs = 3 and found that in all but two cases out of thirty five the 
model with the highest credit is in the top three. In both these 
cases the number of parts is ambiguous. 

19. Eachmodeoftheand-ortreeis astate whichrecords the matching 
or partial matching with cost measurements. 

20. The remaining 17th category is the hand. 
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