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AbstractÐGibbsian fields or Markov random fields are widely used in Bayesian

image analysis, but learning Gibbs models is computationally expensive. The

computational complexity is pronounced by the recent minimax entropy (FRAME)

models which use large neighborhoods and hundreds of parameters [22]. In this

paper, we present a common framework for learning Gibbs models. We identify

two key factors that determine the accuracy and speed of learning Gibbs models:

The efficiency of likelihood functions and the variance in approximating partition

functions using Monte Carlo integration. We propose three new algorithms. In

particular, we are interested in a maximum satellite likelihood estimator, which

makes use of a set of precomputed Gibbs models called ªsatellitesº to

approximate likelihood functions. This algorithm can approximately estimate the

minimax entropy model for textures in seconds in a HP workstation. The

performances of various learning algorithms are compared in our experiments.

Index TermsÐMarkov random fields, minimax entropy learning, texture modeling,

Markov chain Monte Carlo, maximum-likelihood estimate, importance sampling.

æ

1 INTRODUCTION

GIBBSIAN fields or Markov random fields (MRF) are widely used in
Bayesian image analysis for characterizing stochastic patterns or
prior knowledge, but learning accurate Gibbs models is computa-
tionally expensive. In the literature, many learning algorithms are
focused on auto-models, such as auto-binomial models [7] and
Gaussian Markov random fields [5] whose parameters can be
computed analytically. For MRF models beyond the auto-model
families, there are three algorithms. The first is a maximum
pseudolikelihood estimator (MPLE) [4]. The second is a stochastic
gradient algorithm [18], [21], [22]. The third is Markov chain Monte Carlo
maximum-likelihood estimator (MCMCMLE) [12], [13], [9]. The second
and third methods approximate partition functions by importance
sampling techniquesÐa topic studied extensively in the literature
[15], [16], [17], [8]. There are also methods [10], [11] that estimate
Gibbs parameters with precomputed derivatives of log-partition
functions. These algorithms were used primarily for learning MRF
models with pair cliques, such as Ising models and Potts models. The
computational complexity is pronounced by the recent minimax
entropy models (FRAME) for texture [22] which involve large
neighborhoods (e.g., filters with window sizes of 33� 33 pixels) and
large number of parameters (e.g., 100ÿ 200).

Recently, four algorithms were proposed to speedup minimax
entropy learning with mixed success:

1. A minuteman minimax algorithm [6],
2. A variational method [2], [1],
3. A method of learning by diffusion [19], and
4. A generalized MPLE (Private communication with

Y.N. Wu).

Besides the new algorithms, an ensemble equivalence theorem
enables the separation of the model selection procedure from the
parameter learning step [20].

In this paper, we study a common statistical framework for
learning the parameters of Gibbs models with an emphasis on
computational efficiency. There are two factors that determine the
accuracy and speed of these learning algorithms. The first is the
efficiency of the formulated likelihood functions measured by the
Fisher's information. The second is the approximation of partition
functions by importance sampling. This analysis leads to three new
learning algorithms:

1. A maximum partial likelihood estimator,
2. A maximum patch likelihood estimator, and
3. A maximum satellite likelihood estimator.

Our emphasis will be on the third algorithm which approximates
partition functions by a set of precomputed reference Gibbs
models in a similar spirit to [10], [11]. This algorithm can
approximately compute Gibbs models in about 10 seconds on a
HP workstation.

The paper is organized as follows: Section 2 presents a common
framework for Gibbs learning. Section 3 presents three new
algorithms. Section 4 demonstrates experiments on texture synth-
esis. We conclude with a discussion in Section 5.

2 LEARNING IN GIBBSIAN FIELDSÐA COMMON

FRAMEWORK

Let I� be an image defined on a lattice � and I@� its boundary
conditions. @� is the neighborhood of �. Let h�I�jI@�� be the
feature statistics of I� under boundary conditions I@�. For example,
h�� is a vector for the histograms of filtered images [23]. Without
loss of generality, a Gibbs model is of the following form (see [22]),

p�I�jI@�;��� � 1

Z�I@�; ��� exp ÿ < ��;h�I�jI@�� >f g: �1�

In (1), �� is a vector valued parameter corresponding to the
Julesz ensemble on infinite images [20] and it is invariant to the
sizes and shapes of �. So, �� can be estimated on an arbitrary �.

In learning Gibbs models, we are given an observed image Iobs
� ,

where � may have many disconnected components to account for
multiple observations. Equally, we may break � into smaller
patches Iobs

�i
; i � 1; 2; . . . ;M on lattices �i of arbitrary shapes and

sizes. These patches may overlap with each other. Then, �� is
learned by maximizing a log-likelihood,

��� � arg max
��
G����; with G���� �

XM
i�1

log p Iobs
�i
jIobs
@�i

;��
� �

: �2�

We show that existing Gibbs learning algorithms are unified as
ML-estimators and they differ in the following two choices.

Choice 1. The number, sizes, and shapes of the foreground
patches �i; i � 1; . . . ;M.

Fig. 1 displays four typical choices for �i. The bright pixels are in
the foreground �i; i � 1; 2; . . . ;M, which are surrounded by dark
pixels in the background @�i; i � 1; 2; . . . ;M . In the first three cases,
�i are square patches with m�m pixels. In one extreme, Fig. 1a
chooses one largest patch denoted by �1, i.e., M � 1 and m �
N ÿ 2w with w being the width of the boundary. G���� is called the
log-likelihood, and it is adopted by the stochastic gradient [21], [22]
and MCMCMLE [12], [13], [9] methods. In the other extreme, Fig. 1c
chooses the minimum patch size m � 1 and G���� is called the log-
pseudolikelihood, used in the maximum pseudolikelihood estimation
(MPLE) [4]. Fig. 1b is an example between the two extremes andG����
is called the log-patch-likelihood. In the fourth case, Fig. 1d chooses
only one (M � 1) irregular-shaped patch, denoted by �1, where �1 is
a set of randomly selected pixels with the rest of the pixels being the
background @�1, and G���� is called the log-partial-likelihood. In
Figs. 1b and 1c, a foreground pixel may serve as background in
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different patches. It is straightforward to prove that maximizing

G���� leads to a consistent estimator for all four choices [14].
The flexibility of likelihood function distinguishes Gibbs

learning from the problem of estimating partition functions [15],

[16], [17]. The latter computes the ªpressureº on a large lattice in

order to overcome boundary effects.
Choice 2. The reference models used for estimating the

partition functions. For a chosen foreground and log-likelihood

function, the second step is to approximate the partition functions

Z�Iobs
@�i
; ��� for each �i; i � 1; . . . ;M by Monte Carlo integration

using a reference model at ��o.

Z Iobs
@�i
; ��

� �
�
Z

exp ÿ < ��;h I�i
jIobs
@�i

� �
>

n o
dI�i

;

� Z I@�i
; ��o� �

Z
exp ÿ < �� ÿ ��o;h I�i

jIobs
@�i

� �
>

n o
dp IjIobs

@�i
;��o

� �
�
Z Iobs

@�i
; ��o

� �
L

XL
j�1

exp ÿ < �� ÿ ��o;h Isyn
ij jIobs

@�i

� �
>

n o
:

�3�
Isyn
ij ; j � 1; 2; . . . ; L are typical samples from the reference model

p�I�i
jIobs
@�i

;��o� for each patch i � 1; 2; . . . ;M.

Since
Z�Iobs

@�i
;��o�

L ; i � 1; 2; . . .M are independent of ��, we can

maximize the estimated log-likelihood G���� by gradient descent.

This leads to

d��

dt
�
XM
i�1

XL
j�1

!ijh Isyn
ij jIobs

@�i

� �
ÿ h Iobs

�i
jIobs
@�i

� �( )
: �4�

!ij is the weight for sample Isyn
ij ,

!ij �
exp ÿ < �� ÿ ��o;h Isyn

ij jIobs
@�i

� �
>

n o
PL

j0�1 exp ÿ < �� ÿ ��o;h Isyn
ij0 jIobs

@�i

� �
>

n o :
The selection of the reference models p�I�i

jIobs
@�i

; ��o� depends on

the sizes of the patches �i; i � 1; . . . ;M . In general, importance

sampling is only valid when the two distributions p�I�i
jIobs
@�i

;��o�
and p�I�i

jIobs
@�i

;��� heavily overlap. In one extreme case m � 1, the

MPLE method [4] selects ��o � 0 and p�I�i
jIobs
@�i

;��o� a uniform

distribution. In this case, Z�Iobs
@�i
; ��� can be computed exactly. In the

other extreme case for a large foreground m � N ÿ 2w, the

stochastic gradient and the MCMCMLE methods have to choose

��o � �� in order to obtain sensible approximations. Thus, both

methods must sample p�I;��� iteratively starting from ��0 � 0. This

is the algorithm adopted in learning the FRAME models [22].
To summarize, Fig. 2 illustrates two factors that determine the

accuracy and speed of learning ��. These curves are verified

through experiments in Section 4 (see Fig. 7). The horizontal axis is

the size of an individual foreground lattice j�ij.

1. The variances of MLE or inverse Fisher information. Let �̂��Iobs�
be the estimator maximizing G���� and let ��� be the optimal
solution. The dashed curve in Fig. 2 illustrates the variance

Ef �̂� Iobs
ÿ �ÿ ���� �2

� �
;

where f�I� is a underlying distribution representing the

Julesz ensemble. For choices shown in Fig. 1, if we fix the

total number of foreground pixels
PM

i�1 j�ij, then the

variance (or estimation error) decreases as the patch size

(diameter of the hole) increases.
2. The variance of estimating Z by Monte Carlo integration

Ep��Ẑ ÿ Z�2�. For a given reference model ��o � ��i; i �
1; 2; . . . ; k (see solid curves in Fig. 2), this estimation error
increases with the lattice sizes. Therefore, for very large
patches, such as m � 200, we must construct a sequence of
reference models to approach ��, ��0 � 0! ��1 ! ��2 !
. . . ;! ��k ! ��: This is the major reason why the
stochastic gradient algorithm was so slow in FRAME [22].

3 THREE NEW ALGORITHMS

The analysis in the previous section leads to three new algorithms by

selecting likelihoods that trade-off between the two factors and the

third algorithm improves accuracy by precomputed reference

models.

Algorithm 1: Maximizing partial likelihood. We choose a

lattice shown in Fig. 1d by choosing at random a certain
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Fig. 1. Various choices of �i, i � 1; 2; . . . ;M. The bright pixels are in foreground �i which are surrounded by dark background pixels in @�i. (a) Likelihood, (b) patch

likelihood (or satellite likelihood), (c) pseudolikelihood, and (d) partial likelihood.

Fig. 2. Estimation variances for various selections of patch sizes m�m and

reference models ��o. The dashed curve shows the inverse Fisher's information

which decreases as m�m increases. The solid curves show the variances in the

importance sampling for a sequence of models approaching ��.



percentage (say, 30 percent) of pixels as foreground �1 and the

rest are treated as background �=�1.
We define a log-partial-likelihood

G1���� � log p Iobs
�1
jIobs

�=�1
;��

� �
:

Maximizing G1���� by gradient descent, we update �� iteratively.

d��

dt
� E

p I�1
jIobs

�=�1
;��

� � h I�1
jIobs

�=�1

� �h i
ÿ h Iobs

�1
jIobs

�=�1

� �
: �5�

This algorithm follows the same procedure as the original
method in FRAME [22]. It trades off between accuracy and speed in
a better way than the original algorithm in FRAME [22]. The log-
partial-likelihood has lower Fisher information than the log-like-
lihood; however, our experiments demonstrate that it is about
25 times faster than the original minimax learning method without
losing much accuracy. We observed that the reason for this speedup
is that the original sampling method [22] spends a major portion of
its time synthesizing Isyn

�1
under ªnontypicalº boundary conditions

starting with white noise images. In contrast, the new algorithm
works on typical boundary condition Iobs

�=�1
where the probability

mass of the Gibbs model p�I; ��� is focused on. The speed appears to
be decided by the diameter of the foreground lattice measured by
the maximum circle that can fit in the foreground lattice.

Algorithm 2. Maximizing patch likelihood. Algorithm 2
chooses a set of M overlapping patches from Iobs

� and ªdigsº a
hole �i on each patch, as Fig. 1b shows. Thus, we define a patch
log-likelihood

G2���� �
XM
i�1

log p Iobs
�i
jIobs
@�i

;��
� �

:

Maximizing G2���� by gradient descent, we update �� iteratively as
Algorithm 1 does.

d��

dt
�
XM
i�1

h Isyn
�i
jIobs

�=�i

� �
ÿ
XM
i�1

h Iobs
�i
jIobs

�=�i

� �
: �6�

In comparison with Algorithm 1, the diameters of the lattices are
evenly controlled. Algorithm 1 has similar performance as
Algorithm 1.

Algorithm 3. Maximizing satellite likelihood. Both Algo-
rithms 1 and 2 still need to synthesize images online, which is a
computationally intensive task. Now, we propose an third
algorithm which may approximately compute �� in the speed of a
few seconds without synthesizing images online.

We select a set of reference models in the exponential family 

to which the Gibbs model p�I;��� belongs,

R � p�I; ��j� : ��j 2 
; j � 1; 2; . . . ; s:
� 	

We sample (or synthesize) one large typical image Isyn
j �

p�I; ��j� for each reference model offline. These reference models
estimate �� in 
 from different ªviewing angles.º By analogy to the

global positioning system, we call the reference models the

ªsatellites.º
The log-satellite-likelihood is defined as

G3���� � G�1�3 ���; ��1� � G�2�3 ���; ��2� � � � � � G�s�3 ���; ��s�; �7�
where each satellite contributes one log-likelihood approximation,

G�j�3 ���; ��j� �
XM
i�1

log
1

Ẑ
�j�
i

exp ÿ < ��;h Iobs
�i
jIobs
@�i

� �
>

n o
: �8�

Following the importance sampling method in (3), we estimate

Z�Iobs
@�i
; ��� by Monte Carlo integration.

Ẑ
�j�
i �

Z�Iobs
@�i
; ��j�

L

XL
`�1

exp ÿ < �� ÿ ��j;h Isyn
ij` jIobs

@�i

� �
>

n o
: �9�

Notice that, for every hole �i and for every reference model

p�I;��j�, we have a set of L synthesized patches Isyn
ij` to fill the hole:

Hsyn
ij � Isyn

ij` ; ` � 1; 2; . . . ; L;8i; j
n o

:

There are two ways for generating Hsyn
ij .

1. Sampling Isyn
ij` � p�I�i

jIobs
@�i

;��j�Ðusing the conditional dis-
tribution. This is expensive and has to be computed online.

2. Sampling Isyn
ij` � p�I�i

; ��j�Ðusing the marginal distribu-
tion. In practice, this is just to fill the holes with randomly
selected patches from the synthesized image Isyn

j computed
offline.

In our experiments, we tried both cases and we found that
differences are very little for middle sizes m�m lattices, say

4 � m � 13.
Maximizing G3���� by gradient ascent, we have,

d��

dt
�
Xs
j�1

XM
i�1

XL
`�1

!ijh Isyn
ij` jIobs

@�i

� �
ÿ h Iobs

�i
jIobs
@�i

� �" #( )
�10�

!ij is the weight for sample Isyn
ij` ,

!ij` �
exp ÿ < �� ÿ ��j;h Isyn

ij` jIobs
@�i

� �
>

n o
PL

`0�1 exp ÿ < �� ÿ ��j;h Isyn
ij`0 jIobs

@�i

� �
>

n o :
Equation (10) converges in the speed of seconds for an average

texture model.
However, we should be aware of the risk that the log-satellite-

likelihood G3����may not be upper bounded. It is almost surely not

upper bounded for the MCMCMLE method. This case occurs
when h�Iobs

�i
jIobs
@�i
� cannot be described by a linear combination of

the statistics of the sampled patches
PL

`�1 !ijh�Isyn
ij` jIobs

@�i
�. When this

occurs, �� does not converge. We handle this problem by including

the observed patch Iobs
�i

in Hsyn
ij ; therefore, the satellite likelihood is

always upper bounded. Intuitively, let Isyn
ij1 � Iobs

�i
, �� is learned so

that the conditional probabilities !ij1 ! 1 and !ij` ! 0; 8` 6� 1.
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Fig. 3. The shadow areas around ���illustrate the variance of the estimated �� or efficiency of the log-likelihood functions. (a) Stochastic gradient and Algorithms 1 and 2

generate a sequence of satellites online to approach �� closely, m can be small or large. (b) The maximum satellite likelihood estimator uses a general set of satellites

computed offline and can be updated incrementally. This can be used for small size m. (c) MPLE uses a single satellite: ��o � 0.



Since ` is often very large, say ` � 20, adding one extra sample will

not disort the sample set.
To summarize, we compare existing algorithms and the newly

proposed algorithms from the perspective of estimating ��� in 
,

and divide them into three groups. Fig. 3 illustrates the comparison

where the ellipse stands for the space 
 and each Gibbs model is

represented by a single point.
Group 1. As Fig. 3a illustrates, the maximum likelihood

estimators (including stochastic gradient and MCMCMLE) and

the maximum partial/patch likelihood estimators generate and

sample a sequence of ªsatellitesº ��0; ��1; . . . ; ��k online. These

satellites get closer and closer to ��� (supposed truth). The shadow

area around ��� represents the uncertainty in computing ��, whose

size can be measured by the Fisher information.
Group 2. As Fig. 3c shows, the maximum pseudolikelihood

estimator uses a uniform model ��o � 0 as a ªsatelliteº to estimate

any model and, thus, has large variance.

Group 3. The maximum satellite likelihood estimators in Fig. 3b

use a general set of satellites which are precomputed and sampled

offline. To save time, one may select a small subset of satellites for

computing a given model. One can choose satellites based on the

differences h�Isyn
j � and h�Iobs�. The smaller the differences are, the

closer the satellite is to the estimated model and, thus, better

approximation. Another criterion is that these satellite should be

distributed evenly around ��� to obtain good estimation.

4 EXPERIMENTS

In this section, we evaluate the performance of various algorithms in

the context of learning Gibbs models for textures. We use 12 filters
including an intensity filter, two gradient filters, three Laplacian of

Gaussian filters, and six Gabor filters at a fixed scale and different

orientations. Thus, h�I� includes 12 histograms of filter responses
and each histogram has 12 bins. So, �� has 12� 11 free parameters.

We choose 15 natural texture images. For each texture, we use

the stochastic gradient algorithm [22] to learn �� which is treated as
ground truth ��� for comparison. In this way, we also obtained

15 satellites with 15 synthesized images Isyn
j computed offline.
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Fig. 4. Synthesized texture images using �� learned from various algorithms. For each column from left to right: 1: stochastic gradient algorithm as the ground truth,

2: pseudolikelihood, 3: satellite likelihood, 4: patch likelihood, 5: partial likelihood.



Experiment 1. Comparison of five algorithms. In the first
experiment, we compare the performance of five algorithms
in texture synthesis. Fig. 4 demonstrates 6 texture patterns of
128� 128 pixels. For each row, the first column is the synthesized
image (ground truth) using a stochastic gradient method used in the
FRAME model [22], the other four images are, respectively,
synthesized images using maximum pseudolikelihood, maximum
satellite likelihood, maximum patch likelihood, and maximum
partial likelihood. For the last three algorithms, we fixed the total
number of foreground pixels to 5; 000. The patch size is fixed to
5� 5 pixels for patch likelihoods and satellite likelihoods. We select
5 satellites out of the rest of the 14 precomputed models for each
texture.

Since for different textures the model p�I;��� may be more

sensitive to some elements of�� (such as tail bins) than to the rest of the

parameters and the �� vectors are highly correlated between its
components, it is not very meaningful to compare the accuracy of the

learned �� using an error measure j�� ÿ ���j. Instead, we sample each
learned model Isyn � p�I; ��� and compare the histogram errors of the

synthesized image against the observed, i.e., jh�Isyn� ÿ h�Iobs�j,
summed over 12 pairs of histograms each being normalized to 1.
The table below shows the errors for each algorithms for the

synthesized images in Fig. 4. The numbers are subject to some

computational fluctuations including the sampling process.

The experimental results show that the four algorithms work

reasonably well. In comparison, the satellite method is often close

to the patch and partial likelihood methods. Though it sometimes

may yield slightly better results than other methods depending on

the similarity between the reference models and the model to be

learned. The pseudolikelihood method can also capture some large

image features. In particular, it works well for textures of stochastic

nature. For example, on the three textures in Figs. 4d, 4e, and 4f.

In terms of computational complexity, the satellite algorithm is

the fastest, and it computes �� in the order of 10 seconds on a

HP-workstation. The second fastest is the pseudolikelihood. It

takes a few minutes. However, the pseudolikelihood method

consumes a large amount of memory, as it needs to remember all

the k histograms for the g gray levels in N �N pixels. The space

complexity is O�N2 � g� k� B� with B being the number of bins.

It often needs more than one Gigabyte of memory. The partial

likelihood and patch likelihood are very similar to the stochastic

gradient algorithm [22]. Since the initial boundary condition is

typical, these two estimators take only, in general, 1/10th of the

number of sweeps to convergence. In addition, only a portion of

pixels need to be synthesized, which can save further computation.

The computation time is only about 1/20th of the stochastic

gradient algorithm.
Experiment 2. Analysis of the maximum satellite likelihood

estimator. In the second experiment, we study how the performance

of the satellite algorithm is influenced by 1) the boundary condition,

and 2) the size of patch m�m.

1. Influence of boundary conditions. Fig. 5a displays a texture

image as Iobs. We run three algorithms for comparison. Fig.

5d is a result from the FRAME (stochastic gradient method).

Figs. 5b and 5c are results using the satellite algorithms. The

difference is that Fig. 5c uses observed boundary condition

for each patch and does online sampling, while Fig. 5b

ignores the boundary condition. For all the following results

of satellite likelihood method (Algorithm 3), Hsyn
ij are

generated from the marginal probabilities without online

sampling.
2. Influences of the hole sizem�m. We fix the total number of

foreground pixels
P

i j�ij and study the performance of

satellite algorithm with difference hole sizes m. Figs. 6a, 6b,

and 6c show three synthesized images using �� learned by

satellite algorithm with different hole sizes m � 2; 6; 9,

respectively. It is clear from Figs. 6a, 6b, and 6c that the

hole size with 6� 6 pixels gives better result.

To explain why the hole size of m � 6 gives better satellite
approximation, we compute the two key factors that determine
performance. Fig. 7a shows the numeric results in correspondence
to the theoretical analysis displayed in Fig. 2.

When the hole size is small, the partition function can be
estimated accurately as shown by the small Ep��Ẑ ÿ Z�2� in solid,
dash-dotted, and dashed curves in Fig. 7. However, the variance
Ef ���̂� ÿ ����2� is large for small holes, which is shown by the dotted
curve in Fig. 7a. The optimal choice of the hole size thus is
approximately the intersection of the two curves. Since the
reference models that we used are close to the dash-dotted line
shown in Fig. 7a, we predict optimal hole size is between 5� 5 and
6� 6. Fig. 7b shows the average error between the statistics of
synthesized image Isyn � p�I; ��� and the observed statistics
err � 1

12 jh�Iobs� ÿ h�Isyn�j, where �� is learned using the satellite
method for m � 1; 2; . . . ; 9. Here, the hole size of 6� 6 pixels gives
better result.

5 CONCLUSION

To conclude our study, we qualitatively compare 10 Gibbs learning
algorithms in Fig. 8 along three factors (or dimensions):
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Fig. 6. Synthesized images using �� learned by the satellite method with different
hole sizes. (a) m � 2. (b) m � 6. (c) m � 9.

Fig. 5. Performance evaluation of the satellite algorithm. (a) Observed texture image. (b) Synthesized image using �� learned without boundary conditions. (c) Synthesized

image using �� learned with boundary conditions. (d) Synthesized image using �� learned by stochastic gradient.



1. Accuracy in approximating logZ.
2. The diameter of foreground lattices and, thus, efficiency of

the likelihood.
3. Computational complexity.

The 10 algorithms are:

1. Stochastic gradient MLE [22],
2. Maximum pseudolikelihood (MPLE) [3], [4],
3. MCMCMLE [12], [13], [9], [16],
4. Maximum patch likelihood,
5. Maximum partial likelihood,
6. Maximum satellite likelihood,
7. Minuteman minimax [6],
8. Variational method [2], [1],
9. Learning by diffusion [21],
10. Generalized maximum pseudolikelihood (Y.N. Wu, pri-

vate communication).
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Fig. 8. A common framework for learning Gibbs models. The horizontal axis is the
size of foreground patches which is proportional to Fisher's information. The
vertical axis is the accuracy in estimating logZ. The brightness of the ellipses
implies the learning speed, and darker is slower. This figure is intended only for a
qualitative comparison.

Fig. 7. The x-axes are the hole size m2. (a) Dotted curve is Ef ���̂� ÿ ����2� plotted
against the hole size m2. The solid, dash-dotted, and dashed curves are Ep��Ẑ ÿ
Z�2� for three different reference models. (b) Average synthesis error per filter with
respect to the hole size m2.
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