
A Stochastic Grammar of Images

Song-Chun Zhu and David Mumford

Abstract

This exploratory paper quests for a stochastic and context sensitive grammar of images. The
grammar should achieve the following four objectives and thus servers as a unified frame-
work of representation, learning, and recognition for a large number of object categories.
(i) The grammar represents both the hierarchical decompositions from scenes, to objects,
parts, primitives and pixels by terminal and non-terminal nodes and the contexts for spatial
and functional relations by horizontal links between the nodes. It formulates each object
category as the set of all possible valid configurations produced by the grammar. (ii) The
grammar is embodied in a simple And-Or graph representation where each Or-node points
to alternative sub-configurations and an And-node is decomposed into a number of compo-
nents. This representation supports recursive top-down / bottom-up procedures for image
parsing under the Bayesian framework and make it convenient to scale up in complexity.
Given an input image, the image parsing task constructs a most probable parse graph on-
the-fly as the output interpretation and this parse graph is a subgraph of the And-Or graph
after making choice on the Or-nodes. (iii) A probabilistic model is defined on this And-Or
graph representation to account for the natural occurrence frequency of objects and parts
as well as their relations. This model is learned from a relatively small training set per cat-
egory and then sampled to synthesize a large number of configurations to cover novel object
instances in the test set. This generalization capability is mostly missing in discriminative
machine learning methods and can largely improve recognition performance in experiments.
(iv) To fill the well-known semantic gap between symbols and raw signals, the grammar
includes a series of visual dictionaries and organizes them through graph composition. At
the bottom-level the dictionary is a set of image primitives each having a number of anchor
points with open bonds to link with other primitives. These primitives can be combined to
form larger and larger graph structures for parts and objects. The ambiguities in inferring
local primitives shall be resolved through top-down computation using larger structures.
Finally these primitives forms a primal sketch representation which will generate the input
image with every pixels explained. The proposal grammar integrates three prominent rep-
resentations in the literature: stochastic grammars for composition, Markov (or graphical)
models for contexts, and sparse coding with primitives (wavelets). It also combines the
structure-based and appearance based methods in the vision literature. Finally the paper
presents three case studies to illustrate the proposed grammar.

Song-Chun Zhu is professor of Statistics and Computer Science, University of California, Los Angeles, and

founder of the Lotus Hill Research Institute, China. David Mumford is University Professor of Applied

Mathematics at Brown University.

1

Contents

1 Introduction 3
1.1 The hibernation and resurgence of image grammars . 3
1.2 Objectives . 4
1.3 Overview of the image grammar . 7

1.3.1 Overview of the representational concepts and data structures 7
1.3.2 Overview of the dataset and learning . 9

2 Background 11
2.1 The origin of grammars . 11
2.2 The traditional formulation of grammar . 12
2.3 Overlapping reusable parts . 15
2.4 Stochastic grammar . 17
2.5 Stochastic grammar with context . 18
2.6 Three new issues in image grammars in contrast to language 19
2.7 Previous work in image grammars . 22

3 Visual vocabulary 24
3.1 The hierarchic visual vocabulary – the ‘Lego land’ . 24
3.2 Image primitives . 25
3.3 Basic geometric groupings . 27
3.4 Parts and objects . 28

4 Relations and configurations 30
4.1 Relations . 30
4.2 Configurations . 32
4.3 The reconfigurable graphs . 33

5 Parse graph for objects and scenes 35

6 Knowledge representation with And-Or graph 37
6.1 And-Or graph . 37
6.2 Stochastic models on the And-Or graph . 41

7 Learning and estimation with And-Or graph 42
7.1 Maximum likelihood learning of Θ . 42
7.2 Learning and pursuing the relation set . 43
7.3 Summary of the learning algorithm . 44
7.4 Experiments on learning and sampling . 44

8 Recursive top-down / bottom-up algorithm for image parsing 47

9 Three case studies of image grammar 50
9.1 Case study I: parsing the perspective man-made world by Han and Zhu 50
9.2 Case study II: human cloth modeling and inference by Chen, Xu and Zhu 52
9.3 Case study III: recognition on object categories by Xu, Lin and Zhu 54

10 Summary and discussion 55

2

1 Introduction

1.1 The hibernation and resurgence of image grammars

Understanding the contents of images has always been the core problem in computer vision with early work
dated back to Fu[22], Riseman[32], Ohta and Kanade[54, 55] in the 1960-70s. By analogy to natural language
understanding, the task of image parsing [73], as Figure 1 and illustrates, is to compute a parse graph as the
most probable interpretation of an input image. This parse graph includes a tree structured decomposition
for the contents of the scene, from scene labels, to objects, parts, primitives, so that all pixels are explained,
and a number of spatial and functional relations between nodes for contexts at all levels of the hierarchy.

a football match scene

texture

text

face

person

color region

curve groups
texture

sports field spectator

texture

persons

point process

Figure 1: Illustrating the task of image parsing. The parse graph includes a tree structured decomposition in vertical arrows

and a number of spatial and functional relations in horizontal arrows. From [73].

People who worked on image parsing in the 1960-70s were, obviously, ahead of their time. In Kanade’s
own words, they had only 64K memory to work with at that time. Indeed, his paper with Ohta [54] was
merely 4-page long! The image parsing efforts and structured methods encountered overwhelming difficulties
in the 1970s and since then entered a hibernation state for a quarter of a century. The syntactic and grammar
work have been mostly studied in the backstage as we shall review in later section. These difficulties remain
challenging even today.

Problem 1: there is an enormous amount of visual knowledge about the real world scenes that has to be
represented in the computer in order to make robust inference. For example, there are at least 3, 000 object
categories 1 and many categories have wide intra-category structural variations. The key questions are: how
does one define an object category, say a car or a jacket? and how does one represent these categories in a
consistent framework?

The visual knowledge is behind our vivid dreams and imaginations as well as the top-down computation.
It was known that there are far more downward fibers than upward fibers in the visual pathways of primate

1This number comes from Biederman who adopted a method used by pollsters. Take an English dictionary, open some pages

at random, and count the number of nouns which are object categories at a page and then times the number of pages of the

dictionary proportionally.

3

animals. For example, it is reported in [65] that only 5 − 10% of the input to the geniculate relay cells
derives from the retina. The rest derives from local inhibitory inputs and descending inputs from layer 6 of
the visual cortex. The weakness in knowledge representation and top-down inference is, in our opinion, the
main obstacle in the road towards robust and large scale vision systems.

Problem 2: the computational complexity is huge. 2 A simple glance of Figure 1 reveals that an input
image may contain a large number of objects. Human vision is known [70] to simultaneously activate
the computation at all levels from scene classification to edge detection – all occurs in a very short time
≤ 400ms, and to adopt multiple visual routines[77] to achieve robust computation. In contrast, most
pattern recognition or machine learning algorithms are feedforward and computer vision systems rarely
possess enough visual knowledge for reasoning.

The key questions are: how does one achieve robust computation that can be scaled to 1000’s of cat-
egories? and how does one coordinate these bottom-up and top-down procedures? To achieve scalable
computation, the vision algorithm must be based on simple procedures and structures that are common to
all categories.

Problem 3: the most obvious reason that sent the image parsing work to dormant status was the so-called
semantic gap between the raw pixels and the symbolic token representation in early syntactic and structured
methods. That is, one cannot reliably compute the symbols from raw images. This has motivated the shift
of focus to appearance based methods in the past 20 years, such as PCA[75],AAM[12], and appearance based
recognition[51] , image pyramids[69] and wavelets[15], and machine learning methods [63, 21, 78] in the past
decade.

Though the appearance based methods and machine learning algorithms have made remarkable progress,
they have intrinsic problems that could be complemented by structure based methods. For example, they
require too many training examples due to the lack the compositional and generative structures. They are
often over-fit to specific training set and can hardly generalize to novel instances or configurations. especially
for categories that have large intra-class variations.

After all these developments, the recent vision literature has observed a pleasing trend for returning to the
grammatical and compositional methods, for example, the work in the groups of Ahuja[71], S. Geman[25, 35],
Dickinson[39], Pollak[79] and Zhu[31, 9, 86, 87, 44, 58, 73, 74]. The return of grammar is in response to the
limitations of the appearance based and machine learning methods when they are scaled up.

The return of grammar is powered by progresses in several aspects, which were not available in the
1970s. (i) A consistent mathematical and statistical framework to integrate various image models, such
as Markov (graphical) models[92], sparse coding[56], and stochastic context free grammar[10]. (ii) More
realistic appearance models for the image primitives to connect the symbols to pixels. (iii) More powerful
algorithms including discriminative classification and generative methods, such as the Data-Driven Markov
China Monte Carlo (DDMCMC)[72]. (iv) Huge number of realistic training and testing images [88].

1.2 Objectives

This exploratory paper will review the issues and recent progress in developing image grammars, and intro-
duce a stochastic and context sensitive grammar as a unified framework for representation, learning, and
recognition. This framework integrates many existing models and algorithms in the literature and addresses
the problems raised in the previous subsection. This image grammar should achieve the following four
objectives.

2The NP-completeness is no longer an appropriate measure of complexity, because even many simplified vision problems are

known to be NP-hard.

4

Objective 1. A common framework for visual knowledge representation and object categorization. Gram-
mars, studied mostly in language [1, 26], are known for their expressive power in generating a very large
set of configurations or instances, i.e. their language, by composing a relatively much smaller set of words,
i.e. shared and reusable elements, using production rules. Hierarchic and structural composition is the key
concept behind grammars in contrast to enumerating all possible configurations.

In this paper, we embody the image grammar in an And-Or graph representation 3 where each Or-node
points to alternative sub-configurations and an And-node is decomposed into a number of components. This
And-Or graph represents both the hierarchical decompositions from scenes, to objects, parts, primitives and
pixels by terminal and non-terminal nodes and the contexts for spatial and functional relations by horizontal
links between the nodes. It is an alternate way of representing production rules and it contains all possible
parse trees. Then we will define a probabilistic model for the And-Or graph which can be learned from
examples using maximum likelihood estimation. Therefore, all the structural and contextual information are
represented in the And-Or graph (and equivalently the grammar). This also resolve the object categorization
problem. We can define each object category as the set of all valid configurations which are produced by the
grammar, with its probability learned to reproduces natural frequency of instances occurring in the observed
ensemble.

As we will show in later section, this probability model integrates popular generative models, such as
sparse coding (wavelet coding) and stochastic context free grammars (SCFG), with descriptive models,
such as Markov random fields and graphical models. The former represents the generative hierarchy for
reconfigurability while the latter models context.

Objective 2. Scalable and recursive top-down/bottom-up computation. The And-Or graph representation
has recursive structures with two types of nodes. It can be easily scalable up in the number of nodes and
object categories. For example, suppose an Or-node represents an object, say car, it then has a number of
children nodes for different views (front, side, back etc) of cars. By adding a new child node, we can augment
to new views. This representation supports recursive top-down / bottom-up procedures for image parsing
and make it convenient to scale up in complexity.

Fig. 2 shows a parsing graph under construction at a time step. This simple grammar is one of our case
study in later section uses one primitive: rectangular surfaces projected onto the image plane. The grammar
rules represents various organization, such as alignments of the rectangles in mesh, linear, nesting, cubic
structures. In the kitchen scene, the four rectangles (in red) accepted through bottom-up process and they
activate the production rules represented by the non-terminal nodes A, B, and C respectively. Which then
predict a number of candidates (in blue) in top-down search. The solid upward arrows show the bottom-up
binding, while the downward arrows show the top-down prediction. As the ROC curves in Figure 39 shows
in later section, the top-down prediction largely improves the recognition rate of the rectangles, as certain
rectangles can only be hallucinated through top-down process due to occlusion and severe image degradation.

Given an input image, the image parsing task constructs a most probable parse graph on-the-fly as the
output interpretation and this parse graph is a subgraph of the And-Or graph after making choices on the
Or-nodes.

As we shall discuss in late section, the computational algorithm maintains the same data structures for
each of the And-nodes and Or-nodes in the And-Or graph and adopt the same computational procedure: (i)
bottom-up detecting and binding using a cascade of features; and (ii) top-down on-line template composition
and matching. To implement the system, we only need to write one common class (in c++ programming) for
all the nodes, and different objects and parts are realized as instances of this class. These nodes use different

3The And-Or graph was previously used by Pearl in [60] for heuristic searches. In our work, we use it in a very different

purpose and should not be confused with Pearl’s work.

5

top-down
proposals

bottom-up
proposals

mesh rule
r3

cube rule
r6

nest rule
r4

A CB

S
scene

objects

rectangular
surfaces

configuration
 C

image
I

parse graph
 G

edge map

Figure 2: Illustrating the recursive bottom-up / top-down computation processure in image parsing. The
detection of rectangles (in red) instantiates some non-terminal nodes shown as upward arrows. They in
turn activate graph grammar rules for grouping larger structures in nodes A,B, C respectively. These rules
generate top-down prediction of rectangles (in blue). The predictions are validated from the image under
the Bayesian posterior probability.

6

bottom-up features /tests and the top-down templates during the computational process. The features and
templates are learned off-line through training images and loaded into the instances of the C++ class during
the computational process. This recursive algorithm has the potential to be implemented in a massively
parallel machine where each unit has the same data structures and functions described above.

Objective 3. Small sample learning and generalization. The probabilistic model defined on this And-Or
graph representation can be learned from a relatively small training set per category and then sampled
through Monte Carlo simulation to synthesize a large number of configurations. This is in fact an extension
to the traditional texture synthesis experiment by the minimax entropy principle [92] where new texture
samples are synthesized which are different from the observed texture but are perceptually equivalent to the
observed texture. The minimax entropy learning scheme is extended to the And-Or graph models in [58],
which can generate novel configurations through composition to cover unforeseen object instances in the test
set. This generalization capability is mostly missed in discriminative machine learning methods.

In the experiments reported in [58, 44], they seek for the minimum number of distinct training samples
needed for each category, usually in the range of 20− 50. They prune some redundant examples which can
be derived through other examples by composition. Then they found that the generated samples can largely
improve the object recognition performance. For example, a 15% recognition rate is reported in [44].

Objective 4. Mapping the visual vocabulary to fill the semantic gap. To fill the well-known semantic gap
between symbols and pixels, the grammar includes a series of visual dictionaries for visual concepts at all
levels. There are two key observations for these dictionaries.

1. The elements of the dictionaries are organized through graph composition. At the bottom-level the
dictionary is a set of image primitives each having a number of anchor points in a small graph with
open bonds to link with other primitives. These primitives can be combined to form larger and larger
graph structures for parts and objects, in a way similar to Lego pieces that kids play with 4.

2. Vision is distinct from other sensors, like speech in the aspect that objects can appear at arbitrary
scales. As a result, the instances of each node can occur at any sizes. The non-terminal nodes at all
levels of the And-Or graph can terminate directly as image primitives. Thus one has to account for the
transitions between instances of the same node over scales. This is the topics studied in the perceptual
scale space theory[80].

Though there are variations in the literature for what the low level primitives should be, the differences are
really minor between what people called textons, texels, primitives, patches, and fragments. The ambiguities
in inferring these local primitives shall be resolved through top-down computation using larger structures.

Finally the primitives are connected to form a primal sketch graph representation [30] which will generate
the input image with every pixels explained. This closes the semantic gap.

1.3 Overview of the image grammar

In this subsection, we overview the basic concepts in the image grammar. We divided it in two parts: (i)
representation and data structures, (ii) Image annotation dataset to learn the grammar, and the learning
and computing issues.

1.3.1 Overview of the representational concepts and data structures

We use Figure 3 as an example to review the representational concepts in the following.
4Note that Lego pieces are well designed to have standardized teeth to fit each other, this is not true in the image primitives.

The latter are more flexible.

7

1, An And-Or graph. Figure 3.(a) shows a simple example of an And-Or graph. An And-Or graph includes
three types of nodes: And-nodes (solid circles), Or-nodes (dashed circles), and terminal nodes (squares). An
And-node represents a decomposition of an entity into its parts. It corresponds to the grammar rules, for
example,

A → BCD, H → NO.

The horizontal links between the children of an And-node represent relations and constraints. The Or-nodes
act as ”switches” for alternative sub-structures, and stands for labels of classification at various levels, such
as scene category, object classes, and parts etc. It corresponds to production rules like,

B → E | F, C → G | H | I.

Due to this recursive definition, one may merge the And-Or graphs for many objects or scene categories into
a larger graph. In theory, all scene and object categories can be represented by one huge And-Or graph, as
it is the case for natural language. The nodes in an And-Or graph may share common parts, for example,
both cars and trucks have rubber wheels as parts, and both clock and pictures have frames.

A

B

KJI

P

GFE

DC

NL

T

H

SRQ

O

1 8765432 11109

and-node

or-node

leaf node

M

6

8

1 10

<B,C>

<C,D>

<C,D>

<B,C>

<
N

,O
>

U

<B,C><
L,M

>

2

4

9'

9

<
C

,D
>

(a) And-Or graph (b) parse graph 1 (c) parse graph 2

A

B

JE

DC

N

H

S

O

1 86 10

U

(d) configuration 1 (e) configuration 2

A

B

I�
P

DC

R

42 9'

I

9

F

L M

Figure 3: . Illustrating the And-Or graph representation. (a) An And-Or graph embodies the grammar productions rules

and contexts. It contains many parse graphs, one of which is shown in bold arrows. (b) and (c) are two distinct parse graphs

by selecting the switches at related Or-nodes. (d) and (e) are two graphical configurations produced by the two parse graphs

respectively. The links of these configurations are inherited from the And-or graph relations.

2, A parse graph, as shown in Figure 1, is a hierarchic generative interpretation of a specific image. A
parse graph is augmented from a parse tree, mostly used in natural or programming language by adding a
number of relations, shown as side links, among the nodes. A parse graph is derived from the And-Or graph
by selecting the switches or classification labels at related Or-nodes. Figure 3.(b) and (c) are two instances
of the parse graph from the And-Or graph in Figure 3.(a). The part shared by two node may have different
instances, for example, node I is a child of both nodes C and D. Thus we have two instances for node 9.

8

3, A configuration is a planar attribute graph formed by linking the open bonds of the primitives in
the image plane. Figure 3.(d) and (e) are two configurations produced by the parse graphs in Figure 3.(b)
and (c) respectively. Intuitively, when the parse graph collapses, it produces a planar configuration. A
configuration inherits the relations from its ancestor nodes, and can be viewed as a Markov networks (or
deformable templates) with reconfigurable neighborhood. We introduce a mixed random field model[20] to
represent the configurations. The mixed random field extends conventional Markov random field models by
allowing address variables and handles non-local connections caused by occlusions. In this generative model,
a configuration corresponds to a primal sketch graph [30].

4, The visual vocabulary. Due to scaling property, the terminal nodes could appear at all levels of the
And-Or graph. Each terminal node takes instances from certain set. The set is called a dictionary and
contains image patches of various complexities. The elements in the set may be indexed by variables such as
its type, geometric transformations, deformations, appearance changes etc. Each patch is augmented with
anchor points and open bond to connect with other patches.

5, The language of a grammar is the set of all possible valid configurations produced by the grammar.
In stochastic grammar, each configuration is associated with a probability. As the And-Or graph is directed
and recursive, the sub-graph underneath any node A can be considered a sub-grammar for the concept
represented by node A. Thus a sub-language for node A is the set of all valid configurations produced by
the And-Or graph rooted at A. For example, if A is an object category, say a car, then this sub-language
defines all the valid configurations of car. In an exiting case, the sub-language of a terminal node contains
only the atomic configurations and thus is called a dictionary.

In comparison, an element in a dictionary is an atomic structure and an element in a language is a
composite structure (or configuration) made of a number of atomic structures. A configuration of node A in
zoomed-out view loses its resolution and details, and becomes an atomic element in the dictionary of node
A. For example, a car viewed in close distance is a configuration consisting of many parts and primitives.
But in far distance, a car is represented by a small image patch as a whole and is not decomposable. This
is an special property of the image grammar. The perceptual transition over scales is studied in [80, 85].

1.3.2 Overview of the dataset and learning

Now we briefly overview the learning and computing issues with stochastic image grammars.
A foremost question that one may ask is: how do you build this grammar and where is the dataset?

Collecting the dataset for learning and training is perhaps more challenging than the learning task itself.
Although fully automated learning is most ideal, for example, let a computer program watch Disney

cartoon or Hollywood movies and hope it figures out all the object categories and relations. But purely
unsupervised learning is less practical for learning the structured compositional models at present for two
reasons. (i) Visual learning must be guided by objectives and purposes of vision, not purely based on
statistical information. Ideally one has to integrate this automatic learning process with autonomous robot
and AI reasoning at the higher level. Before the robotics and AI systems are ready, we should guide the
learning process with some human supervision. For example, what are important structures and what are
decorative stuff. (ii) In almost all the unsupervised learning methods, the trainers still have to select their
data carefully to contrast the involved concepts. For example, to learn the concept that a car has doors,
we must select images of cars with doors both open and closed. Otherwise the concept of door can not be
learned.

We propose to learn the image grammar in a semi-automatic way. We shall start with a supervised
learning with manually annotated images and objects to produce the parse graphs. We use this dataset to
initiate the process and then shift to weakly supervised learning. This initial dataset is still very large if we

9

target 1,000s of object categories.

landscape

seashore

scene generic
object

others

attribute curve

natural manmade

land mammal

pig
cat

horse
tiger
cattle
bear
panda

kangaroo
orangutang

zebra
...

bird

robin

eagle
crane

ibis
parrot
flamingo
owl
pigeon

duck
hen
...

marine

shark
bass

dolpin
trout
goldfish
shrimp
octopus
...

insert

butterfly
ant

cockroach
dragonfly
mayfly
scorpion
tick
...

other

turtle
crocodile

forg
crab
snak
...

animal other

mountain/hill

plant
flower
fruit

body of water
...

chair
table

bed
bench
couch
...

furniture

television
lamp
microwave

air-condition

ceiling fan

...

ambulance
telepnone

mp3
cell phone

camera

electronic

helicopter

battleship
cannon

rifle
tank

sword
...

weapon

food

container
computer

flag

tools
music instrument
stationery
...

other

airplane
car
bus
bicycle

motorcycle

...
ambulance

truck
SUV

cruise ship

vehicle

bathroom
bedroom
corridor
hall
kitchen

livingroom
office

indoor

street

cityview

harbor
highway

parking

rural

forest

outdoor

Database 636,748 images
3,927,130 POs

4,798 images
156,665 POs

587,391 frames
3,121,798POsvideo

surveillance
video clips

1,854 images
46,419 POs

chinese

english

text1,271 images
14,784 POsface

age
pose
expression

25,449 images
146,835 POs

1,625 images
117,215 POs

14,360 images
323,414 POs

meeting
shopping
sports

dinner
lecture

activity

graphlet

...

business
parking
airport
residential
industry
intersection
marina
school

aerial
image

weak boundary

low-middle
level vision

cartoon
movie clips

Inventory of the annotated image database by Nov.06
PO means a parsed object node in the database

Figure 4: Inventory of the current human annotated image database from Lotus Hill Research Institute for learning and

testing. From [88].

To make the large scale grammar learning framework practical, the first author founded an independent
non-profit research institute which started to operate in the summer of 2005. 5 It has a full time annota-
tion team for parsing the image structures and a development team for the annotation tools and database
construction. Each image or object is parsed, semi-automatically, into a parse graph where the relations
are specified and objects are names using the wordnet standard. Figure 4 lists an inventory of the current
ground truth dataset parsed at LHI. It has now over 500, 000 images (or video frames) parsed, covering 280
object categories. Figure 5 shows two examples -the parse trees of cat and car. For clarity we only show the
parse trees with naming of the nodes. Beyond the object parsing, there are many scene images annotated
with the objects and their spatial relations labeled. As stated in a report [88], this ground truth annotation
is aimed at broader scope and more hierarchic structures than other datasets collected in various groups,
such as Berkeley [50, 4], Caltech [16, 28] and MIT[62].

With this annotated dataset, we can construct the And-Or graph for object and scene categories and
learn the probability model on the And-Or graphs. These learning steps are guided by a minimax entropy
learning scheme [92] and maximum likelihood estimation. It is divided into three parts.

1. Learning the probabilities at the Or-node so that the configurations generated account for the natural
co-occurrence frequency. This is typical in stochastic context free grammars [10].

2. Learning and pursuing the Markov models on the horizontal links and relations to account for the
spatial relations, as well as consistency of appearance between nodes in the And-or graphs. This
is similar to the learning of Markov random fields [92], except that we are dealing with a dynamic
graphical configuration instead of a fixed neighborhood.

3. Learning the And-Or graph structures and dictionaries. The terminal nodes are learned through
clustering and the non-terminal nodes are learned through binding. We only briefly discuss this issue
in this paper as the current literature has not made significant progress in this part.

5It is called the Lotus Hill Research Institute (LHI) in China (www.lotushill.org).

10

Figure 5: Two examples of the parse trees (cat and car) in the Lotus Hill Research Institute image corpus. From [88].

The proposed stochastic context sensitive grammar (SCSG) combines the reconfigurability of stochastic
context free grammar (SCFG) with the contextual constraints of graphical (MRF) models, and has the
following properties. (a) Compositional power for representing large intra-class structural variations. The
grammar can generate a huge number of configurations (i.e. its language) for scenes and objects by composing
a relatively much smaller vocabulary. All are represented in graphical configurations. The language of the
grammar is the set of all valid configurations of a category, such as furniture, clothes, vehicles, etc. Thus it
has enormous expressive power. (b) Recursive structures for scalable computing. The grammar is embodied
into an And- Or graph which has recursive structure. The latter is easy to scale in terms of increasing
the number of object categories or augmenting more levels (e.g. scene nodes). Consequently the inference
algorithms is also recursively defined. We only need to write general top-down and bottom-up functions for a
common And-Or node, and re-use the code for all nodes in the And-Or graph. (c) Small sample for effective
learning. Due to explicit composition and part-sharing between categories, the state spaces for all object
categories are decomposed into products of subspaces of lower dimensions for the vocabulary and relations.
Thus we need relatively smaller number of training examples (20-100 instances) for each category. In recent
experiments (see Figure 11), we can sample the learned object model to generate novel object configurations
for generalization, and observe a remarkable (over 15category recognition tasks.

The rest of the paper is organized in the following way. We first discuss in Section 2 the background
of stochastic grammar, its formulation, the new issues of image grammar in contrast to language grammar,
and previous work on image grammar. Then we present the grammar and and-or graph representation in
sections 3-6 sequentially: the visual grammar, the relations and configurations, the parse graphs, and finally
the and-or graph. The learning algorithm and results are discussed in Section 7, which is followed by the
top-down/bottom-up inference algorithm in Section 8, and three case studies in Section 9. Finally we raise
a number of unsolved problems in Section 10 to conclude the paper.

2 Background

2.1 The origin of grammars

The origin of grammar in real world signals, either language or vision, is that certain parts of a signal s

tend to occur together more frequently than by chance. Such co-occurring elements can be grouped together

11

forming a higher order part of the signal and this process can be repeated to form increasingly larger parts.
Because of their higher probability, these parts are found to re-occur in other similar signals, so they form
a vocabulary of ‘reusable’ parts. A basic statistical measure, which indicates whether something is a good
part, is a quantity which measures, in bits, the strength of binding of two parts s|A and s|B of the signal s:

log2

(
p(s|A∪B)

(p(s|A) · p(s|B)

)
. (1)

Two parts of a signal are bound if the probability of their co-occurrence is significantly greater than the
probability if their occurence was independent. The classic example which goes back to Laplace is the
sequence of 14 letters ‘CONSTANTINOPLE’: these occur much more frequently in normal text than in
random sequences of the 26 letters in which the letters are chosen independently, even with their standard
frequencies. In this example, the composite part is a word, its constituents are letters. A more elaborate
example from vision is shown in Figure 6. On the left, this illustrates how nearby lines tend to be parallel
more often than at other mutual orientations, hence a pair of parallel lines forms a reusable part. On the
right, we see how another frequent configuration is when the two lines are roughly perpendicular and touch
forming a ‘T-junction’.

S

A B

S

A
B

(a) (b)

Figure 6: (a) Two parallel lines form a reusable part containing as its constituents the two lines, (b) A T-junction is another

reusable part formed from two lines.

The set of reusable parts that one identifies in some class of signals, e.g. in images, is called the vocabulary
for this class of signals. Each such reusable part has a name or label. In language, a noun phrase, whose
label is ‘NP’ is a common reusable part, an element of the linguistic vocabulary. In vision, a face is a clear
candidate for such a very high-level reusable part. The set of such parts which one encounters in analyzing
statistically a specific signal is called the parse graph of the signal. Abstractly, one first associates to a signal
s : D → I the set of subsets {Ai} of D such that s|Ai

is a reusable part. Then these subsets are made into
the vertices or nodes 〈Ai〉 of the parse graph. In the graph, the proper inclusion of one subset in another,
Ai $ Aj , is shown by a ‘vertical’ directed edge 〈Aj〉 → 〈Ai〉. For simplicity, we prune redundant edges in
this graph, adding edges only when Ai $ Aj and there is no Ak such that Ai $ Ak $ Aj .

In the ideal situation, the parse graph is a tree with the whole signal at the top and the domain D (the
letters of the text or the pixels of the image) at the bottom. Moreover, each node 〈Ai〉 should be the disjoint
union of its children, the parts {Aj |Aj $ Ai}. This is the case for the simple parse trees of Figure 6 or in
most sentences, such as the ones shown below in Figure 11.

2.2 The traditional formulation of grammar

The formal idea of grammars goes back to Panini’s Sanskit grammar in the first millenium BCE, but its
modern formalization can be attributed to Chomsky[11]. Here one finds the definition making a grammar
into a 4-tuple G = (VN , VT ,R, S), where VN is a finite set of non-terminal nodes, VT a finite set of terminal

12

nodes, S ∈ VN is a start symbol at the root, and R is a set of production rules,

R = {γ : α → β}. (2)

One requires that α, β ∈ (VN ∪ VT)+ are strings of terminal or non-terminal symbols, with α including
at least a non-terminal symbol6. Chomsky classified languages into 4 types according to the form of their
production rules. A type 3 grammar has rules A → aB or A → a, where a ∈ VT and A,B ∈ VN . It is also
called a finite state or regular grammar. A type 2 grammar has rules A → β and is called a context free
grammar. A type 1 grammar is context sensitive with rules ξAη → ξβη where a non-terminal node A is
rewritten by β in the context of two strings ξ and η. The type 0 grammar is called a phrase structure or
free grammar with no constraint on α and β.

The set of all possible strings of terminals ω derived from a grammar G is called its language, denoted by

L(G) = {ω : S
R∗=⇒ ω, ω ∈ V ∗

T }. (3)

R∗ means a sequence of production rules deriving ω from S, i.e.

S
γ1,γ2,...,γn(ω)=⇒ ω (4)

If the grammar is of type 1,2 or 3, then given a sequence of rules generating the terminal string ω, we obtain
a parse tree for ω, denoted by

pt(ω) = (γ1, γ2, ..., γn(ω)). (5)

if each production rule creates one node labelled by its head A and a set of vertical arrows between A and
each symbol in the string β. To relate this to the general setup of the previous section, note that each node
has a set of ultimate descendents in the string ω. This is to be a reusable part. If we give this part the label
A ∈ VN , we see that the tree can equally well be generated by taking these parts as nodes and putting in
vertical arrows when one part contains another with no intermediate part. Thus the standard Chomskian
formulation is a special case of our general setup.

As is illustrated in Figure 9, the virtue of the grammar lies in its expressive power of generating a very
large set of valid sentences (or strings), i.e. its language, through a relatively much smaller vocabulary
VT , VN and production rules R. Generally speaking, the following inequality is often true in practice,

|L(G)| >> |Vn|, |VT |, |R|. (6)

In images, VT can be pixels, but here we will find it more conventient to make it correspond to a simple set
of local structures in the image, textons and other image primitives [29, 30]. Then VN will be reusable parts
and objects in the image, and a production rule A → β is a template which enables you to expand A. Then
the L(G) will be the set of all valid object configurations, i.e. scenes. The grammar rules represent both
structural regularity and flexibility. The structural regularity is enforced by the template which decomposes
an entity A, such as object into certain elements in β. The structural flexibility is reflected by the fact that
each structure A has many alternative decompositions.

In this paper, we will find it convenient to describe the entire grammar by one universal And-Or tree,
which contains all parsings as subtrees. In this tree, the Or-nodes are labelled by VN ∪VT and the And-nodes
are labelled by production rules R. We generate this tree recursively, starting by taking start symbol as a
root which is an Or-node. We proceed as follows: wherever we have an Or-node with non-terminal label
A, we consider all rules which have A on the left and create children which are And-nodes labelled by the
corresponding rules. These in turn expand to a set of Or-nodes labelled by the symbols on the right of

6V ∗ means a string consisting of n ≥ 0 symbols from V , and V + means a string with n ≥ 1 symbols from V .

13

the rule. An Or-node labelled by a non-terminal does not expand further. Clearly, all specific parse trees
will be contained in the universal And-Or tree by selecting specific children for each Or-node reached when
descending the tree. This tree is often infinite. An example is shown in Figure 7.

S

r1 r2

ba S

r2r1

a S b

and

or

leaf

And-Or tree

A parsing tree pt(abb)

Figure 7: A very simple grammar, its universal And-Or tree and a specific parse tree in shadow.

A vision example of an And-Or tree, using the reusable parts in Figure 6, is shown in Figure 8. A,B, C are

A

B C

a ccb

Or-node

And-node

leaf -node

Figure 8: An example of binding elements a,b,c into a larger structures A in two alternative ways, represented by an And-Or

tree.

non-terminal nodes and a, b, c are terminal or leaf nodes. B,C are the two ambiguous ways to interpret A. B

represents an occlusion configuration with two layers while C represents a butting/alignment configuration
at one layer. The node A in Figure 8 is a frequently observed local structure in natural images when a long
bar (e.g. a tree trunk) occludes a surface boundary (e.g. a fence).

The expressive power of an And-Or tree is illustrated Figure 9. On the left is an And-node A which has
two components B and C. Both B and C are Or-nodes with three alternatives shown by the six leaf nodes.
The 6 leaf nodes can compose a set of configurations for node A, which is called the ’language’ of A – denoted
by L(A). Some of the valid configurations are shown at the bottom. The power of composition is crucial
for representing visual concepts which have varying structures, for example, if A is an object category, such
as car or chair, then L(A) is a set of valid designs of cars or chairs. The expressive power of the And-Or
tree rooted at A is reflected in the ratio of the total number of configurations that it can compose over the
number of nodes in the And-Or tree. For example, Figure 9.(b) shows two levels of And-nodes and two levels
of Or-nodes. Both have branch factor b = 3. This tree has a total of 10 And-nodes, 30 Or-nodes, and 81 leaf

14

Or-node

And-node

leaf -node

B C

a fcb

A

L(A) � � ��� �d e

(a) (b)

Figure 9: (a) An And-node A is composed of two Or-nodes B and C, each of which includes three alternative leaf nodes. The

6 leaf nodes can compose a set of configurations for node A, which is called the ’language’ of A. (b) An And-Or tree (5-level

branch number =3) with 10 And-nodes, 30 Or-nodes, and 81 leaf nodes, can produce 312 = 531, 441 possible configurations.

nodes, the number of possible structures is (3× 33)3 = 531, 441, though some structures may be repeated.
In Section 2.6, we shall discuss three major differences between vision grammars and language grammars.

2.3 Overlapping reusable parts

As mentioned, in good cases, there are no overlapping reusable parts in the base signal and each part is the
disjoint union of its children. But this needn’t be the case. If two reusable parts do overlap, typically this
leads to parse structures with a diamond in them, Figure 10 is an example. Many sentences, for example,

A

a b c

CB

Figure 10: Parts sharing and the diamond structure in And-Or graphs

are ambiguous and admit two reasonable parses. If there exists a string ω ∈ L(G) that has more than one
parse tree, then G is said to be an ambiguous grammar. For example, Figure 11 shows two parse trees for a
classic ambiguous sentence (discussed in [26]). Note that in the first parse, the reusable part ‘saw the man’
is singled out as a verb phrase or VP; in the second, one finds instead the noun phrase (NP) ‘the man with
the telescope’. Thus the base sentence has two distinct reusable parts which overlap in ‘the man’. Fixing a
specific parse eliminates this complication. In context, the sentence is always spoken with only one of these
meanings, so one parse is right, one is wrong, one reusable part is accepted, one is rejected. If we reject one,
the remaining parts do not overlap.

The above is, however, only the simplest case where reusable parts overlap. Taking vision, there seem to
be four ways overlap can occur.

1. Ambiguous scenes where distinct parses suggest themselves.

15

S

NP VP

VP PP

NPNP

Det

PV

N

 I saw the man with the telescope

Det N

S

NP VP

NP

PP

NP

NP

Det

P

V

N

 I saw the man with the telescope

Det N

Figure 11: An example of ambiguous sentence with two parse trees . The non-terminal nodes S, V, NP, VP denotes sentence,

verbal, noun phrase, and verbal phrase respectively. Note that if the two parses are merged, we obtain a graph, not a tree, with

a ‘diamond’ in it as above.

2. High level patterns which incorporate multiple partial patterns.

3. ‘joints’ between two high level parts where some sharing of pixels or edges occurs.

4. Occlusion where a background object is completed behind a foreground object, so the two objects
overlap.

(a) (b)

(c) (d)

Figure 12: Four types of images in which ‘reusable parts’ overlap. (a) The pinnocio nose is a part of the background whose

gray level is close to the face, so it can be grouped with the face or the background. This algorithm chose the wrong parse. (b)

The square can be parsed in two different ways depending on which partial patterns are singled out. Neither parse is wrong

but the mid-level units overlap. (c) The two halves of a butt joint have a common small edge. (d) The reconstructed complete

sky, trees and field overlap with the face.

A common cause of ambiguity in images is when there is an accidental match of color across the edge of
an object. An example is shown in Figure 12a: the man’s face has similar color to the background and, in
fact, the segmenter decided the man had a pinnocio-like nose. The true background and the false head with
large nose overlap. As in the linguistic examples, there is only ‘true’ parse and the large nose part should
be rejected.

An example of the second is given by a square (or by many alpha-numeric characters). A square may
be broken up into two pairs of parallel lines. A pair of parallel lines is a common reusable part in its own

16

right, so we may parse the square as having two child nodes, each such a pair. But the square is also built
up from 4 line pairs meeting in a right angle. Such pairs of lines also form common reusable parts. The two
resulting parses are shown in Figure 12.b. One ‘solution’ to this issue is to choose, once and for all, one of
these as the preferred parse for a square. In analyzing the image, both parses may occur but, in order to
give the whole the ‘square’ label, one parse is chosen and the other parts representing partial structures are
rejected.

‘joints’ will be studied below: often two parts of the image are combined in characteristic geometric ways.
For example, two thin rectangles may butt against each other and then form a compound part. But clearly,
they share a small line segment which is common to both their boundaries: see Figure 12.c. If the parsing
begins at the pixel level, such sharing between adjacent parts is almost inevitable. The simplest way to
restore the treelike nature of the parse seems to be to duplicate the overlapping part. For example, an edge
is often part of the structure on each side and it seems very natural to allocate to the edge two nodes – the
edge attached to side 1 and the edge attached to side 2.

The most vision-specific case of overlap is caused by occlusion. Occlusion is seen in virtually every image.
It can be modeled by what the second author has called the 2.1D sketch. Mentally, humans (and presumably
other visual animals) are quite aware that two complete objects exist in space but that certain parts of the
two objects project to the same image pixels, with only one being visible. Here we consciously form duplicate
image planes carrying the two objects: this is crucial when we actually want to use our priors to reconstruct
as much as possible of the occluded object. It seems clear that the right parse for such objects should add
extra leaves at the bottom to represent the occluded object. The new leaves carry colors, textures etc.
extrapolated from the visible parts of the object. Their occluded boundaries were what the gestalt school
called amodal contours. The gestalt school demonstrated that people often make very precise predictions for
such amodal contours.

Below we will assume that the reusable parts do not overlap so that inclusion gives us a treelike parse
structure. This simplifies immensely the computational algorithms. Future work may require dealing with
diamonds more carefully (REF Geman).

2.4 Stochastic grammar

To connect with real world signals, we must augment grammars with a set of probabilities P as a fifth
component. For example, in a stochastic context free grammar (SCFG) – the most common stochastic
grammar in the literature, suppose A ∈ VN has a number of alternative rewriting rules,

A → β1 |β2 | . . . |βn(A), γi : A → βi. (7)

Each production rule is associated with a probability p(γi) = p(A → βi) such that:

n(A)∑

i=1

p(A → βi) = 1. (8)

This corresponds to what is called a random branching process in statistics [2]. Similarly a stochastic regular
grammar corresponds to a Markov chain process.

The probability of a parse tree is defined as the product,

p(pt(ω)) =
n(ω)∏

j=1

p(γj). (9)

17

The probability for a string (in language) or configuration (in image) ω ∈ L(G) sums over the probabilities
of all its possible parse trees.

p(ω) =
∑

pt(ω)

p(pt(ω)). (10)

Therefore a stochastic grammar G = (VN , VT ,R, S,P)produces a probability distribution on its language

L(G) = {(ω, p(ω)) : S
R∗=⇒ ω, ω ∈ V ∗

T }. (11)

A stochastic grammar is said to be consistent if
∑

ω∈L(G) p(ω) = 1. This is not necessarily true even when
equation 8 is satisfied for each non-terminal node A ∈ VN . The complication is caused by cases when there
is a positive probability that the parse tree may not end in a finite number of steps. For example, if we have
a production rule that expands A to AA or terminates to a respectively,

A → AA | a with prob. ρ |(1− ρ)

If ρ > 1
2 , then node A expands faster than it terminates, and it keeps replicating. This poses some constraints

for designing the set of probabilities P.
The set of probabilities P can be learned in a supervised way from a set of observed parse trees {ptm,m =

1, 2, ..., M} by maximum likelihood estimation,

P∗ = arg max
M∏

m=1

p(pti). (12)

The solution is quite intuitive: the probability for each non-terminal node A in (7) is

p(A → βi) =
#(A → βi)∑n(A)

j=1 #(A → βj)
. (13)

In the above equation, #(A → βi) is the number of times a rule A → βi is used in all the M parse trees.
In a unsupervised learning case, when the observation is a set of strings without parse trees, one can still
follow the ML-estimation above with an EM-algorithm. It was shown in [10] that the ML-estimation of P
can rule out infinite expansion and produce a consistent grammar.

In Figure 8, one can augment the two parses by probabilities ρ and 1− ρ respectively. We write this as
a stochastic production rule:

A → a · b | c · c; ρ|(1− ρ). (14)

Here ‘|’ means an alternative choice and is represented by an ‘Or-node’. ‘·’ means composition and is
represented by an ‘And-node’ with an arc underneath. One may guess that the interpretation B has a
higher probability than C, i.e. ρ > 1− ρ in natural images.

2.5 Stochastic grammar with context

In the rest of this paper we shall use an And-Or tree defined by a stochastic grammar but we will augment it
to an And-Or graph by adding relations and contexts as horizontal links. The resulting probabilistic models
are defined on the And-Or graph to represent a stochastic context sensitive grammar for images.

A simple example of this in language, due to Mark, Miller and Grenander augments the stochastic
grammar models with word co-occurrence probabilities. Let ω = (ω1, ω2, ..., ωn) be a sentence with n words,
then bi-gram statistics counts the frequency h(ωi, ωi+1) and all word pairs, and therefore leads to a simple
Markov chain model for the string ω:

p(ω) = h(ω1)
n−1∏

i=1

h(ωi+1|ωi). (15)

18

In [48], a probabilistic model was proposed to integrate parse tree model in (9) and the bi-gram model in
(15) for the terminal string, by adding factors h∗(ωi, ωi+1) and re-normalizing the probability:

p(pt(ω)) =
1
Z

h∗(ω1)
n−1∏

i=1

h∗(ωi+1, ωi) ·
n(ω)∏

j=1

p(γj). (16)

The factors are chosen so that the marginal probability on word pairs matches the given bi-gram model.
Note that one can always rewrite the probability in a Gibbs form for the whole parse tree and strings,

p(pt(ω);Θ) =
1
Z

exp{−
n(ω)∑

j=1

λ(γj)−
n−1∑

i=1

λ(ωi+1, ωi)}, (17)

where λ(γj) = − log p(γj) and λ(ωi+1|ωi) = − log h∗(ωi+1|ωi) are parameters included in Θ. Thus the
existence of the h∗ is a consequence of the existence of exponential models matching given expectations.

However, the left-to-right sequence of words may not express the strongest contextual effects. There
are non-local relations as the arrows in Figure 13 show. Firstly interjections mess up phrases in language.
The italicized words in the sentence split the text flow. Thus the ‘next’ relation in the bi-gram is not
deterministically decided by the word order but has to be inferred. Secondly the word ‘what’ is both the
object of the verb ‘said’ and the subject of the verb ‘is’. It connects the two clauses together. Quite generally,
all pronouns indicate long range dependencies, link two reusable parts and carry context from one part of
an utterance or text to another. In images one shall see many different types of joints that combine parts of
objects, such as butting, hinge, and various alignments that similarly link two reusable parts. As we shall

What I just said, though I cannot be completely sure, is perhaps real.

Figure 13: An English sentence with non-local ‘next’ relations shown by the arrows and the word ‘what’ is a joint to link two

clauses.

discuss in a later section, each node may have many types of relations in the way it interacts with other
nodes. These relations are often hidden or cannot be deterministically decided and thus we shall represent
these potential connections through some ‘address variables’ associated with each node. The value of an
address variable in a node ωi is an index towards another node ωj , and the node pair (ωi, ωj) observes a
certain relation. These address variables have to be computed along with the parse tree in inference.

In vision, these non-local relations occur much more frequently. These relationships represent the spatial
context at all levels of vision from pixels and primitives to parts, objects and scenes, and lead to various
graphical models, such as Markov random fields. Gestalt organizations are popular examples in the middle
level and low-level vision. For example, whenever a foreground object occludes part of a background object,
with this background object being visible on both sides of the foreground one, these two visible parts of the
background object constrain each other. Other non-local connections may reflect functional relations, such
as object X is “supporting” object Y.

2.6 Three new issues in image grammars in contrast to language

As we have seen already, an image grammar should include two aspects: (i) The hierarchic structures (the
grammar G) which generate a large set of valid image configurations (i.e. the language L(G)). This is
especially important for modeling object categories with large intra-class structural variabilities. (ii) And

19

the context information which makes sure that the components in a configuration observe good spatial
relationships between object parts, for example, relative positions, ratio of sizes, and consistency of colors.
Both aspects encode important parts of our visual knowledge.

Going from 1D language grammars to 2D image grammars is non-trivial and requires a major leap
in technology. Perhaps more important than anything else, one faces enormous complexity, although the
principles are still simple. The following section summarizes three major differences (and difficulties) between
the language grammars and image grammars.

The first huge problem is the loss of the left-to-right ordering in language. In language, every production
rule A → β is assumed to generate a linearly ordered sequence of nodes β and following this down to the
leaves, we get a linearly ordered sequence of terminal words. In vision, we have to replace the implicit links
of words to their left and right neighbors by the edges of a more complex ‘region adjacency graph’ or RAG.
To make this precise, let the domain D of an image I have a decomposition D = ∪k∈SRk into disjoint
regions. Then we make a RAG with nodes 〈Ri〉 and edges 〈Rk〉 — 〈Rl〉 whenever Rk and Rl are adjacent.
This means we must explicitly add horizontal edges to our parse tree to represent adjacency. In a production
rule A → β, we no longer assume the nodes of β are linearly ordered. Instead, we should make β into a
configuration, that is, a set of nodes from VN ∪ VT plus horizontal edges representing adjacency. We shall
make this precise below.

Ideas to deal with the loss of left-to-right ordering have been proposed by the K.S. Fu school of ‘syntactic
pattern recognition’ under the names ‘web grammars’ and ‘plex grammars’ [22], by Grenander in his pattern
theory [27], and more recently by graph grammars for diagram interpretation in computer science [61]. These
ideas have not received enough attention in vision. We need to study the much richer spatial relations for
how object and parts are connected. Making matters more complex, due to occlusions and other non-local
groupings, non-adjacent spatial relations often have to be added in the course of parsing.

a a aaaa

(a) (b)

Figure 14: A cheetah and the background after local segmentation: both can be described by a RAG. Without the left-to-right

order, if the regions are to be merged one at a time, they have a combinatorially explosive number of parse trees.

One immediate consequence of the lack of natural ordering is that a region has very ambiguous production
rules. Let A be a region and a an atomic region, and let the production rules be A → aA | a. A linear region
ω = (a, a, a, ..., a) has a unique parse graph in left-to-right ordering. With the order removed, it has a
combinatorial number of parse trees. Figure 14 shows an example of parsing an image with a cheetah. It
becomes infeasible to estimate the probability p(ω) by summing over all these parse trees in (10).

Therefore we must avoid these recursively defined grammar rules A → aA, and treat the grouping of
atomic regions into one large region A as a single computational step, such as the grouping and partitioning
in a graph space [3]. Thus the probability p(ω) is assigned to each object as a whole instead of the production
rules. In the literature, there are a number of hierarchic representations by an adaptive image pyramid, for

20

example, the work by Rosenfeld and Hong in the early 80’s [33], and the multi-scale segmentation by Galun
et al [24]. Though generic elements are grouped in these works, there are no explicit grammar rules. We
shall distinguish such multi-scale pyramid representation from parse trees.

The second issue, unseen in language grammar, is the issue of image scaling [82, 45, 80]. It is a unique
property of vision that objects appear at arbitrary scales in an image when the 3D object lies nearer or farther
from the camera. You cannot hear or read an English sentence at multiple scales, but the image grammar
must be a multi-resolution representation. This implies that the parse tree can terminate immediately at
any node because no more detail is visible.

Figure 15 shows a human face in three levels from [86]. The left column shows face images at three
resolutions, the middle column shows three configurations (graphs) of increasing detail, and the right col-
umn shows the dictionaries (terminals) used at each resolution respectively. At a low resolution, a face is
represented by patches as a whole (for example, by principle component analysis), at a middle resolution,
it is represented by a number of parts, and at a higher resolution, the face is represented by a sketch graph
using smaller image primitives. The sketch graphs shown in the middle of Figure 15 expands with increasing
resolution. One can account for this by adding some termination rules to each non-terminal node, e.g. each

images sketches primitives

Figure 15: A face appears at three resolutions is represented by graph configurations in three scales. The right column shows

the primitives used at the three levels.

non-terminal node may exit the production for a low resolution case.

∀A ∈ VN , A → β1 | · · · |βn(A) | t1 | t2 |· (18)

where t1, t2,∈ VT are image primitives or image templates for A at certain scales. For example, if A is a car,
then t1, t2 are typical views (small patches) of the car at low resolution. As they are in low resolution, the
parts of the cars are not very distinguishable and thus are not represented separately. The decompositions
βi, i = 1, 2, ..., n(A) represent the production rules for higher resolutions, so this new issue does not complicate
the grammar design, except that one must learn the image primitives at multiple scales in developing the
visual vocabulary.

The third issue with image grammars is that natural images contain a much wider spectrum of quite
irregular local patterns than in speech signals. Images not only have very regular and highly structured
objects which could be composed by production rules, they also contain very stochastic patterns, such as

21

clutter and texture which are better represented by Markov random field models. In fact, the spectrum is
continuous. The structured and textured patterns can transfer from one to the other through continuous
scaling [85, 80]. The two categories of models ought to be integrated more intimately and melded into a
common model. This raises numerous challenges in modeling and learning at all levels of vision. For example,
how do we decide when we should develop a image primitive (texton) for a specific element or use a texture
description (for example, a Markov Random Field)? How do we decide when we should group objects in a
scene by a production rule or by a Markov random field for context?

2.7 Previous work in image grammars

There are four streams of research on image grammars in the vision literature.
The first stream is syntactic pattern recognition by K.S. Fu and his school in the late 1970s to early 1980s

[22]. Fu depicted an ambitious program for scene understanding using grammars. A block world example
is illustrated in Figure 16. Similar image understanding systems were also studied in the 1970-80s [55, 32]
The hierarchical representation on the right is exactly the sort of parse graph that we are pursuing today.
The vertical arrows show the decomposition of the scene and objects, and the horizonal arrows display some
relations, such as support and adjacency. Fu and collaborators applied stochastic grammars to simple objects

Scene A

wall N

floor M

object D

object E

L

T

Z

Y
X

 scene A

D

background Cobjects B

E NM

relation 1: support= { (M, D), (M, E) } relation 2: adjacency = { (L, T), (X, Y), (Y, Z), (Z, X), (M, N) }

ZYXTL

1

1

2

2

22

2

Figure 16: A parser tree for a block world from (Fu, 1982). The ellipses represents non-terminal nodes and the squares are

for terminal nodes. The parse tree is augmented into a parse graph with horizonal connections for relations, such as one object

supporting the other, or two adjacent objects sharing a boundary.

(such as diagrams) and shape contours (such as outline of a chromosome). Most of the work remained in
1D structures, although the ideas of web grammars and plex grammars were also studied. This stream was
disrupted in the 1980s and suffered from the lack of an image vocabulary that is realistic enough to express
real world objects and scenes, and reliably detectable from images. This remains a challenge today, though
much progress has been made recently in appearance based methods, such as PCAs, image primitives, [30],
code books [17], fragments and patches [37, 76]. It is worth mentioning that many of these works on patches
and fragments do not provide a formalism for composition and that they lack the bond structures studied
in this paper.

The second stream are the medial axis techniques for analyzing 2D shapes. For animate objects repre-
sented by simple closed contours, Blum argued in 1973 [8] that medial axes are an intuitive and effective
representation of a shape, in contrast to boundary fragments. Leyton proposed a process grammar approach
to these in 1988 [42]. He argued that any shape is a record of motion history, and developed a grammar for
the procedure for how a shape grows from a simple object, say a small circle. A shape grammar for shape
matching and recognition via medial axes was then developed by Zhu and Yuille in 1996 [90]. An example
is shown on the left in Figure 17. The dog should be read as a node A in the parse tree and the fragments

22

below it as the child nodes for a production rule that expands the dog into its limbs, trunk, head and tail.
The circles are the maximal circles on which the medial axis is based and allow one to create horizontal
arrows between the parts, so that the production yields not merely a set of parts but a configuration.

A formal shock graph was studied by Zucker’s school including Dickinson[39], Kimia[68], Siddiqi et
al.[67, 64, 40]. They reverse Leyton’s growth process by collapsing the shape using the distance transform.
The singularities in the process create “shocks”, for example, when two sides of the leg of a dog collapse into
an axis. Thus different sections of their skeleton are characterized by the types of singularity and record
the temporal record of the shape’s collapse. Figure 17 shows on the right the shock graph of a goat from
[67]. The vertical arrows in their shock tree are very different from those in the parse tree. In the shock tree
the child nodes are a younger generation that grow from the parent nodes, thus the two graphs have quite
different interpretations.

S

714

1798

631013

1615

11 12 2 1 4 5

7

14 17

9
8

6

3

10 13
16

15

11 12

2 1

4 5
S

(a) (b) (c)

Figure 17: (a) A dog and its decomposition into parts using the medial axis algorithm of [90]. (b) The shock graph of a goat

with its shock tree in (c) adopted from [67]. The root of the tree is the node at the “hip” of the goat marked by a square.

The third stream can be seen as a number of works branching out from the school of pattern theory.
Grenander [27] defined a regular pattern on a set of graphs which are made from some primitives which he
called “generators”. Each generator is like a terminal element and has a number of attributes and “bonds” to
connect with other generators. S. Geman and collaborators [6, 25, 35] proposed a more ambitious formulation
for compositionality which is quite similar to that developed in this paper. Moreover, they seek to create
not only computer vision systems but models of cortical vision mechanisms in animals. In sharp contrast to
our approach, they make the overlapping of their reusable parts into a central element of their formalism.
This overlapping is used to allow parts to compute their ‘binding strength’ depending on any and all features
of this overlap. It is also the key, in their system, to synchronizing the activity of the neurons expressing
the higher order parts. As a proof of concept, they applied the compositional system to handwritten upper
case letter recognition and to licence plate reading [35]. The work in this paper belongs to this approach,
cf. an attribute grammar to parse images of the man-made world [31] and a context sensitive grammar for
representing and recognizing human clothes [9]. These will be reviewed in later sections.

Finally, the sparse image coding model can be viewed as an attribute stochastic context free grammar.
In sparse coding [56, 69], an image is made of a number of n independent image bases, and there are a
few types of image bases, such as Gabor cosine, Gabor sine, and Laplacian of Gaussian etc. These bases
have attributes θ = (x, y, τ, σ, α) for locations, orientations, scales and contrasts respectively. This can be
expressed as a SCFG. Let S denote a scene, A an image base, and a,b,c the different bases.

S → An, n ∼ p(n) ∝ e−λon,

A → a(θ) | b(θ) | c(θ), θ ∼ p(θ) ∝ e−λ|α|,

23

where p(θ) is uniform for location, orientation and scale. Crouse et al [13] introduce a Markov tree hierarchy
for the image bases and this produces a SCFG.

3 Visual vocabulary

3.1 The hierarchic visual vocabulary – the ‘Lego land’

In English dictionaries, a word not only has a few attributes, such as meanings, number, tense, and part of
speech, but also a number of ways to connect with other words in a context. Sometimes the connections are
so strong that compound words are created, for example, the word ‘apple’ can be bound with ‘pine’ or ’Fuji’
to the left, or ‘pie’ and ‘cart’ to the right. For slightly weaker connections, phrases are used, for instance,
the work ’make’ can be connected with ‘something’ using the prepositions ’of’ or ‘from’, or connected with
‘somebody’ through the prepositions ‘at’ or ‘against’. Figure 18 illustrates a word with attributes and a
number of ‘bonds’ to connect with other words. Thus a word is very much like a piece of Legos for building
toy objects.

Make
Attributes

 meaning
 plural
 tense
 part of speech
 noun
 verb
 adverb
...

. from sth

. of sth

. at sb

. against sb

apple
pine

Fuji cart

pie

(a) (b)

Figure 18: In an English dictionary, each word has a number of attributes and some conventional ways to connect to other

words. In the first example, the word “make” can be connected to “something” or “somebody”. The word “apple” has strong

bonds with other words to make compound words ”pine-apple”, “Fuji-apple”, “apple-pie”, “apple-cart”.

The bonds exist more explicitly and are much more necessary in the 2D image domain. We define the
visual vocabulary in the following.

Definition I. Visual vocabulary

The visual vocabulary is a set of pairs, each consisting of an image function
Φi(x, y;αi) and a set of d(i) bonds (i.e. its degree), to be eventually connected with
other elements, which are denoted by a vector βi = (βi,1, ..., βi,d(i)). We think of
βi,k as an address variable or pointer. αi is a vector of attributes for (a) a geometric
transformation, e.g. the central position, scale, orientation and plastic deformation,
and (b) appearance, such as intensity contrast, profile or surface albedo. In par-
ticular, αi determines a domain Λi(αi) and Φi is then defined for (x, y) ∈ Λi with
values in R (a gray-valued template) or R3 (a color template). Often each βi,k is
associated with a subset of the boundary of Λi(αi). The whole vocabulary is thus
a set:

∆ = {(Φi(x, y;αi), βi) : (x, y) ∈ Λi(αi) ⊂ Λ}, (19)

where i indexes the type of the primitives.

24

The conventional wavelets, Gabor image bases, image patches, and image fragments are possible examples
of this visual vocabulary except that they don’t have bonds. As an image grammar must adopt a multi-
resolution representation, the elements in its vocabulary represent visual concepts at all levels of abstraction
and complexity. In the following we introduce some examples of the visual vocabulary at the low, middle,
and high levels respectively.

3.2 Image primitives

In the 1960s-70s, Julesz conjectured that textons (blobs, bars, terminators, crosses) are the atomic elements
in the early stage of visual perception for local structures [36]. He found in texture discrimination experiments
that the human visual system seem to detect these elements with a parallel computing mechanism. Marr
extended Julesz’s texton concept to image primitives which he called ‘symbolic tokens’ in his primal sketch
representation [49]. An essential criterion in selecting a dictionary in low level vision is to ensure that they
are parsimonious and sufficient in representing real world images, and more importantly they should have the
necessary structures to allow composition into higher level parts. In this subsection, we review a dictionary
of image primitives proposed in Guo et al [30] as a formal mathematical model of the primal sketch. Many
other studies have come up with similar lists, including studies which are based on the statistical analysis of
small image patches from large databases [41, 34].

(a) (b)

Figure 19: Low level visual vocabulary – image primitives. (a). Some examples of image primitives: blobs, terminators,

edges, ridges, ‘L’-junctions, ‘T’-junction, and cross junction etc. These primitives are the elements for composing a bigger

graph structure at the upper level of the hierarchy. (b) is an example of composing a big ‘T’-shape image using 7 primitives.

From (Guo, Zhu and Wu, 2003).

Illustrated in Figure 19.(a), an image primitive is a small image patch with a degree d connections or
bonds which are illustrated by the half circles. The primitives are called blobs, terminators, edges or ridges,
‘L’-junctions, ‘T’-junctions, and cross junctions for d = 0, 1, 2, 3, 4 respectively. Each primitive has a number
of attributes for its geometry and appearance. The geometric attributes include position, orientation, scale,
and relative positions of the bonds with respect to the center. The appearance is described by the intensity
profiles around the center and along the directions perpendicular to the line-segment connecting the center
and the bonds. For instance, a d = 2 primitive could be called a step edge, a ridge/bar, or double edge
depending on its intensity profile. Each bond of the primitive is like an arm or hand. When the bonds of two
primitives are joined by matching the two half circles, we say they are connected. Figure 19.(b) illustrates
how a ‘T’-shape is composed through 3 terminators, 3 bars, and 1 ‘T’-junction.

25

(a) (b)

B

A

B

A

Figure 20: An illustrative example for composing primitives into a graph configuration. (a) is a simple image, and (b) is a

number of primitives represented by rectangles which cover the structured parts of the image. The remaining part of the image

can be reconstructed through simple heat diffusion.

In the following, we show how these primitives can be used to represent images. We start with a toy
image in Figure 20 to illustrate the model and a real image in Figure 21.

In Figure 20, the boundaries of the two rectangles are covered by 4 ‘T’-junctions, 8 ’L’-junctions, and 20
step edges. We denote the domain covered by an image primitive Φsk

i by Λsk,i, and the pixels covered by
these primitives, which are called the “sketchable part” in [30], are the denoted by

Λsk = ∪nsk
i=1Λsk,i. (20)

The image I on Λsk is denoted by Isk and is modeled by the image primitives through their intensity profiles.
Let ε be the residual noise.

Isk(x, y) = Φsk
i (x, y;αi, βi) + ε(x, y), (x, y) ∈ Λsk,i, i = 1, 2, ..., nsk. (21)

The remaining pixels are flat or stochastic texture areas, called non-sketchable, and are clustered into a few
homogeneous texture areas

Λnsk = Λ \ Λsk = ∪nnsk
j=1 Λnsk,j . (22)

They can be reconstructed through Markov random field models conditional on Isk,

Insk,j | Isk ∼ p(Insk | Isk; Θj). (23)

Θj is a vector-valued parameter for the Gibbs model, for example, the FRAME model [92].
Figure 21 shows a real example of the primal sketch model using primitives. The input image has

300 × 240 pixels, of which 18, 185 pixels (around 25%) are considered sketchable. The sketch graph has
275 edges/ridges (primitives with degree d = 2) and 152 other primitives for ”vertices” of the graph. Their
attributes are coded by 1, 421 bytes. The non-sketchable pixels are represented by 455 parameters or less.
The parameters are 5 filters for 7 texture regions and each pools a 1D histogram of filter responses into
13 bins. Together with the codes for the region boundaries, total coding length for the textures is 1, 628
bytes. The total coding length for the synthesized image in Figure 21.(f) is 3, 049 bytes or 0.04 byte per
pixel. It should be noted that the coding length is roughly computed here by treating the primitives as being
independent. If one accounts for the dependence in the graph and applies some arithmetic compression
schemes, a higher compression rate can be achieved.

To summarize, we have demonstrated that image primitives can compose a planar attribute graph config-
uration to generate the structured part of the image. These primitives are transformed, warped, and aligned
to each other to have a tight fit. Adjacent primitives are connected through their bonds. The explicit use
of bonds distinguishes the image primitives from other basic image representations, such as wavelets and

26

(a) input image (b) sketch graph -- configuration (c) pixels covered by primitives

(d) remaining texture pixels (e) texture pixels clustered (f) reconstructed image

Figure 21: An example of the primal sketch model. (a) An input image I. (b) The sketch graph – configuration computed

from the image I. (c) The pixels in the sketchable part Λsk. (d) The remaining non-sketchable portion are textures, which are

is segmented into a small number of homogeneous regions in (e). (f) The final synthesized image integrating seamlessly the

structures and textures. From [30].

sparse image coding [47, 56] mentioned before, and other image patches and fragments in the recent vision
literature [76]. The bonds encode the topological information, in addition to the geometry and appearance,
and enable the composition of bigger and bigger structures in the hierarchy.

3.3 Basic geometric groupings

If by analogy, image primitives are like English letters or phonemes, then one wonders what are the visual
words and visual phrases. This is the central question addressed by the gestalt school of psychophysicists
[38, 93]. One may summarize their work by saying that the geometric relations of alignment, parallelism and
symmetry, especially as created by occlusions, are the driving forces behind the grouping of lower level parts
into larger parts. A set of these composite parts is shown in Figure 22 and briefly described in the caption.

It is important to realize that these groupings occur at every scale. Many of them occur in local groupings
containing as few as 2 to 8 image primitives as in the previous section. We will call these ‘graphlets’ [83].
But extended curves, parallels and symmetric structures may span the whole image. Notably, symmetry
is always a larger scale feature but one occurring very often in nature (e.g. in faces) and which is highly
detectable by people even in cluttered scenes. Parallel lines also occur frequently in nature, e.g. in tree
trunks. The occlusion clue shown in Figure 22 is especially important because it is not only common but is
the strongest clue in a static 2D image to the 3D structure of the scene. Moreover, it implies the existence of
an ‘amodal’ or occluded contour representing the continuation of the left and right edges behind the central
bar. This necessitates a special purpose algorithm to be discussed below. Figure 23 shows an image with its
primal sketch on the right side with its graphlets shown in dark line segments.

These graphlets are learned through clustering and binding the image primitives in a way discussed in
equation 1. Each cluster in this space is an equivalence class subject to an affine transform, some deformation,
as well as minor topological editing. These graphlets are generic 2D patterns, and some of them could be
interpreted as object parts.

27

(a)

(c)

(b)

(d)

(e)

(g)

(f)

(h)

(i)

(k)

(j)

Figure 22: Middle level visual vocabulary: common groupings found in images. (a) extended curves, (b) curves with breaks

and imperfect alignment, (c) parallel curves, (d) parallels continuing past corners, (e) ends of bars formed by parallels and

corners, (f) curves continuing across paired T-junctions (the most frequent indication of occlusion), (g) a bar occluded by some

edge, (h) a square, (i) a curve created by repetition of discrete similar elements, (j) symmetric curves and (k) parallel lines

ending at terminators forming a curve.

(a) (b)

Figure 23: An example of graphlets in natural image. The graphlets are highlighted in the primal sketch. These graphlets

can be viewed as larger pieces of lego.

3.4 Parts and objects

If one is only interested in certain object categories segmented from the background, such as bicycles, cars,
ipods, chairs, clothes, the dictionary will be object parts. Although these object parts are significant within
each category or reusable by a few categories, their overall frequency is low and they are often rare events
in a big database of real world images. Thus the object parts are less significant as contributors to lowering
image entropy than the graphlets presented above, and the latter are, in turn, less entropically significant
than the image primitives at the low level.

We take one complex object category – clothes as an example. Figure 24 shows how a shirt is composed
of three parts: a collar, and a left and a right short sleeves. In this figure, each part is represented by an

28

g2

g1

11β

12β13β

21β

33β32β

31β23β

22β g3

24β25β

Figure 24: . High level visual vocabulary – the objects and parts. We show an example of upper body clothes made of three

parts: a collar, a left and a right short sleeves. Each part is again represented by a graph with bonds. A vocabulary of part for

human clothes is shown in Figure 25.

attribute graph with open bonds, like the graphlets. For example, the collar part has 5 bonds, and the two
short sleaves have 3 bonds to be connected with the arms and collar. By decomposing a number of instances
in the clothes category together with upper body and shoes, one can obtain a dictionary of parts. Figure 25
shows some examples for each category.

a

b

c

d

e

f

g
h

g

Figure 25: . The dictionary of object parts for cloth and body components. Each element is a small graph composed of

primitives and graphlets and has open-bonds for collecting with other parts.

Thus we denote the dictionary by

∆cloth = {(Φcloth
i (x, y;αi), βi) : ∀i, αi, βi.} (24)

As before, Φcloth
i is an image patch defined in a domain Λcloth

i which does not have to be compact or connected.
αi controls the geometric and photometric attributes, and βi = (βi1, βi2, . . . , βid(i)) is a set of open bonds.
These bonds shall be represented as address variables that point to other bonds. Some upper-cloth examples
that are synthesized by these parts are shown in Figure 41.

In fact, the object parts defined above are not no much different from the dictionaries of image primitives
or graphlets, except that they are bigger and more structured. Indeed they form a continuous spectrum for
the vision vocabulary from low to high levels of vision.

29

By analogy, each part is like a class in object oriented programming, such as C++. The inner struc-
tures of the class are encapsulated, only the bonds are visible to other classes. These bonds are used for
communication between different object instances.

In the literature, Biederman [5] proposes a set of ’geons’ as 3D object elements, which are generalized
cylinders for representing 3D man-made objects. In practice it is very difficult to compute these generalized
cylinders from images. In comparison, we adopt a view based representation for the primitives, graphlets
and parts which can be inferred relatively reliably.

4 Relations and configurations

While the hierarchical visual vocabulary represents the vertical compositional structures, the relations in this
section represent the horizontal links for contextual information between nodes in the hierarchy at all levels.
The vocabulary and relations are the ingredients for constructing a large number of image configurations at
various level of abstractions. The set of valid configurations constitutes the language of an image grammar.

4.1 Relations

We start with a set of nodes V = {Ai : i = 1, 2, ..., n} where Ai = (Φi(x, y;αi), βi) ∈ ∆ is an entity
representing an image primitive, a grouping, or an object part as defined in the previous section. A number
of spatial and functional relations must be defined between the nodes in V to form a graph with colored
edges where the color indexes the type of relation.

Definition II Attributed Relation

A binary relation defined on an arbitrary set S is a subset of the product set S ×S

{(s, t)} ⊂ S × S. (25)

An attributed binary relation is augmented with a vector of attributes γ and ρ,

E = {(s, t; γ, ρ) : s, t ∈ S}, (26)

where γ = γ(s, t) represents the structure that binds s and t, and ρ = ρ(s, t) is
a real number measuring the compatibility between s and t. Then < S, E > is a
graph expressing the relation E on S. A k-way attributed relation is defined in a
similar way as a subset of Sk.

There are three types of relations of increasing abstraction for the horizontal links and context. The
first type is the bond type that connects image primitives into bigger and bigger graphs. The second type
includes various joints and grouping rules for organizing the parts and objects in a planar layout. The third
type is the functional and semantic relation between objects in a scene.

Relation type 1: bonds and connections For a set of nodes V = {Ai : i = 1, 2, ..., n} defined above,
each node Ai ∈ V has a number of open bonds {βij : j = 1, 2, ..., n(i)} shown by the half disks in the previous
section. We collect all these bonds as a set,

Sbond = {βij : i = 1, 2, ..., n, j = 1, 2, ..., n(i)}. (27)

30

Two bonds βij and βkl are said to be connected if they are aligned in position and orientation. Therefore
the bonding relation is a set of pairs of bonds with attributes:

Ebond(S) = {(βij , βkl ; γ, ρ)} (28)

where γ = (x, y, θ) denote the position and orientation of the bond. The latter is the tangent direction at
the bond for the two connected primitives. ρ is a function to check the consistency of intensity profile or
color between two connected primitives.

The trivial example is the image lattice. The primitives Ai, i = 1, ..., |Λ| are the pixels. Each pixel
has 4 bonds βij , j = 1, 2, 3, 4. Then Ebond(S) is the set of 4-nearest neighbor connections. In this case,
γ = nil is empty, and ρ is a pair-clique function for the intensities at pixels i and j. Figures 22 and 24 show
more examples of bonds for composing graphlets from primitives, and composing clothes from parts. Very
often people use graphical models, such as templates, with fixed structures where the bonds are decided
deterministically and thus become transparent. In the next subsection, we shall define the bonds as random
variables to reconfigure the graph structures.

Relation type 2 : joints and junctions When image primitives are connected into larger parts, some
spatial and functional relations must be found. Besides its open bonds to connect with others, usually
its immediate neighbors, a part may be bound with other parts in various ways. The gestalt groupings
discussed in the previous section are the best examples: parts can be linked over possibly large distances by
being collinear, parallel or symmetric. To identify this groupings, connections must be created flagging this
non-accidental relationship. Figure 26 displays some typical relations of this type between object parts.

Hinged Butting Concentric Attached Colinear Parallel Radial Bar-circle

Figure 26: Examples of spatial relations for binding object parts. The red dots or lines are the attributes γ(s, t) of joint

relation (s, t) which form the ‘glue’ in this relation. From [58].

Some of these relations also contribute to 3D interpretations. For example, an ellipse is a part that has
multiple possible compositions. If it is recognized as a bike wheel, its center can function as an axis and
thus can be connected to the tip of a bar (see the rightmost of Figure 26). It could also be the rim of a tea
cup, and then the two ends of its long axis will be joined to a pair of parallel lines to form a cylinder. In
Figure 13 we discussed a phenomenon occurred in language where the word ‘what’ is shared by two clauses.
Similarly we have many such joints in images, such as hinge joints, and butting joints.

As Figure 26 shows, two parts can be hinged at a point. For example, two hands of a clock have a
common axis. For a set of parts in an image S = V , the hinge relation is a set

Ehinge(S) = {(Ai, Aj ; γ(Ai, Aj), ρ(Ai, Aj))}. (29)

Here γ is the hinge point and ρ = nil. In a butting relation, γ(Ai, Aj) represents the line segment(s) shared
by the two parts. The line segment is shown in red in Figure 26. Sometimes, two parts may share two line

31

segments. For example the handle of a teapot or cup share two line segments with the body.
Relation type 3: object interactions and semantics When letters are grouped into words, semantic

meanings emerge. When parts are grouped into objects, semantic relations are created for their interactions.
Very often these relations are directed. For example, the occluding relation is a viewpoint dependent binary
relation between object or surfaces, and it is important for figure-ground segregation. A view point inde-
pendent relation is a supporting relation. A simple example is shown in Figure 16. Let S = V be a set of
objects,

Esupp = {< M,D >,< M,E >}, Eoccld = {< D,M >,< E,M >,< D,N >,< E,N >}. (30)

The <> represents directed relation and the attributes γ, ρ are omitted. There are other functional relations
among objects in a scene. For example, a person A is eating an apple B Eedible(S) = {< A, B >}, and a
person is riding a bike Eride(S) = {< A, C >}. These directed relations usually are partially ordered.

It is worth mentioning that the relations are dense at low level, such as the bonds, in the sense that the
size |E(S)| is in the order of |S|, and that they become very sparse (or rare) and diverse at high level. At
the high level, we may find many interesting relations but each relation may only have a few occurrences in
the image.

4.2 Configurations

So far, we have introduced the visual dictionaries and relations at various levels of abstractions. The two
components are integrated into what we call the visual configuration in the following.

Definition III. Configuration

A configuration C is a spatial layout of entities in a scene at certain level of abstrac-
tion. It is a one layer graph, often flattened from hierarchic representation,

C =< V, E > . (31)

V = {Ai, i = 1, 2, ..., n} is a set of attributed image structures at the same semantic
level, such as primitives, parts, or objects and E is a relation. If V is a set of
sketches and E = Ebonds, then C is a primal sketch configuration. If E is a union of
several relations E = Er1∪· · ·∪Erk

, which often occurs at the object level, then C is
called a ‘mixed configuration’. For a generative model, the image on a lattice is the
ultimate ‘terminal configuration’, and its primal sketch is called the ‘pre-terminal
configuration’. Note that E will close some of the bonds in V and leave others open;
thus we may speak of the open bonds in a configuration.

We briefly present examples of configurations at three levels.
Firstly, for early vision, the scene configuration C is a primal sketch graph where V is a set of image prim-

itives with bonds and E = Ebonds is the bond relation. For example, Figure 20.(b) illustrates a configuration
for a simple image in 20.(a), and Figure 21.(b) is a configuration for the image in 21.(a). These configurations
are attributed graphs because each primitive vi is associated with variables αi for its geometric properties
and photometric appearance. The primal sketch graph is a parsimonious ‘token’ representation in Marr’s
words [49], and thus it is a crucial stage connecting the raw image signal and the symbolic representation
above it. It can reconstruct the original image with perceptually equivalent texture appearance.

32

Secondly, for the parts to object level, Figure 41 displays three possible upper body configurations
composed of a number of clothes’ parts shown in Figure 25. In these examples, each configuration C is a
graph with vertices being 6-7 parts and E = Ebond is a set of bonds connecting the parts, as it was shown
in Figure 24.

(a) image (b) layer 1 configuration (c) layer 2 configuration

sky

body

head

field

sky

body

upper
head

field

occluded
sky

occluded
field 2

occluded
field 1

lower
head

Figure 27: . An illustration of scene configuration. (a) is a scene of a man in a field. (b) is the graph for the highest level

configuration C =< V, E >, V is the set of 4 objects {sky, field, head, body} and E = Eadj ∪ Eocclude includes two relations:

“adjacency” (solid lines) and“occlusion” (dotted arrows). (c) is the configuration at an intemediate level in which the occlusion

relation is unpacked: now the dotted arrows indicate two identical sets of pixels but on separate layers.

Thirdly, Figure 27 (a) and (b) illustrate a scene configuration at the highest level of abstraction. V is a
set of objects, and E included two relations an “adjacency” relation in solid lines

Eadj = {(sky, field), (head, body)}, (32)

and a directed ‘occlusion’ relation in dotted arrows,

Econtain = {< head, sky >, < head, field >, < body, field >}. (33)

In summary, the image grammar which shall be presented in the next section is also called a “layered
grammar”. That is, it can generate configurations as its “language” at different levels of detail.

4.3 The reconfigurable graphs

In vision, the configurations are inferred from images. For example, in a Bayesian framework, the graph
C =< V, E > will not be pre-determined but reconfigurable on-the-fly. That is, the set of vertices may
change, so does the set of edges (relations). Therefore the configurations must be made flexible to meet the
demand of various visual tasks. Figure 28 shows such an example.

On the left of the figure is a primal sketch configuration Csk for the simple image shown in Figure 20.
This is a planar graph with 4 ‘T’-junctions. In this configuration two adjacent primitives are connected by
the bond relation Ebond. The four ‘T’-junctions are then broken in the right configuration, which is called
the 2.1D sketch [53] and denoted by C2.1sk. The bonds are reorganized with a1 being connected with a3 and
a2 with a4. C2.1sk includes two disjoint subgraphs for the two rectangles in two layers. From this example,
we can see that both the vertices and the bonds mst be treated as random variables. Figure 29 shows a
real application of this sort of reconfiguration in computing a 2.1D sketch from a 2D primal sketch. This
example is from [23]. It decomposes an input image in 29.(a) into three layers in 29.(d), (e) and (f), found
after reconfiguring the bonds by completing the contours (red line segments in 29.(b) and (c)) behind and
filling-in the occluded areas using the Markov random field region descriptor in the primal sketch model.
From the point of view of parse structures, we need to add new nodes to represent the extra layers present

33

B

A

a1

a3 a4

b1

b5

b3

b6b4 b4

b1 b3b2

a4a3

b5

a1

b6

a2

(a) (b)

a2

b2

t3

t1 t2

t4

Figure 28: (a) A primal sketch configuration for a simple image. It has four primitives for ‘T’-junctions – t1, t2, t3, t4. It

is a planar graph formed by bonding the adjacent primitives. (b) A layered (2.1D sketch) representation with two occluding

surfaces. The four ‘T’-junctions are broken. The bonds are reorganized. a1 is bonded with a3, and a2 is bonded with a4.

(a) input image (b) curve completion at layer 2 (c) curve completion at layer 3

(d) layer 1 (e) layer 2 after fill-in (f) layer 3 after fill-in

Figure 29: From a 2D sketch to a 2.1D layered representation by reconfiguring the bond relations. (a) is an input image from

which a 2D sketch is computed. This is transferred to a 2.1D sketch representations with three layers shown in (d), (e) and (f)

respectively. The inference process reconfigures the bonds of the image primitives shown in red in (b) and (c). From [23]

behind the observed surfaces together with ‘occluded by’ relations. This is illustrated by Figure 27, (c). This
is a configuration which has duplicated three regions to represent missing parts of the background layer.

A mathematical model for the reconfigurable graph is called the mixed Markov model in [20]. In a mixed
Markov model, the bonds are treated as nodes. Therefore, the vertex set V of a configuration has two type
of nodes – V = Vx ∪ Va. Vx include the usual nodes for image entities, and Va is a set of address nodes, for
example, the bonds. The latter are like the pointers in the C language. These address nodes reconfigure the
graphical structure and realize non-local relations. It was shown that a probability model defined on such
reconfigurable graphs still observes a suitable form of he Hammersley-Clifford theorem and can be simulated

34

by Gibbs sampler.
By analogy to language, the bonds in this example correspond to the arrows in the English sentence

discussed in Figure 13 for non-local context. As there are many possible (bond, joint, functional, and
semantic) relations, each image entity (primitives, parts, objects) may have many random variables as the
“pointers”. Many of them could be empty, and will be instantiated in the inference process. This is similar
to the words ‘apple’ and ‘make’ in Figure 18.

5 Parse graph for objects and scenes

In this section, we define parse graphs as image interpretations. Then we will show in the next section that
these parse graphs are generated as instances by an And-Or graph. The latter is a general representation
that embeds the image grammar.

Recall that in Section 2.2 a language grammar is a 4-tuple G = (VN , VT ,R, S), and that a sentence ω is
derived (or generated) by a sequence of production rules from a starting symbol S,

S
γ1,γ2,...,γn(ω)=⇒ ω (34)

These production rules form a parse tree for ω,

pt(ω) = (γ1, γ2, ..., γn(ω)). (35)

For example, Figure 11 shows two possible parse trees for a sentence ‘I saw the man with the telescope’.
This grammar is a generative model, and the inference is an inverse process that computes a parse tree

for a given sentence as its interpretation or one of its best interpretations. Back to image grammars, a
configuration C is a flat attributed graph corresponding to a sentence ω, and a parse tree pt is augmented
to a parse graph pg by adding horizontal links for various relations. In previous sections, Figure 16.(b) has
shown a parse graph for a block work scene, and Figure 1 has shown a parse graph for a football match
scene.

In the following, we define a parse graph as an interpretation of image.

35

Definition IV. Parse graph

A parse graph pg consists of a hierarchic parse tree (defining ‘vertical’ edges) and
a number of relations E (defining ‘horizontal edges’):

pg = (pt, E). (36)

The parse tree pt is also an And-tree whose non-terminal nodes are all And-nodes.
The decomposition of each And-Node A into its parts is given by a production rule
which now produces not a string but a configuration:,

γ : A → C =< V,E > . (37)

A production should also associate the open bonds of A with open bonds in C. The
whole parse tree is a sequence of production rules

pt(ω) = (γ1, γ2, ..., γn). (38)

The horizonal links E consists of a number of directed or undirected relations among
the terminal or non-terminal nodes, such as bonds, junctions, functional and seman-
tic relations,

E = Er1 ∪ Er2 ∪ · · · ∪ Erk
. (39)

A parse graph pg, when collapsed, produces a series of flat configurations at each
level of abstraction/detail,

pg =⇒ C. (40)

Depending on the type of relation, there may be special rules for producing relations
at a lower level from higher level relations in the collapsing process. The finest
configuration is the image itself in which every pixel is explained by the parse
graph. The next finest configuration is the primal sketch graph.

The parse graph, augmented with spatial context and possible functional relations, is a comprehensive
interpretation of the observed image I. The task of image parsing is to compute the parse graph from input
image(s). In the Bayesian framework, this is to either maximize the posterior probability for an optimal
solution,

pg∗ = arg max p(pg|I), (41)

or sampling the posterior probability for a set of distinct solutions,

{pgi : i = 1, 2, ..., K} ∼ p(pg|I). (42)

Object instances in the same category may have very different configurations and thus distinct parse
graphs. Figure 30 displays two parse graphs for two clock instances. It has three levels and the components
are connected through three types relations: the hinge joint to connect clock hands, a co-centric relation to
align the frames, and a radial relation to align the numbers.

As it was mentioned in Section 2.6, objects appear at arbitrary scales in images. As shown in Figure 15,
a face can be decomposed into facial elements at higher resolution, and it may terminate as a whole face
for low resolution. Therefore, one remarkable property that distinguishes an image parse graph is that a
parse graph may stop at any level of abstraction, while the the parse tree in language must stop at the word

36

... ...

(a) (b)

Figure 30: Two parse graph examples for clocks which are generated from the And-Or-graph in Fig. 31.
From [87].

level. This is the reason for defining visual vocabulary at multiple levels of resolution, and defining the image
grammar as a layered grammar.

6 Knowledge representation with And-Or graph

This section addresses the central theme of the paper – developing a consistent representation framework for
the vast amount of visual knowledge at all levels of abstraction. The proposed representation is the And-Or
graph embedding image grammars. The And-Or graph representation was first explicitly used in [9] for
representing and recognizing a complex object category of clothes.

6.1 And-Or graph

While a parse graph is an interpretation of a specific image, an And-Or graph embeds the whole image
grammar and contains all the valid parse graphs. Before introducing the And-Or graph, we revisit the origin
of grammar and its Chomsky formulation in Sections 2.1 and 2.2.

Firstly, we know each production rule in the SCFG can be written as

A → β1 |β2 · · · |βn(A), with A ∈ VN, β ∈ (VN ∪VT)+. (43)

Therefore each non-terminal node A can be represented by an Or-node with n(A) alternative structures,
each of which is an And-node composed of a number of substructures. For example, the following rule is
represented by a two level And-Or tree in Figure 8.

A → a · b | c · c; ρ|(1− ρ). (44)

The two alternatives branches at the Or-node are assigned probabilities (ρ, 1 − ρ). Thus a SCFG can be
understood as an And-Or tree.

Secondly, we have shown in Figure 9 that a small And-Or tree can produce a combinatorial number of
configurations – called its language. To represent contextual information in the following, we augment the
And-Or tree into an And-Or graph producing a context sensitive image grammar.

37

In a previous survey paper [95], the first author showed that any visual pattern can be conceptualized
as a statistical ensemble that observes a certain statistical description. For a complex object pattern, its
statistical ensemble must include a large number of distinct configurations. Thus our objective is to define
an And-Or graph, thus its image grammar, such that its language, i.e. the set of valid configurations that it
produces, reproduces the ensemble of instances for the visual pattern.

An And-Or graph augments an And-Or tree with two new features.

1. Horizontal lines are indicate to show relations, bonds, junctions and semantic relations.

2. Relations at all levels are augmented on the And-Or graph to represent hard (compatibility) or soft
(statistical) constraints.

3. The children of an Or-node may share Or-node children. It represents a reusable part shared by several
production rules. The sharing of nodes reduces the complexity of the representation and thus the size
of dictionary. Other possible sharings may be useful: see, for example, Section 2.3.

In Section 1, Figure 3.(a) has shown a simple example of an And-Or graph. An And-Or graph includes
three types of nodes: And-nodes (solid circles), Or-nodes (dashed circles), and terminal nodes (squares).
The Or-nodes have labels for classification at various levels, such as scene category, object classes, and parts
etc. Due to this recursive definition, one may merge the And-Or graphs for many objects or scene categories
into a larger graph. In theory, the whole natural image ensemble can be represented by a huge And-Or
graph, as it is for language.

By assigning values to these labels on the Or-node, one obtains an And-graph – i.e. a parse graph. The
bold arrows and shaded nodes in Figure 3.(a) constitute a parse graph pg embedded in the And-Or graph.
This parse graph is shown in Figure 3.(b) and produces a configuration shown Figure 3.(d). It has four
terminal nodes (for primitives, parts, or objects): 1, 6, 8, 10 and the edges are inherited from their parent
relations. Both nodes 8 and 10 have a common ancestor node C. Therefore the relation < B, C > is
propagated to < 1, 6 > and < 1, 8 >. For example, if < B,C > includes three bonds, two bonds may be
inherited by < 1, 8 > and one by < 1, 6 >. Similarly the links < 6, 10 > and < 8, 10 > are inherited from
< C, D >.

Figure 3.(c) is a second parse graph and it produces a configuration in Figure 3.(e). It has 4 terminal
nodes 2, 4, 9, 9′. The node 9 is a reusable part shared by nodes C and D. It is worth mentioning that a
shared node may appear as multiple instances.

Definition V. And-Or Graph

An And-Or graph is a 6-tuple for representing an image grammar G.

Gand−or =< S, VN , VT , R, Σ,P > . (45)

S is a root node for a scene or object category, VN = V and ∪ V or is a set of non-
terminal nodes including an And-node set V and and an Or-node set V or. The
And-nodes plus the graph formed by their children are the productions and the
Or-nodes are the vocabulary items. VT is a set of terminal nodes for primitives,
parts and objects (note that an object at low resolution may terminate without
decomposition directly), R is a number of relations between the nodes, Σ is the set
of all valid configurations derivable from the grammar, i.e. its language, and P is
the probability model defined on the And-Or graph.

38

The following is more detailed explanation of the components in the And-Or graph.
1. The Non-terminal nodes include both And-nodes and Or-nodes VN = V and ∪ V or,

V and = {u1, ..., um(u)}, V or = {v1, ..., vm(v)}. (46)

An Or-node v ∈ V or is a switch pointing to a number of possible And-Nodes, the productions whose head is
v.

v → u1 |u2 · · · |un(v), u1, ..., un ∈ V and. (47)

We define a switch variable ω(v) for v ∈ V , that takes an integer value to index the child node.

ω(v) ∈ {∅, 1, 2, ..., n(v)} (48)

By choosing the switch variables in the Or-nodes, one obtains a parse graph from the And-Or graph. The
switch variable is set to empty ω(v) = ∅ if v is not part of the parse graph. In fact the assignments of
Or-nodes at various levels of the And-Or graph corresponds to scene classification and object recognition.
In practice, when an Or-node has a large n(v), i.e. too fat, one may replace it by a small Or-tree that has
n(v) leaves. We omit the discussion of such cases for clarity.

An And-node u ∈ V and either terminates as a template t ∈ VT or it can be decomposed into a set
of Or-nodes. In the latter case, the relations between these child nodes are specified by some relations
r1, ..., rk(u) ∈ R shown by the dashed horizontal lines in Figure 3. We adopt the symbol :: for representing
the relations associated with the production rule or the And-node.

u → t ∈ VT ; or

u → C = (v1, ..., vn(v)) :: (r1, ..., rk(v)), vi ∈ V, rj ∈ R.

The termination rule reflects the multi-scale representation. That is, the node u may be instantiated by a
template at a relatively lower image resolution.

2. The Terminal node set VT = {t1, ..., tm(T)} is a set of instances from the image dictionary ∆. Usually
it is a graphical template (Φ(x, y;α), β) with attributes α and open bonds β. Usually, each t ∈ VT is a sketch
graph, such as the image primitives.

3. The Configurations which are produced from the root node S are the language of the grammar:
Gand−or,

L(Gand−or) = Σ = {Ck : S
Gand−or=⇒ Ck k = 1, 2, ..., N}. (49)

Each configuration C ∈ Σ is a composite template, for example, the cloth shown in Figure 24. The And-Or
graph in Figure 3.(a) contains a combinatorial number of valid configurations, e.g.

Σ = {(1, 6, 8, 10), (2, 4, 9, 9), (1, 5, 11), (2, 4, 6, 7, 9), ...} (50)

The first two configurations are shown on the right side of Figure 3.
4. The relation set R pools over all the relations between nodes at all levels.

R = ∪mEm = {est = (vs, vt; γst, ρst)}. (51)

These relations become the pair-cliques in the composite graphical template. When a node vs is split later,
the link est may be split as well or may descend to specific pairs of children. For example, in Figure 3 node
C is split into two leaf nodes 6 and 8, then the relation (B,C) is split into two subsets between (1, 6) and
(1, 8),

5. P is a probability model defined on the And-Or graph. It includes many local probabilities – one at
each Or-node to account for the relative frequency of each alternative, and local energies associated with

39

hands

and-node

or-node

frames numbers

clock

3 hands 2 hands Arabic Roman

hour
hand

minute
hand

second
hand

a1 a12

no
number

...

1 12...

r1 r12...

I XII...

leaf-node

... ...

no
frame

no
hand

outer
ring

inner
ring

central
ring

no ring

Figure 31: An And-Or graph example for the object category – clock. It has two parse graphs shown in
Figure 30, one of which is illustrated in dark arrows. Some leaf nodes are omitted from the graph for clarity.
From [87].

each link e ∈ R. The former is like the SCFG and the latter is like the Markov random fields or graphical
models. We will discuss the probability component in the next subsection.

Before concluding this section, we show an And-Or graph for a clock category [87] in Figure 31. Fig. 31
has shown two parse graphs as instances of this And-Or graph. The dark bold arrows in Figure 31 are the
parse tree shown in Fig.30.(a).

Another And-Or example is shown in Figure 40. It is a subgraph extracted, for reason of clarity, from
a big And-Or graph for the upper body of human figure [9]. Figure 41 displays three cloth configurations
produced by this And-Or graph.

In summary, an And-Or graph Gand−or defines a context sensitive graph grammar with VT being its
vocabulary, VN the production rules, Σ its language, R the contexts. Gand−or contains all the possible parse
graphs which in turns produce a combinatorial number of configurations. Again, the number of configurations
is far larger than the vocabulary, i.e.

|VN ∪ VT | << |Σ|. (52)

This is a crucial aspect for representing the large intra-category structural variations.
Our next task is to define a probability model on Gand−or to make it a stochastic grammar.

40

6.2 Stochastic models on the And-Or graph

The probability model for the And-Or graph Gand−or must integrate the Markov tree model (SCFG) for the
Or-nodes and the graphical (Markov) models for the And-nodes. Together a probability model is defined on
the parse graphs. The objective of this probability model is to match the frequency of parse graphs in an
observed training set (supervised learning will be discussed in the next section).

Just as the language model in equation (17) defined probabilties on each parse tree pt(ω) of each sentence
ω, the new model should define probabilties on each parse graphs pg. As pg produces a final configuration
C deterministically when it is collapsed, thus p(pg; Θ) produces a marginal probability on the final configu-
rations with Θ being its parameters. A configuration C is assumed to be directly observable, i.e. the input,
and parse graph pg are hidden variables and have to be inferred.

By definition IV, a parse graph pg is a parse tree pt augmented with relations E,

pg = (pt, E). (53)

For notational convenience, we denote the following components in pg.

• T (pg) = {t1, ..., tn(pg)} is the set of leaf nodes in pg. For example, T (pg) = {1, 6, 8, 10} for the parse
graph shown by the dark arrows in Figure 3. In applications, T (pg) is often the pre-terminal nodes
with each t ∈ T (pg) being an image primitive in the primal sketch.

• V or(pg) is the set of non-empty Or-nodes (switches) that are used pg. For instance, V or(pg) =
{B,C, D,N, O}. These switch variables selected the path to decide the parse tree pt = (γ1, γ2, ..., γn).

• E(pg) is the set of links in pg.

The probability for pg is of the following Gibbs form, similar to equation (17),

p(pg; Θ,R,∆) =
1

Z(Θ)
exp{−E(pg)} (54)

where E(pg) is the total energy,

E(pg) =
∑

v∈V or(pg)

λv(ω(v)) +
∑

t∈T (pg)∪V and(pg)

λt(α(t)) +
∑

(i,j)∈E(pg)

λij(vi, vj , γij , ρij) (55)

The model is specified by a number of parameters Θ, the relations set R and the vocabulary ∆. The first
term in the energy is the same as the SCFG. It assigns different weights λv() to the switch variables ω(v) at
the or-nodes v. The weight should account for how frequently a child node appears. Removing the 2nd and
3rd terms, this reduces to a SCFG in eqn 9. The second and third terms are typical singleton and pair-clique
energy for graphical models. The second term is defined on the geometric and appearance attributes of the
image primitives. The third term models the compatibility constraint, such as the spatial and appearance
constraint between the primitives, graphlets, parts, and objects.

This model can be derived from a maximum entropy principle under two types of constraints on the
statistics of training image ensembles. One is to match the frequency at each Or-node, just like the SCFG,
and the other is to match the statistics, such as histograms or co-occurrence frequency as in standard
graphical models. Θ is the set of parameters in the energy,

Θ = {λv(), λt(), λij(); ∀v ∈ V or,∀t ∈ VT ,∀(i, j) ∈ R}. (56)

Each λ() above is a potential function, not a scalar, and is represented by a vector through discretizing the
function in a non-parametric way, as it was done in the FRAME model for texture [92]. ∆ is the vocabulary

41

for the generative model. The partition function is summed over all parse graph in the And-Or graph Gand−or

or the grammar G.
Z = Z(Θ) =

∑
pg

exp{−E(pg)}. (57)

7 Learning and estimation with And-Or graph

Suppose we have a training set sampled from an underlying distribution f governing the objects.

Dobs = {(Iobs
i ,pgobs

i) : i = 1, 2, ..., N} ∼ f(I,pg). (58)

The parse graphs pgobs
i are from the groundtruth database [88] or considered missing in unsupervised case.

The objective is to learn a model p which approaches f by minimizing a Kullback-Leibler divergence,

p∗ = arg minKL(f ||p) = arg min
∑

pg∈Ωpg

∫

ΩI

f(I,pg) log
f(I,pg)

p(I,pg; Θ,R,∆)
dI. (59)

This is equivalent to the ML estimate for the optimal vocabulary ∆, relation R, and parameter Θ,

(∆,R,Θ)∗ = arg max
N∑

i=1

log p(Iobs
i ,pgobs

i ; Θ,R,∆)− `(VT , VN , N), (60)

where `(VT , VN , N) is a term that shall balance the model complexity w.r.t. sample size N but also account
for the semantic significance of each elements for the vision purpose (human guided here). The latter is often
reflected by utility or cost functions in Bayesian decision theory.

Learning the probability model includes three phases and all three phases follow the same principle above.

1. Estimating the parameters Θ from training date Dobs for given R and ∆,

2. Learning and pursuing the relation set R for nodes in G given ∆,

3. Discovering and binding the vocabulary ∆ and hierarchic hierarchic And-Or tree automatically.

In the following we briefly discuss the first two phases. There is no significant work done for the third phase
yet.

7.1 Maximum likelihood learning of Θ

For a given And-Or graph hierarchy and relations, the estimation of Θ follows the MLE learning process. Let
L(Θ) =

∑N
i=1 log p(Iobs

i ,pgobs
i ; Θ,R,∆) be the log-likelihood, by setting ∂L(Θ)

∂Θ = 0, we have the following
three learning steps.

1. Learning the λv at each Or-node v ∈ V or accounts for the frequency of each alternative choice. The
switch variable at v has n(v) choices ω(v) ∈ {∅, 1, 2, ..., n(v)} and it is ∅ when v is not included in the pg.
We compute the histogram,

hobs
v (ω(v) = i) =

#(ω(v) = i)∑n(v)
j=1 #(ω(v) = j)

, i = 1, 2, ..., n(v). (61)

#(ω(v) = i) is the number of times that node v appears with ω(v) = i in all the parse graphs in Ωobs
pg . Thus,

λv(ω(v) = i) = − log hobs
v (ω(v) = i), ∀v ∈ V or. (62)

42

2. Learning the potential function λt() at the terminal node t ∈ VT . ∂`(Θ)
∂λt

= 0 leads to the statistical
constraints,

Ep(pg;Θ,R,∆)[h(α(t)] = hobs
t , ∀t ∈ VT . (63)

In the above equation, α(t) are the attributes of t and h(α(t)) is a statistical measure of the attributes, such
as the histogram. hobs

t is the observed histogram pooled over all the occurrences of t in Ωobs
pg .

hobs
t (z) =

1
#t

∑
t

1(z − ε

2
< α(t) ≤ z +

ε

2
). (64)

#t is the total number of times, a terminal node t appears in the data Ωobs
pg . z indexes the bins in the

histogram and ε is the length of a bin.
3. Learning the potential function λij() for each pair relation (i, j) ∈ R. ∂`(Θ)

∂λij
= 0 leads to the following

implicit function,
Ep(pg;Θ,R,∆)[h(vi, vj)]] = hobs

ij , ∀(i, j) ∈ R. (65)

Again, h(vi, vj) is a statistic on vi, vj , for example, a histogram on the relative size, position, and orientation,
appearance etc. hobs

ij is the histogram summed over all the occurrence of (vi, vj) in Dobs.
The equations (62), (63) and (65) are the constraints for deriving the Gibbs model p(pg; Θ,R,∆) in

equation (54) through the maximum entropy principle.
Due to the coupling of the energy terms, both equations (63) and (65) are solved iteratively through

a gradient method. In a general case, we follow the stochastic gradient method adopted in learning the
FRAME model [92], which approximates the expectations Ep[h(α(t))] in equation (63) and Ep[h(vi, vj)]
in (65) by sample means from a set of synthesized examples. This is the method of analysis-by-synthesis
adopted in our texture modeling paper [92]. In the end of this section, we show the sampling and synthesis
experiments on two object categories – clock and bike in Figures 32 and 33.

7.2 Learning and pursuing the relation set

Besides the learning of parameters Θ, we can also augment the relation sets R in an And-Or Graph, and
thus pursue the energy terms in

∑
(i,j)∈E(pg)λij(vi, vj) in the same way as pursuing the filters and statistics

in texture modeling by the minimax entropy principle [92].
Suppose we start with an empty relation set R = ∅ and thus p = p(pg;λ, ∅,∆) is a SCFG model. The

learning procedure is a greedy pursuit. In each step, we add a relation e+ to R and thus augment model
p(pg; Θ,R,∆) to p+(pg; Θ,R+,∆), where R+ = R∪ {e+}.

e+ is selected from a large pool ∆R so as to maximally reduce KL-divengence,

e+ = arg maxKL(f ||p)−KL(f ||p+) = arg max KL(p+||p), (66)

Thus we denote the information gain of e+ by

δ(e+)
def
= KL(p+||p) ≈ fobs(e+)dmanh(hobs(e+),hsyn

p (e+)). (67)

In the above formula, fobs(e+) is the frequency that relation e+ is observed in the training data, hobs(e+) is
the histogram for relation e+ over training data Dobs, and hsyn

p (e+) is the histogram for relation e+ over the
synthesized parse graphs according to the current model p. dmanh() is the Manhanonabis distance between
the two histograms.

Intuitively, δ(e+) is large if e+ occurs frequently and tells a large difference between the histograms of
the observed and the synthesized parse graphs. Large information gain means a significant relation e+.

43

Algorithm I: Learning Θ by Stochastic Gradients

Input: Dobs = {pgobs
i ; i = 1, 2, ..., M}.

1. Compute histograms hobs
v ,hobs

t ,hobs
ij from Dobs for all feature/relations.

2. Learn the parameters λv at the Or-nodes by equation (62).
3. Repeat (outer loop)
4. Sample a set of parse graphs from the current model p(pg; Θ,R,∆)

Dsyn = {pgsyn
i ; i = 1, 2, ..., M ′}

5. Compute histograms hsyn
t ,hsyn

ij from Dsyn for all feature/relations
6. Select a feature/relation that maximizes the diff. between obs. vs syn. histograms.
7. Set λ = 0 for the newly selected feature/relation.
8. Repeat (inner loop)
9. Update the parameters with stepsize η

δλt = ηt (hsyn
t − hobs

t), ∀t ∈ VT ,
δλij = ηij (hsyn

ij − hobs
ij), ∀(i, j) ∈ R.

Sample a set of parse graphs and update the histograms.
10. Until |hsyn

t − hobs
t | ≤ ε and |hsyn

ij − hobs
ij | ≤ ε for the selected feature/relations.

11. Until |hsyn
t − hobs

t | ≤ ε and |hsyn
ij − hobs

ij | ≤ ε for all features and relations.
Equations (63) and (65) are then satisfied to certain precision.

7.3 Summary of the learning algorithm

In summary, the learning algorithm starts with a SCFG (Markov tree) and a number of observed parse graphs
for training Dobs. It first learns the SCFG model by counting the occurrence frequency at the Or-nodes.
Then by sampling this SCFG, it synthesizes a set of instances Dsyn. The sampled instances in Dsyn will
have the proper components but often have wrong spatial relations among the parts as there are no relations
specified in SCFG. Then the algorithm chooses a relation that has the most different statistics (histogram)
over some measurement between the sets Dobs and Dsyn. The model is then learned to reproduce the
observed statistics over the chosen relation. A new set of synthesized instances is sampled. This iterative
process continues until no more significant differences are observed between the observed and synthesized
sets.

Remark 1. At the initial step, the synthesized parse graphs will match the frequency counts on all Or-
nodes first, but the synthesized parse graphs and their configurations will not look realistic. Parts of the
objects will be in wrong positions and have wrong relations. The iterative steps will make improvements.
Ideally, if the features and statistical constraints selected in equations (63) and (65) are sufficient, then the
synthesized configurations

Ωsyn
C = {Csyn

i : pgsyn
i −→ Cobs

i , i = 1, 2, ..., M ′}. (68)

should resemble the observed configurations. This is what people did in texture synthesis.
Remark 2. Note that in the above learning process, a parse graph pgobs

i contributes to some parameters
only when the corresponding nodes and relations are present in pgobs

i .

7.4 Experiments on learning and sampling

In [95], the first author showed a range of image synthesis experiments by sampling the image model (en-
sembles) for various visual patterns, such as textures, texton processes, shape contours, face etc to verify the

44

learned model in the spirit of analysis-by-synthesis. In this subsection, we show synthesis results in sampling
the probabilistic ensemble (or the language) defined by the grammar, i.e. sampling the typical configurations
from the probabilistic model defined on the And-Or graph.

C ∼ L(Gand−or) = {(Ck, p(Ck)) : S
Gand−or=⇒ Ck}. (69)

This is equivalent to first sampling the parse graphs,

pg;∼ p(pg; Θ,∆), (70)

and then producing the configurations,
pg → C. (71)

(a)

(b)

(c)

(d)

(e)

Figure 32: Learning the And-Or graph parameters for the clock category. (a) Sampled clock examples (synthesis) based on

SCFG (Markov tree) that accounts for the frequency of occurrence. (b-e) Synthesis examples at four incremental statges of the

minimax entropy pursuit process. (b) Matching the relation positions between parts, (c) further matching the relative scales,

(d) further pursuing the hinge relation, (e) further macthing the containing relation. From [58]

Figure 32 illustrates the synthesis process for a clock category whose And-Or graph is shown previously
in Figure 31. The experiment is from (Porway, Yao and Zhu)[58]. Each row in Figure 32 shows five typical
examples from the synthesis set Ωsyn

pg in different iterations. In the first row, the clocks are sampled from
the SCFG (Markov tree) in a window. These examples have valid parts for clocks shown in different colors,

45

but there are no spatial relations or features to constrain the attributes of the component or layouts. Thus
the instances look quite wrong. In the second row, the relative positions of the components (in terms of
their centers) are considered. After matching the statistics of the synthesized and observed sets, the sampled
instances look more reasonable. In the third, fourth, and fifth rows, the statistics on the relative scale,
the hinge relation between clock hands, and a containing relation are added one by one. The synthesized
instances become more realistic configurations.

(a)

(b)

(c)

(d)

Figure 33: Random sampling and synthesis of the bike category. From [58]

Figure 33 shows the same random sampling and synthesis experiment on another object category – bike.
With more spatial relations included and statistics matched, the sampled bikes from the learning models
become more realistic from (a) to (d).

The synthesis process produces novel configurations not seen in the observed set and also demonstrates
that the spatial relations captured by the And-Or graph will provide information for top-down prediction of
object components. Figure 43 shall show an example of top-down prediction and hallucination of occluded
parts using the learned bike model above.

In a recent experiment on a recognition task with 33 object categories[44], Lin et al used the synthesized
samples to augment the training set and showed that the generalized examples can improve the recognition
performance by 15% in comparison to the expertiments without synthesized examples. cre

46

8 Recursive top-down / bottom-up algorithm for image parsing

This section briefly reviews an inference algorithm with three case studies of image parsing using grammars
by the author and collaborators. The first case is a generic grammar for man-made world scenes. The com-
positional objects include buildings (indoor or outdoor) and furniture [31]. The second is a more restrictive
grammar for human clothes and upper body [9]. The third case [87] applies the grammar for recognizing
five object categories –clock, bike, computer (screen and keyboard), cup/bowl, teapot. In both cases, the
inference is performed under the Bayesian framework. Given an input image I as the terminal configuration,
we compute a parse graph pg that maximizes a posterior probability

pg∗ = arg max
pg

p(I|pg;∆sk)p(pg; Θ,∆). (72)

The likelihood model is based on the primal sketch in Section 3.2, and the prior is defined by the grammar
model in equation 54.

In the following, we briefly review the the computing procedures, and refer to the original papers [31]
and [9] for more details.

The And-Or graph is defined recursively, as is the inference algorithm. This recursive property largely
simplifies the algorithm design and makes it easily scalable to arbitrarily large number of object categories.

Consider an arbitrary And-node A in an And-Or graph. A may correspond to an object or a part.
Without loss of generality, we assume it can be either terminated into one of n leaves at low resolution or
decomposed into n(A) = 3 parts,

A → A1 ·A2 ·A3 | t1 | · · · | tn. (73)

This recursive unit is shown in Figure 34.

t1 t2 tn

A

A1 A2 A3

At1 t2 tn

A A1 A2 A3
. .

open list (weighted particles for hypotheses)

closed list (accepted instances)

Figure 34: Data structure for the recursive inference algorithm on the And-Or graph. See text for interpretation.

In this figure, each such unit is associated with data structures which are widely used in heuristic searches
in artificial intelligence [60].

• An Open List stores a number of weighted particles (or hypotheses) which are computed in bottom-up
process for the instances of A in the input image.

• A Closed List stores a number of instances for A which are accepted in the top-down process. These
instances are nodes in the current parse graph pg.

Thus the inference algorithm consists of two basic processes that compute and maintain the Open and
Closed lists for each unit A.

47

The bottom-up process creates the particles in the Open lists in two methods.
(i) Generating hypotheses for A directly from images. Such bottom-up processes include detection al-

gorithms such as Adaboosting[78, 21], Hough transform etc. for detecting the various terminals t1, ..., tn

without identifying the parts. The detection process tests some image features. These particles are shown
in Figure 34 by single circles with bottom-up arrows. The weight of a detected hypothesis (indexed by i) is
the logarithm of some local marginal posterior probability ratio given a small image patch Λi,

ωi
A = log

p(Ai|Iλi)
p(Āi|Iλi)

≈ log
p(Ai|F (Iλi))
p(Āi|F (Iλi))

= ω̂i
A.

Ā means competitive hypothesis. For computational effectiveness, the posterior probability ratio is approxi-
mated by posterior probabilities using local features F (Iλi) rather than the image Iλi . For example, in face
detection by Adaboosting [78], the strong classifier can be reformulated as a posterior probability ratio of
face vs. non-face [21, 63].

(ii) Generating hypotheses for A by binding a number of k (1 ≤ K ≤ n(A)) parts from the existing Open
and Closed lists of its children A1, A2, ...An(A). The binding process will test the relationships between these
child nodes for compatibility and quickly rule out the obviously incompatible compositions. In Figure 34,
these hypotheses are illustrated by a big ellipse containing n(A) = 3 small circles for its children. The upward
arrows show existing parts in the Open or Closed lists of the child nodes, and the downward arrows show the
missing parts that need to be validated in the top-down process. The weight of a bound hypothesis (indexed
by i) is the logarithm of some local conditional posterior probability ratio. Suppose a particle Ai is bound
from two existing parts Ai

1 and Ai
2 with Ai

3 missing, and Λi is the domain containing the hypothesized A.
Then the weight will be

ωi
A = log

p(Ai|Ai
1, A

i
2, IΛi)

p(Āi|Ai
1, A

i
2, IΛi)

= log
p(Ai

1, A
i
2, IΛi |Ai)p(Ai)

p(Ai
1, A

i
2, IΛi |Āi)p(Āi)

≈ log
p(Ai

1, A
i
2|Ai)p(Ai)

p(Ai
1, A

i
2|Āi)p(Āi)

= ω̂i
A.

where Ā means competitive hypothesis. p(Ai
1, A

i
2|Ai) is reduced to tests of compatibility between Ai

1 and
Ai

2 for computational efficiency. It leaves the computation of searching for Ai
3 as well as fitting the image

area IΛA
to the top-down process.

The top-down process validates the bottom-up hypotheses in all the Open lists, following the Bayesian
posterior probability. It also needs to maintain the weights of the Open lists.

(i) Given a hypothesis Ai with weight ω̂i
A, the top-down process validates it by computing the true

posterior probability ratio ωi
A stated above. If Ai is accepted into the Closed list of A. This corresponds to

a move from the current parse graph pg to a new parse graph pg+. The latter includes a new node Ai –
either as a leaf node or as a non-terminal node with children Ai

1, ..., A
i
n(A). The criterion of the acceptance

is discussed below. In a reverse process, the top-down process may also select a node A in the Closed list,
and then either deletes it (putting it back to the Open list) or disassembles it into independent parts.

(ii) Maintaining the weights of the particles in the OPEN Lists after adding (or removing) a node Ai

from the parse graph. It is clear that the weight of each particle depends on the competing hypothesis. Thus
for two competing hypotheses A and A′ which overlap in a domain Λo, accepting one hypothesis will lower
the weight of the other. Therefore, whenever we add or delete a node A in the parse graph, all the other
hypotheses whose domains overlap with that of A will have to update their weights.

The acceptance of a node can be done by a greedy algorithm that maximizes the posterior probability.

48

Each time it selects the particle whose weight is the largest among all Open lists and then accepts it until
the largest weight is below a threshold.

Otherwise, one may use a stochastic algorithm with reversible jumps. According to the terminology of
data driven Markov chain Monte Carlo (DDMCMC) [72, 74], one may view the approximative weight ω̂i

A

as a logarithm of the proposal probability ratio. The acceptance probability, in the Metropolis-Hastings
method [46], is thus

a(pg → pg+) = min(1,
q(pg+ → pg)
q(pg → pg+)

· p(pg+|I)
p(pg|I))

= min(1,
q+(Ai)
q(Ai)

exp{ωi
A − ω̂i

A}).

where q+(Ai) (or q(Ai)) is the proposal probability for selecting Ai to be disassembled from pg+ (to be
added to pg).

For the stochastic algorithm, its initial stage is often deterministic when the particle weights are very
large and the acceptance probability is always 1.

We summarize the inference algorithm in the following.

Algorithm II: Image parsing by top-down/Bottom-up inference

Input: an image I and an And-Or graph.
Output: a parse graph pg with initial pg = ∅.
1. Repeat
2. Schedule the next visit note A

3. Call the Bottom−Up(A) process to update A’s Open lists
4. (i) Detecting terminal instances for A from images
5. (ii) Binding non-terminal instances for A from its children’s Open or Closed lists.
6. Call the Top−Down(A) process to update A’s Closed and Open lists
7. (i) Accept hypotheses from A’s Open list to its Closed list.
8. (ii) Remove (or disassemble) hypotheses from A’s closed lists.
9. (iii) Update the Open lists for particles that overlap with current node.
. Until a certain number of iteration or the largest particle weight is below a threshold.

The key issue of the inference algorithm is to order the particles in the Open and Closed lists. In
other words, the algorithm must schedule the bottom-up and top-down processes to achieve computational
efficiency. For some visual patterns, like human faces in Figure 15, it is perhaps more effective to detect
the whole face and then locate the facial components. For other visual patterns, like the cheetah image in
Figure 14, it is more effective to work in a bottom-up fashion. More objects, like the two examples in the
following two subsections, need to alternate between the bottom-up and top-down processes.

The optimal schedule between bottom-up and top-down is a long standing problem in vision. A greedy
way for scheduling is to measure the information gain of each step, either a bottom-up testing/binding or a
top-down validation, divided by its computational complexity (CPU cycles). Then one may order these steps
by the gain/cost ratio. A special case is studied in [7] for coarse-to-fine testing. Many popular algorithms in
AI heuristic search [60] or the matching pursuit [47] can be considered deteriministic versions of the above
algorithm. In DDMCMC [94, 72], the algorithm always performs all the necessary bottom-up tests before
running the top-down process. As does the feedforward neural networks [59]. This may not be the optimal
schedule.

49

9 Three case studies of image grammar

9.1 Case study I: parsing the perspective man-made world by Han and Zhu

In this case, the grammar has one class of primitives as the terminal nodes (i.e. VT), which are 3D planar
rectangles projected on images. Obviously rectangles are the most common elements in man-made scenes,
such as buildings, hallways, kitchens, living rooms, etc. Each rectangle a ∈ VT is made of two pairs of parallel
line segments in 3D space, which may intersect at two vanishing points through projection. The grammar
has only two types of non-terminal nodes (i.e. VN) – the root node S for the scene and a node A for any
composite objects. The grammar has six production rules as shown in Fig. 35. The scene node S generates
m independent objects (rule r1). An object node A can be instantiated (assigned) to a rectangle (rule r5),
or be used recursively by the other four production rules: r2 – the line production rule that aligns a number
of rectangles in one row, r3– the mesh production rule that arranges a number of rectangles in a matrix, r4–
the nesting production rule that has one rectangle containing the other, and r6 –the cube production rule
that aligns three rectangle into a solid shape. The unknown numbers m and n can be represented by the
Or-nodes for different combinations.

r1
S ::= S

m

r2

::=A A

A1
m

scene

line

r3

::=A A

A11

mxn

mesh

AmA2

r4

::=A A

A1

nesting

A2

r6

::=A A

cube

A1

A2
A3

r5

::=A

instance

A

A1
A2

A3

line production rule

A1 A2

nesting production rule

A1
A2

A3

cube production rule

rectangleA1 A2 Am A1m

A2m a

Figure 35: Six attribute grammar rules for generic man-made world scenes. This grammar features a single class of primitives

– rectangle and four generic organizations – line, mesh, cube, and nesting. Attributes will be passed between a node to its

children and the horizontal lines show constraints on attributes. See text for explanation.

Each production rule is associated with a number of equations that constrain the attributes of a parent
node and those of its children. These rules can be used recursively to generate a large set of complex
configurations. Fig. 36 shows two typical parsing configurations – (b) a floor pattern and (d) a toolbox
pattern, and their corresponding parse graphs in (a) and (c) respectively.

The parsing algorithm adopts a greedy method following the general description of algorithm II. For each

50

a b c ed

a
b c

d er2

r4 r4

r4

a

b
c

d

r2

r4
r4

r6

abc de

e

f

f

g

g

(a) (d)(c)(b)

Figure 36: Two examples of rectangle object configurations (b) and (d) and their corresponding parse graphs (a) and (c).

The production rules are shown as non-terminal nodes.

of the 5 rules r2, ..., r6, it maintains an Open list and a Closed list. In an initial phase, it detects an excessive
number of rectangles in by a bottom-up rectangle detection process and thus fill the Open list for rule r5.
Each particle consists of two pairs of parallel line segments.

The top-down and bottom-up computation has been illustrated in Figure 2 for a kitchen scene. Fig. 2
shows a parse graph under construction at a time step, the four rectangles (in red) are the accepted rectangles
in the Closed list for r5. They activated a number of candidates for larger groups using the production rules
r3, r4, r6 respectively, and three of these candidates are then accepted as non-terminal nodes A, B, and C
respectively. The solid upward arrows show the bottom-up binding, while the downward arrows show the
top-down prediction.

r2

r6

r4

r3

r5

Figure 37: Illustration for the Open lists of the five rules.

Fig. 37 shows the five Open lists for the candidate sets of the five rules. At each step the parsing algorithm
will choose the candidate with the largest weight from the five particle sets and add a new non-terminal node
to the parse graph. If the particle is in the r5 Open list, it means accepting a new rectangle. Otherwise the
algorithm creates a non-terminal node and inserts the missing children in this particle into their respective
Open lists for future tests.

Figure 38 shows three examples of the inference algorithm. The computed configuration C for each image
consists of a number of rectangles arranged in generic structures. More discussions and experiments are
referred to [31].

Figure39 shows two ROC curves for performance comparison in detecting the rectangules in 25 images

51

Figure 38: Some experimental results. The first row shows the input images. The second row shows the
computed rectangle configurations. From [31].

against human annotated groundtruth. One curves shows the detection rate (vertical axis) over the number
of false alarms per image (horizontal axis) for pure bottom-up method. The other curve is for the methods
integrating bottom-up and top-down. From these ROC curves, we can clearly see the dramatic improvement
by using top-down mechanism over the traditionally bottom-up mechanism only. Intuitively, some rectangles
are nearly impossible to detect using the bottom-up methods and can only be recovered through the context
information using the grammar rules.

Figure 39: ROC curves for the rectangle detection results by using bottom-up only and, using both bottom-
up and top-down. From [31].

9.2 Case study II: human cloth modeling and inference by Chen, Xu and Zhu

The second example, taken from [9], represents and computes clothes by And-Or graph. Unlike the rigid
rectangle objects in the first example, human clothes are very flexible objects with large intra-category
structural variations.

52

The authors in [9] took 50 training images of college students sitting in a high chair with good light
conditions and uniform background to reduce occlusion and control illumination. An artist was asked to
draw sketches as consistent as possible on these images. From the sketches, they manually separate a layer
of sketches corresponding to shading folds and textures (e.g. shoe lace, text printed on T-shirt), and then
decompose the remaining structures into a number of parts: hair, face, collar, shoulder, upper and lower
arms, cuff, hands, pants, shoes, and pockets. Some of the examples are shown in Figure 25. The largest two
categories are hands and shoes. The hands have many possible configurations –separate or held/crossed.
The 50 pairs of hands collected are not necessarily exhaustive. However, an interesting observation in the
experiment is that human vision is not very sensitive to the precise hand gesture/poses. If a test image has
a hand configuration outside of our training category, the algorithm will find a closest match and simply
paste the part at the hand position without noticeable difference. Therefore complex parts, such as hands
and shoes, can be treated less precisely.

BB

D F

C C E E

......

Arms

Figure 40: The And-Or graph for arms as a part fo the overall And-Or graph.

With these categories, an And-Or graph is constructed manually to account for the variability of config-
urations. A portion of the And-Or graph for arms and hands is shown in Fig. 40. Intuitively, this And-Or
graph is like a “mother template” and it can produce a large set of configurations including configurations
not seen in the training set. Figure 41 displays three configurations produced by this And-Or graph.

g1 g1

g2 g2g3 g3

g4 g4
g5 g5

g6 g7 g6

g7

g1

g2 g3

g4 g5

g7g6

Figure 41: . Three novel configurations composed of 6,5,7 sub-templates in the categories respectively. The bonds are shown

by the red dots.

53

This And-Or graph is then used for drawing clothes from images using a version of algorithm II. The
algorithm makes use of the bottom-up process for detecting parts that are most discriminable, such as
face, skin color, shoulder. Then it activates top-down searches for predicted parts based on the context
information encoded in the And-Or graph. Figure 42 shows three results of the computed configurations.
These graphical sketches are quite nice for they are generated by rearranging the artist’s parts. Such results
have potential applications in digital arts and cartoon animations.

Figure 42: Experiment on inferring upper body with clothes from images. From [9].

9.3 Case study III: recognition on object categories by Xu, Lin and Zhu

The third example, taken from [87], applies the top-down / bottom-up inference to five object categories –
clock, bike, computer (screen and keyboard), cup/bowl, and teapot. The five categories are selected from a
large scale ground truth database from the Lotus Hill Institute. The database includes more than 500,000
objects over 200 categories parsed in And-Or graphs [88]. The probabilistic models are learned for these
and-Or graphs using the MLE learning presented in the previous section. The clock and bike sampling
results were shown in Figures 32 and 33.

The And-Or graphs together with their probabilistic models represent the prior knowledge above the five
categories for top-down inference. Figure 43 shows an example of inferring a partially occluded bicycle from
clutter.

In Figure 43. The first row shows the input image, an edge map, and bottom-up detection of the two
wheels using Hough transform. The Hough transform method is adopted to detect parts like circles, ellipse
and triangles. The second row shows some top-down predictions of bike frame based on the two wheels.
The transform parameters of the bike frame are sampled from the learned MRF model. As we can not tell
the front wheel from the rear at this moment, the frames are sampled for both directions. We only show

54

input image edge map bottom up detection

top-down predict 1 top-down predict 3top-down predict 2

match 1 match 2 match 3

imagine 1 imagine 2 imagine 3

Figure 43: The top-down influence in inferring a paritally occluded bike from clutter. From [87].

three samples for clarify. The third row shows the template matching process that matching the predicted
frames (in red) to the edges (in blue) in the image. The one with minimum matching cost is selected. The
fourth row shows the top-down hallucinations (imaginations) for the seat and handlebar (in green). As these
two parts are occluded. The three sets of hallucinated parts are randomly sampled from the And-Or graph
model, in the same way as random sampling of the whole bike.

Finally we show a few recognition examples in Figure 44 for the five categories. For each input image, the
image on its right side shows the recognized parts from the image in different colors. It should be mentioned
that the recognition algorithm is distinct from most of the classification algorithms in the literature. It
interprets the image by a parse graph which includes the classification of categories and parts on the Or-
nodes, and matches the leaf templates to images, and hallucinates occluded parts.

10 Summary and discussion

This exploratory paper is concerned with representing large scale visual knowledge in a consistent modeling,
learning, and computing framework. Specifically two huge problems must be solved before a robust vision
system is feasible: (1) large number (hundreds) of object and scene categories; and (ii) large intra-category
structural variation. The framework proposed to tame these two problems is a stochastic graph grammar
embedded in an And-Or graph, which can be learned from a large annotated dataset.

55

Figure 44: Recognition experiments on 5 object categories. From [87].

Firstly, to represent intra-category variation, the grammar can create a large number of configurations
from a relatively much smaller vocabulary. The And-Or graph acts like a reconfigurable mother template,
and assembles novel configurations on-the-fly to interpret novel instances unseen before.

Secondly, to scale up to hundreds of categories, the And-Or graph is recursively designed. Thus one can
integrate, without much overhead, all categories into one big And-Or graph. The learning and inference
algorithms are designed recursively as well. This permits large scale parallel computing.

There are two open issues for further study.
(i) Learning and discovering the And-Or graph. As it was proposed in a series of recent works [81, 17, 52,

58, 87], the objective is to map the visual vocabulary including dictionaries at all levels of abstraction and
all visual aspects. This task can be formulated in theory under a common learning principle, that is to put
the dictionary ∆ into the maximum likelihood learning process. The various information criteria, such as
the binding strength, mutual information, minimax entropy, will come naturally out of this learning process.

However, the ultimate visual vocabulary is unlikely to be learned fully automatically from statistical
principles, as the determination of the vocabulary must take the purposes of vision into account. This
argues for a semi-automatic method which is being carried out at the Lotus Hill Institute. Human users,
guided by real life experience, psychology and vision tasks, define most of the structures, and leaving the

56

estimation of parameters and adaptation to computers. The computers, at a more sophisticated stage, should
be able to find and pursue the addition of novel elements in their dictionaries. So far, And-Or graphs have
been constructed for over 200 object and scene categories, including aerial images, at the Lotus Hill Institute
[88].

(2) Scheduling and ordering of top-down and bottom-up processes. When we have a big And-Or graph
with thousands of nodes organized hierarchically, we can imagine that the computing process is like a many-
story factory with thousands of assembly lines. Intuitively, each assembly line corresponds to the Open
and Closed lists of a node in the And-Or graph. With all these assembly lines sharing only one CPU
(or even multiple CPUs), it is crucial to optimize the schedule to maximize the total throughput of the
factory. Traditionally, vision algorithms always start with bottom-up processes to feed the assembly lines
with raw materials (proposing weighted hypothesis), for example, the DDMCMC[94, 72], and feedforward
neural networks[59]. Due to the multi-resolution property, each node in the And-Or graph can be terminated
immediately and thus the raw material can be sent to the assembly lines at all stories of the factory directly,
instead of going up story-by-story. This strategy is supported by human vision experiments [70, 18] that
show humans can detect scene and object categories as fast as we detect the low level textons and primitives.

There has been a long standing debate over the roles of top-down and bottom-up processes [77]. We
believe that this debate can only be answered numerically not verbally. That is to say, we need to compute,
numerically, the information gain of each operator, either top-down or bottom-up, over the ensemble of real
world images.

Acknowledgements

The authors thanks Drs. Stuart Geman, Yingnian Wu, Harry Shum, Alan Yuille, and Joachim Buhmann for
extensive discussions and helpful comments. The first author also thanks many students at UCLA (Hong
Chen, Jake Porway, Kent Shi, Zijian Xu) and the Lotus Hill Institute (Liang Lin, Zhenyu Yao, Tianfu Wu,
Xiong Yang, et al) for their assistance. The work is supported by a NSF grant IIS-0413214 and an ONR
grant N00014-05-01-0543. The work at the Lotus Hill Institute is supported by a Chinese National 863 grant
2006AA01Z121.

References

[1] S.P. Abney, “Stochastic attribute-value grammars”, Computational Linguistics, 23(4), 597-618, 1997.

[2] K. Athreya and A.Vidyashankar, Branching Processes,Springer-Verlag, 1972.

[3] A. Barbu and S.C. Zhu, “Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities”,
IEEE Trans. on PAMI, vol.27, no.8, 1239-1253, 2005.

[4] K. Barnard et al. ”Evaluation of localized semantics: data methodology, and experiments”, Tech. Report,
CS, U. Arizona, 2005.

[5] I. Biederman, “Recognition-by-components: A theory of human image understanding”, Psychological
Review, 94, 115-147, 1987.

[6] E. Bienenstock, S. Geman, and D. Potter, “Compositionality, MDL priors, and object Recognition”,
in Advances in Neural Information Processing Systems 9, M.Mozer, M.Jordan, T.Petsche, eds., MIT
Press, 1998.

57

[7] G. Blanchard and D. Geman, “Sequential testing designs for pattern recognition,” Annals of Statistics,
33, 1155-1202, June, 2005.

[8] H. Blum, Biological Shape and Visual Science, J. Theoretical Biology, 38, pp.207-285, 1973.

[9] H. Chen, Z.J. Xu, Z.Q. Liu, and S.C. Zhu, “Composite templates for cloth modeling and sketching”,
Proc. IEEE Conf. on Pattern Recognition and Computer Vision, June, New York, 2006.

[10] Z.Y. Chi and S. Geman, “Estimation of probabilistic context free grammar”, Computational Linguistics,
24(2),299-305, 1998.

[11] N. Chomsky, Syntactic Structures, Mouton, The Hague, 1957.

[12] T.F.Cootes, C.J.Taylor, D. Cooper, and J. Graham, “Active Appearance Models–Their training and
applications”, Computer Vision and Image Understanding, 61(1):38-59, 1995.

[13] M. Crouse, R. Nowak, and R. Baraniuk, “Wavelet based statistical signal processing using hidden
Markov models”, IEEE Trans. Signal Processing, vol. 46, pp. 886–902, 1998.

[14] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, “From volumes to views: an approach to 3D object
recognition”, CVGIP: Image Understanding, Vol.55, No.2, pp. 130-154, March 1992.

[15] D.L. Donoho, M. Vetterli, R.A. DeVore, and I. Daubechie, “Data compression and harmonic analysis”,
IEEE Trans. Information Theory. 6, 2435-2476, 1998.

[16] L. Fei-Fei, R. Fergus, and P. Perona, ”Learning generative visual models from few training examples: an
incremental Bayesian approach tested on 100 object categories”, Workshop on Generative model based
Vision, 2004.

[17] L. Fei-Fei, R. Fergus and P. Perona. “One-Shot learning of object categories”, IEEE Trans. on PAMI,
, Vol28(4), 594 - 611, 2006.

[18] L. Fei-Fei, A. Iyer, C. Koch and P. Perona. “What do we perceive in a glance of a real-world scene?”,
Journal of Vision, 2006.

[19] M. Fischler and R.Elschlager, “The representation and matching of pictorial structures”, IEEE Trans.
Comp. C-22, pp.67-92, 1973.

[20] A. Fridman, “Mixed Markov Models”, Proc. Nat. Acad. Science, USA, 100, pp.8092-8096, 2003.

[21] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view of boosting”,
Annals of Statistics, 38(2):337-374, 2000.

[22] K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, 1982.

[23] R.X. Gao and S.C. Zhu, “From primal sketch to 2.1D sketch”, Lotus Hill Institute, technical report,
2006.

[24] M. Galun, E. Sharon, R. Basri and A. Brandt, “Texture segmentation by multiscale aggregation of filter
responses and shape elements”, Proc. ICCV, Nice, pp. 716-723, 2003.

[25] S. Geman, D.Potter, and Z.Chi, “Composition systems”, Quarterly of Applied Mathematics, 60, pp.707-
736, 2002.

58

[26] S. Geman and M. Johnson, “Probability and statistics in computational linguistics, a brief review”, In
Int’l Encyc. of the Social & Behavioral Sciences. N.J. Smelser and P.B. Baltes, eds., Pergamon, Oxford,
pp. 12075-12082, 2002.

[27] U. Grenander, General Pattern Theory, Oxford Univ. Press, 1993.

[28] G. Griffin, A. Holub, and P. Perona, ”The Caltech 256”, Technical Report, 2006.

[29] C. E. Guo, S.C. Zhu, and Y. N. Wu, ”Modeling visual patterns by integrating descriptive and generative
models”, IJCV, 53(1), 5-29, 2003.

[30] C.E. Guo, S.C. Zhu and Y.N. Wu, “Primal sketch: integrating texture and structure”, Proc. Int’l Conf.
on Computer Vision, 2003.

[31] F. Han and S.C. Zhu, “Bottom-up/Top-Down Image Parsing by Attribute Graph Grammar”, Proc.
Int’l Conf. on Computer Vision, Beijing, China, 2005. A long version is under review by PAMI.

[32] A. Hanson and E. Riseman, “Visions: a computer system for interpreting scenes”, in Computer Vision
Systems, 1978.

[33] T. Hong and A. Rosenfeld, “Compact region extraction using weighted pixel linking in a pyramid”,
IEEE Trans. PAMI, 6, pp.222-229, 1984.

[34] J. Huang, PhD thesis, Division of Applied Math. Brown University.

[35] Y. Jin and S. Geman, ”Context and hierarchy in a probabilistic image model, Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, New York, June, 2006.

[36] B. Julesz, “Textons, the Elements of Eexture Perception, and Their Interactions,” Nature, 290:91-97,
1981.

[37] T. Kadir and M. Brady, “Saliency, Scale and Image Description,” Int’l J. Computer Vision, 2001.

[38] G. Kanisza, Organization in Vision, New York: Praeger, 1979.

[39] Y. Keselman and S. Dickinson, “Generic model abstraction from examples”, CVPR, 2001.

[40] B. Kimia, A. Tannenbaum and S. Zucker, “Shapes, Shocks and Deformations I”, Int. J. Comp. Vision,
15, pp. 189-224, 1995.

[41] A. B. Lee, K. S. Pedersen and D. Mumford, “The Nonlinear Statistics of High-Contrast Patches in
Natural Images,” IJCV, 54 (1 / 2): 83-103, 2003.

[42] M. Leyton, “A process grammar for shape”, Artificial Intelligence, 34:213-247, 1988.

[43] W. Li, V. Piech, and C. Gilbert, ”Perceptual learning and top-down influences in primary visual cortex”,
Nature Neuroscience, 7(6):651-7, 2004.

[44] L,. Lin, S.W. Peng, and S.C. Zhu, ”An Empirical Study of Object Category Recognition: Sequential
Testing with Generalized Samples”, Submitted to ICCV, 2007.

[45] T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, Netherlands, 1994.

[46] J.S. Liu, Monte Carlo Strategies in Scientific Computing, Springer-Verlag, NY, Inc, 2001 (page 134).

59

[47] S. Mallat and Z. Zhang, “Matching Pursuit in a Time-Frequency Dictionary,” IEEE Trans. on Sigmal
Processing, 41:3397-415, 1993.

[48] K. Mark, M. Miller and U. Grenander, “Constrained stochastic language models”, in Image Models
(and Their Speech Model cousins) S.Levinson and L.Shepp, eds., IMA Volumes in Mathematics and its
Applications, 1994

[49] D. Marr, Vision, Freeman Publisher, 1983.

[50] D. Martin, C. Fowlkes, D. Tal, J. Malik, “A database of human segmented natural images and its
application to evaluating segmentation algorithms”, ICCV, 2001.

[51] H. Murase and S.K. Nayar, Visual Learning and Recognition of 3-D Objects from Appearance, Int’l J.
Computer Vision, vol. 14, pp. 5-24, 1995.

[52] K. Murphy, A. Torralba, and W. T. Freeman, ”Graphical model for recognizing scenes and objects”,
Proc. NIPS, 2003.

[53] M. Nitzberg, D. Mumford and T. Shiota, Filtering, Segmentation and Depth, Springer Lecture Notes in
Computer Science, 662, 1993.

[54] Y. Ohta, T. Kanade, and T. Sakai, ”An analysis system for scenes containing objects with substruc-
tures”, Proc. 4th Int’l Joint Conf. on Pattern Recognition, pp.752-754, Kyoto, 1978.

[55] Y. Ohta, Knowledge-based interpretation of outdoor natural color scenes, Pitman, 1985.

[56] B. A. Olshausen and D. J. Field, “Emergence of Simple-cell Receptive Field Properties by Learning a
Sparse Code for Natural Images,” Nature, Vol. 381, pp. 607-609, 1996.

[57] B. Ommer and J. M. Buhmann, ”Learning compositional categorization method”, Proc. European Conf.
on Computer Vision, 2006.

[58] J. Porway, Z.Y. Yao, and S.C. Zhu, ”Learning an And-Or graph for modeling and recognizing object
categories”, submitted to ICCV 2007.

[59] M. Riesenhuber and T. Poggio, “Neural Mechanisms of Object Recognition,” Current Opinion in Neu-
robiology, 12, 162-168, 2002.

[60] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley, 1984.

[61] J. Rekers and A. Schürr, “A parsing algorithm for context sensitive graph grammars”, TR-95-05, Leiden
Univ. 1995.

[62] B. Russel, A. Torralba, K. Murphy and W. Freeman, ”LabelMe: a database and web-based tool for
image annotation”, Intl. J. Computer Vision (special issue on vision and learning). To Appear.

[63] R. E. Schapire, “The boosting approach to machine learning: an overview”, MSRI Workshop on non-
linear Estimation and Classification, 2002.

[64] T.B. Sebastian, P.N. Klein, and B.B. Kimia, “Recognition of shapes by editing their shock graphs”,
IEEE trans. on PAMI, 26, no. 5, pp. 550-571, 2004.

[65] S.M. Sherman and R.W. Guillery, ”The role of thalamus in the flow of information to cortex”, Philos
Trans R Soc Lond (Biol) 357: 1695-1708, 2002.

60

[66] K. Shi and S.C. Zhu, “Visual learning with implicit and explicit manifolds”, IEEE Conf. on CVPR,
June, 2007.

[67] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker, “Shock graphs and shape matching”,
IJCV, 35(1), 13-32, 1999.

[68] K. Siddiqi and B.B. Kimia, “Parts of visual form: computational aspects”, IEEE Trans. on PAMI,
17(3), 239-251, 1995.

[69] E.P. Simoncelli and W.T. Freeman and E.H. Adelson and D.J. Heeger, “Shiftable Multi-scale Trans-
forms,” IEEE Trans. Info. Theory, 38(2):587-607, 1992.

[70] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human visual system”, Nature, 381,
520-522, 1996.

[71] S. Todorovic and N. Ahuja, “Extracting subimages of an unknown category from a set of images”,
CVPR, 2006.

[72] Z.W. Tu and S.C. Zhu, “Image segmentation by Data-driven Markov chain Monte Carlo”, IEEE Trans.
on PAMI, May, 2002,

[73] Z.W. Tu, X.R. Chen, A.L. Yuille, and S.C. Zhu, “Image parsing: unifying segmentation, detection, and
recognition”, Int’l J. of Computer Vision, 63(2), 113-140, 2005.

[74] Z.W. Tu and S.C. Zhu, “Parsing images into regions, curves and curve groups”, Int’l Journal of Com-
puter Vision, 69(2), 223-249, August, 2006.

[75] M. Turk and A. Pentland, Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3:1, 1991.

[76] S. Ullman, E. Sali and M. Vidal-Naquet, “A Fragment-Based Approach to Object Representation and
Classification”. Proc. 4th Int’l Workshop on Visual Form, Capri, Italy, 2001

[77] S. Ullman, “visual Routine”, Cognition, 18:97-157, 1984.

[78] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,”, CVPR,
511-518, 2001.

[79] W. Wang, I. Pollak, T.-S. Wong, C.A. Bouman, M.P. Harper, and J.M. Siskind, ”Hierarchical stochastic
image grammars for classification and segmentation”, IEEE Trans. on Image Processing, 15(10):3033-
3052, Oct. 2006.

[80] Y. Z. Wang, S. Bahrami, and S.C. Zhu, “Perceptual Scale Space and It Applications”, Int’l Conf. on
Computer Vision, Beijing, China, 2005.

[81] M. Weber, M. Welling and P. Perona, “Towards automatic discovery of object categories”, IEEE Conf.
on CVPR, 2000.

[82] A.P. Witkin, “Scale space filtering,” Int’l Joint Conf. on AI Palo Alto, Kaufman, 1983.

[83] T.F. Wu, G.S. Xia, and S.C. Zhu, ”Compositional boosting for computing hierarchical image structures”,
IEEE Conf. on CVPR, June, 2007.

[84] Y.N. Wu, J.H. Li, Z.Q. Liu, and S.C. Zhu, “Statistical principles in low level vision”, Technometrics,
2006.

61

[85] Y.N. Wu, S.C. Zhu, and C.E. Guo, “From information scaling laws of natural images to regimes of
statistical models”, Quarterly of Applied Mathematics, 2007.

[86] Z.J. Xu, H. Chen, and S.C. Zhu, “A high resolution grammatical model for face representation and
sketching”, Proc. IEEE Conf. on CVPR, San Diego, June, 2005.

[87] Z.J. Xu, L. Lin, and S.C. Zhu, ”A stochastic grammar for compositional object recognition”, Submitted
to ICCV 2007.

[88] Z.Y. Yao, X. Yang, and S.C. Zhu, ”Introduction to a large scale general purpose groundtruth database:
methodology, annotation tools, and benchmarks”, 6th Int’l Conf on EMMCVPR, Ezhou, China, 2007.

[89] L. Zhu, Y. Chen, and A. Yuille, ”Unsupervised learning of a probabilistic grammar for object detection
and parsing”, NIPS 2006.

[90] S.C.Zhu and A.L.Yuille, “FORMS: A Flexible Object Recognition and Modeling System”, Int. J. Comp.
Vision, 20, pp.187-212, 1996.

[91] S.C. Zhu, C. E. Guo, Y.Z. Wang, and Z.J. Xu, “What are textons?”, Int’l J. of Computer Vision,
vol.62(1/2), 121-143, April/May, 2005.

[92] S. C. Zhu, Y.N. Wu and D.B. Mumford, “Minimax entropy principle and its applications to texture
modeling”, Neural Computation Vol. 9, no 8, pp 1627-1660, Nov. 1997.

[93] S. C. Zhu, “Embedding Gestalt laws in Markov random fields”, IEEE Trans. on PAMI. vol. 21, no.11,
1999.

[94] S.C. Zhu, R. Zhang, and Z.W. Tu, “Integrating top-down/bottom-up for object recognition by Data-
driven Markov chain Monte Carlo”, CVPR, 2000.

[95] S.C. Zhu, “Statistical modeling and conceptualization of visual patterns”, IEEE Trans. on PAMI, vol.
25, no.6, pp. 691-712, 2003.

62

